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ABSTRACT
Persistentmemory (PMem) promisedDRAM-like performance, byte
addressability, and the persistency guarantees of conventional block
storage. With the release of Intel Optane DCPMM, those expec-
tations were dampened. While its write latency competes with
DRAM, its read latency, write endurance, and especially bandwidth
fall behind by up to an order of magnitude.

Established PMem index structures mostly focus on lookups and
cannot leverage PMem’s low write latency. For inserts, DRAM-
optimized index structures are still an order of magnitude faster
than their PMem counterparts despite the similar write latency. We
identify the combination of PMem’s low write bandwidth and the
existing solutions’ high media write ampli�cation as the culprit.

We present Plush, a write-optimized, hybrid hash table for PMem
with support for variable-length keys and values. It minimizes
media write and read ampli�cation while exploiting PMem’s unique
advantages, namely its low write latency and full bandwidth even
for small reads and writes. On a 24-core server with 768 GB of
Intel Optane DPCMM, Plush outperforms state-of-the-art PMem-
optimized hash tables by up to 2.44× for inserts while only using a
tiny amount of DRAM. It achieves this speedup by reducing write
ampli�cation by 80%. For lookups, its throughput is similar to that
of established PMem-optimized tree-like index structures.
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1 INTRODUCTION
Persistent memory (PMem) promised low latency, random access
performance and throughput comparable to DRAM, as well as data
persistency, while being a drop-in replacement of DRAM. PMem-
optimized data structures could theoretically achieve the same
throughput as their DRAM counterparts while o�ering granular
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Table 1: Write access characteristics for di�erent media.

Medium Latency Bandwidth Price Access unit

DRAM 90 ns 80 GB/s 7.2 $/GB cache line (64B)
PMem 130 ns 6.5 GB/s 4.0 $/GB block (256B)
SSD 40000 ns 3.2 GB/s 0.3 $/GB page (4KiB)

persistency guarantees without needing additional write-ahead
logging. However, in practice, Intel’s Optane Persistent Memory
Modules (DPCMM) perform considerably worse than DRAM.1 For
example, their read latency is three times higher [42]. While its
write latency is comparable to that of DRAM, its write bandwidth is
lower by an order of magnitude, as shown in Table 1. Furthermore,
PMem’s internal smallest unit of access is 256-byte blocks, leading
to signi�cant read and write ampli�cation for small accesses.

Prior work addresses PMem’s high read latency, but often fails
to fully leverage its low write latency and mitigate its low write
bandwidth. Many current PMem-optimized data structures, for ex-
ample, follow a hybrid design, storing the recoverable part of their
data (e.g., the inner nodes of a B-Tree) on faster DRAM [3, 9, 37].
This approach is excellent for lookups but it does not solve the
issues of inserts as every insert has to store its payload on PMem to
guarantee data persistency. State-of-the-art PMem-optimized data
structures minimize the number of writes per insert to mitigate
latency. However, because of PMem’s low bandwidth, write ampli�-
cation is just as much of a problem. PMem’s internal 256-byte block
structure further exacerbates this problem for small random writes:
It internally ampli�es each write to update a 256-byte block. This
ampli�cation leads to spurious writes saturating PMem’s internal
bu�er, which drives up write latency and thus indirectly lowers
throughput even if little actual payload is being stored [15].

Workloads consisting of small writes are a common use case in
key-value stores [2]. Yahoo!, for example, states that their typical
low latency workloads have more than 50% inserts [40]. We target
this use case:We exploit PMem’s lowwrite latency by optimizing for
small writes while mitigating its low write bandwidth by reducing
write ampli�cation. Our approach adapts the write ampli�cation-
reducing techniques of log-structured merge-trees (LSM trees) to
PMem using hash tables.

LSM trees reduce write ampli�cation for SSDs and HDDs [36]
but do not leverage PMem’s low latency for smaller writes. They
bu�er records on DRAM before merging them into consecutively
larger sorted runs on SSD or HDD. This bu�ering reduces write

1From here on, we use the terms PMem and Intel Optane DCPMM interchangeably, as
it is the only commercially available product on which we also base our evaluation.
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ampli�cation as LSM trees can �ll each 4 KiB OS page before writing
it back. They accept some overhead incurred by keeping their data
sorted to ensure access patterns to SSDs/HDDs are favorable, i.e.,
by enforcing that merges are sequential reads and writes.

PMem-optimized LSM trees like NoveLSM [25] or SLM-DB [24]
adapt existing LSM trees like LevelDB [13] and replace some com-
ponents with PMem-optimized counterparts but keep their overall
architecture. However, modern NVMe SSDs are often more attrac-
tive for workloads with large writes as they already o�er half of
PMem’s throughput at a tenth of its cost. Therefore, porting LSM
trees directly to PMem is hard to justify if one does not need the
properties o�ered by sorting data (i.e., range queries) as their design
does not take advantage of PMem’s superior random write latency.

In contrast, we exploit that on PMem, it is unnecessary to gener-
ate large sequential runs by sorting records as it already reaches full
bandwidth with just 256-byte writes. We instead propose gathering
records in a list of unsorted 256-byte buckets, which we address
through a hash table.Whenever such a bucket list is full, we propose
re-hashing its contents and recursively merging them into a bigger
hash table (the “next level”). We thus adapt the LSM tree’s merging
approach to a PMem-aware hash table. This was previously not
workable, as the throughput of conventional block storage devices
is too low for writes that small. Larger buckets to accommodate 4
KiB pages were also infeasible as search time would dominate for
such large unsorted buckets. We call our approach Persistent Log-
strUctured haSH-table, or Plush for short. In all other aspects,
Plush takes proven approaches by LSM trees but adapts them for a
PMem-native data structure:

Batch writes to PMem. Like an LSM tree, Plush gathers new data
in DRAM before moving it to PMem in batches, minimizing write
ampli�cation so that PMem does not have to deal with spurious
writes which would increase latency and lower throughput. How-
ever, it uses a hash table instead of a skip list. Plush allows a con�g-
urable amount of DRAM bu�er. Established hybrid data structures,
in contrast, cannot control their DRAM consumption as it grows
with the record count. This puts a limit on record count before
running out of DRAM. Plush has no such limit.

Store large records out of place. In contrast to many other PMem
data structures, Plush supports variable-length keys and values. It
employs a similar approach to LSM trees like WiscKey [33], which
stores values in a separate log that periodically collects garbage.
This approach reduces write ampli�cation, since Plush does not
have to copy values when merging them into the next level.

In summary, our main contributions are:

(1) We explore how approaches to reduce write ampli�cation
developed for LSM trees can be adapted to PMem with the
help of hash tables.

(2) We propose Plush, a write-optimized hash table for PMem
with bounded DRAM usage and low write ampli�cation.

(3) We evaluate Plush with �xed and variable-length records
and show that it outperforms state-of-the-art PMem data
structures for inserts.

To our knowledge, Plush is the �rst PMem-optimized data struc-
ture to take this approach.

2 BACKGROUND
Plush is a hash table for persistent memory inspired by LSM trees.
This section introduces each aspect.

2.1 Persistent Memory
PMem positions itself as a drop-in replacement of DRAM as it has
the same load and store interface: One allocates a chunk of it and
treats the memory region just like any allocated memory on DRAM.
There are, however, some particularities unique to PMem:

Performance. We measured PMem performance in our earlier
work [42]. We found that one can expect a 3.2× higher read latency
for PMem compared to DRAM but similar write latencies. The
write latencies are similar as a store does not have to reach the
physical medium but just the CPU’s ADR domain which already
guarantees persistency [23], while reads have to go all the way to
the physical medium. For throughput, PMem falls o� more: 2.6× for
reads and 7.5× for writes. Thus, a signi�cant advantage of PMem
over conventional block storage is its low latency. A persistent data
structure should therefore exploit this low write latency.

Persistency barriers. Even on PMem, a system crash can lead to
data loss: For example, the CPU might cache dirty data and delay
�ushing it to PMem. On a crash, all dirty cache lines are lost as
caches are not persistent. Therefore, one has to use persistency
barriers to ensure that the persisted data is always in a consistent
state. A persistency barrier is a clwb, clflush, or a non-temporal
write followed by an sfence. Flushing the cache line guarantees
that the data reaches PMem. The store fence forbids the CPU to
re-order any writes before or after. Such a barrier is expensive as it
blocks until the CPU evicts the cache line to its ADR domain and
the store fence prevents the CPU from concealing this stall by re-
ordering other stores. One should therefore use as few persistency
barriers as possible. If a barrier is required, one should ensure that
the whole �ushed cache line consists of payload to keep write
ampli�cation low. Intel’s extended ADR (eADR), available since Ice
Lake, solves this issue by including the CPU cache in the persistency
domain, obsoleting persistency barriers. Since eADR needs a special
power supply and not all CPUs supporting PMem support eADR,
persistency barriers are still required for backward compatibility.

Tornwrites. The systemmight crashwhile �ushing data to PMem,
resulting in a torn write. PMem guarantees that writes up to 8 bytes
are atomic, larger writes might only be persisted partially after a
crash. Torn writes are usually prevented by �rst writing a record to
PMem followed by a persistency barrier. Afterward, this record can
be “armed” by atomically writing an at most 8-byte header contain-
ing a valid bit followed by another persistence barrier. Having to
use two persistence barriers makes this approach expensive. We
have previously researched and tested approaches requiring only
one persistence barrier [42], which we also employ in Plush.

256-byte blocks. Internally, PMem operates on 256-byte blocks,
just like CPUs use 64-byte cache lines. The same principles apply:
To reduce write ampli�cation, programs should write and read data
in 256-byte blocks. When this is not feasible, writes should be se-
quential so that PMem’s write combining bu�er can merge multiple
writes which also enhances PMem’s limited write endurance [22].



2.2 LSM Trees
Write ampli�cation is an issue with data structures operating on
background storage. Since the smallest unit of access is often larger
than the record to be stored (256 B for PMem, 4 KiB for HDD/SSD),
it is desirable to batch multiple writes, which reduces write ampli-
�cation. LSM trees, therefore, bu�er new records in DRAM. The
LSM tree recursively merges the DRAM bu�er into consecutively
larger layers of background storage whenever it reaches a size limit.
LSM trees keep the records sorted, usually using a skip list on the
DRAM layer to make this merge process e�cient. A :-way merge
then comprises : sequential reads and one sequential write. This
merge �ts the access patterns of HDDs and SSDs as they bene�t
from sequential access, but keeping data sorted is expensive: In-
serts cannot happen in constant time, and skip lists o�er poor cache
locality and can su�er from write contention. If, however, records
are only stored on DRAM and PMem, there is no performance ben-
e�t for keeping them sorted: PMem has exceptional random write
latency as long as writes are grouped into 256-byte blocks. Existing
approaches to adapting LSM trees for PMem do not leverage this
advantage but replace or improve just a few core components of
already established LSM trees. NoveLSM, for example, adds persis-
tent skip lists and mutable memtables [25]. SLM-DB only employs
a single level and additionally keeps a persistent B-Tree index [24].

2.3 Hashing on PMem
Most bleeding-edge PMem-based hash tables use extendible hash-
ing [12] or a variant thereof. Extendible hashing splits the hash
table into a set of �xed-size buckets and a hash-addressable direc-
tory whose entries point to those buckets. The buckets store the
actual records, consisting of a key and its value. To accommodate
skew, = directory entries, with = = 2: , : ≥ 0 may point to the same
bucket. That way, underutilized directory entries do not need their
own (nearly empty) bucket taking up unnecessary space. Whenever
a bucket is full, it is split into two buckets. All records of the old
bucket are re-hashed with one additional bit of the hash function
discriminating in which new bucket they belong. Afterward, =/2
directory entries of those that pointed to the old bucket point to
each of the two new entries. If a bucket was already pointed to by
just one directory entry before the split, we cannot discriminate
further. In that case, the whole directory is doubled. Afterward,
every bucket is pointed to by at least two directory entries and the
bucket can be split. This is called a structural modi�cation operation
(SMO) which is very expensive and hard to do concurrently and
with consistency guarantees.

Modern PMem-based hash tables like CCEH [35] or Dash [32]
group multiple buckets into a segment to better optimize for PMem
block size. They split a segment when any of its buckets is full.
Therefore, hash tables take great care to improve the segment load
factor to reduce the number of splits and SMOs arising from them.
Level hashing employs a second level with standby buckets [53],
Dash uses stash buckets.

3 OVERARCHING DESIGN
Plush combines the highlights of LSM Trees with the highlights of
hash tables. As PMem does not depend on sequential accesses as
long as the accesses are grouped in 256-byte blocks, we propose

doing away with sorting and replacing the LSM tree’s layers with
hash tables. We still keep a DRAM bu�er to group the records into
256-byte blocks, reducing write ampli�cation.

Plush also builds on the foundation of extendible hashing. Like
CCEH and Dash, it groups multiple buckets per directory entry.
However, when a directory entry would need to be split, Plush does
not split in place, but merges its records into a hash table with a
bigger directory a level below.We call this a migration. This leveling
approach allows Plush to skip expensive SMOs altogether. Unlike
CCEH and Dash, Plush can also insert a record into any bucket of a
directory entry instead of a speci�c one determined by the record’s
hash. While this slows down lookups, it speeds up inserts, as the
load factor is higher: A directory entry is only migrated if it is full,
resulting in low write ampli�cation. To speed up lookups, Plush
uses positive bloom �lters in the directory entries which indicate
whether a speci�c bucket contains a record with the requested key.

Plush is, to our knowledge, the �rst PMem-optimized data struc-
ture combining LSM trees and hash tables in this way. Plush exploits
PMem’s low random write latency for 256-byte blocks. It mitigates
PMem’s low write bandwidth by reducing its write ampli�cation.

This approach helps Plush to achieve the following design goals:

Hybrid architecture. Plush uses a small but con�gurable amount
of DRAM to increase throughput. Here, DRAM acts as a bu�er
whose size is con�gurable. In contrast, other hybrid PMem data
structures cannot provide an upper bound for DRAM consumption.

Low write ampli�cation. Plush avoids expensive random writes
to PMem and instead groups data into 256-byte chunks in a DRAM
bu�er to write at once. It keeps a write-ahead log of not yet persisted
records to still guarantee per-record persistency. Since Plush writes
this log sequentially, PMem can use its write combining bu�er for
increased throughput. Reducing write ampli�cation also conserves
PMem’s limited endurance.

Reduce persistency barriers without relaxing persistency guaran-
tees. We tolerate small time windows where data is duplicated to
ensure that Plush is always consistent. This concession allows us to
reduce the number of persistency barriers. In the event of a crash,
Plush amortizes data deduplication over runtime after recovery.

Concurrency without persistent locks. PMem-optimized hash ta-
bles often need locks stored on PMem for structural modi�cation
operations to reconstruct the current state during recovery. Since
Plush is always in a consistent state, we can forgo such persistent
locks. Inserts use �ne-grained locking on DRAM, while lookups
only use optimistic locking [5, 26].

E�cient bulk loading. Plush guarantees persistency with the help
of a PMem write-ahead log. For bulk loading, relaxed persistency
guarantees (i.e., manual checkpoints) are often su�cient. The user
can temporarily turn o� logging for increased throughput.

First-class support for variable-length records. In contrast to other
PMem data structures, Plush supports both variable-length keys
and values. Unlike some prior work like Dash, Plush always persists
the payload itself, i.e., does not treat keys or values as pointers to
data managed by a separate data structure like a write-ahead log.
No separate write-ahead log is therefore required when using Plush.
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Figure 1: Plush’s component overview with illustrated insert
( 1 - 5 ) and lookup algorithms ( a - d ). The colored lines
represent steps in the algorithms, the black lines pointers of
the data structure.

4 ARCHITECTURE
Figure 1 shows Plush’s architecture. It consists of three components:
A multi-leveled hash table stores the (�xed-size) records. A table of
write-ahead recovery logs ensures that records that have not yet
reached PMem are recoverable. An optional table of payload logs
stores variable-length records.

4.1 Multi-leveled Hash Table
The core of Plush is its hash table. It stores all records. Figure 1
shows such a hash table with fanout 2.

Levels. The hash table consists of multiple levels, with the lowest
level residing in DRAM. All higher levels are stored on PMem, with
each level’s directory multiplying in size by a con�gurable power
of 2, the fanout, except for the �rst PMem level, which may have a
smaller fanout. The user can thus adjust the DRAM consumption by
varying the size of the DRAM level compared to the �rst PMem level
without modifying the fanout on PMem. Like extendible hashing,
each level’s hash table consists of a directory whose entries contain
a bucket list of up to fanout buckets. A bucket holds up to 16
records consisting of 8-byte keys and values. It thus has a total size
of 256 bytes which is the same size as a PMem block.

Migration. When all buckets for an entry are full, Plush re-hashes
their records using log2 (fanout) additional bits of the hash func-
tion. It then distributes the records onto fanout directory entries on
the next level ( 4 ), recursively if necessary ( 5 ). Figure 2 illustrates
the migration process. Plush appends records to the end of the last
non-full bucket for the corresponding directory entry on the next
level. If that bucket over�ows, it allocates a new bucket ( ). Plush
then clears the old buckets in the original level, making space for
newly inserted records. Records thus slowly move to larger levels

. . .0 .
.

. . .1 .
.

. . .01 .
.

. . .11 .
.

16 records ≡ 256 B

fanout buckets

fanout
directory
entries

Figure 2: Migrating the buckets of a directory entry.

like in an LSM tree. Assuming a uniform hash function, we expect
fanout full buckets in level = to distribute evenly onto the fanout
directory entries on level = + 1 where each directory entry receives
≈ 1 bucket of new records. Migrating a bucket to the next level,
therefore, results in fanout PMem block reads and one write in
the best case ( ). In most cases, however, there is not exactly one
bucket’s worth of entries to insert, or the current bucket already
contains some elements from a previous migration forcing some
records to spill into the next bucket ( ). We, therefore, have to ex-
pect two block writes per migrated bucket on average. Since most
records will be on the highest level, the average per-record write
ampli�cation grows linearly with the number of levels (and thus
logarithmically with the record count). This, however, is also true
for conventional PMem data structures. Hash tables have to deal
with SMOs and segment splits, trees with (leaf-) node splits.

DRAM bu�er. Plush always inserts new elements into DRAM
( 3 ). Bu�ering records in DRAM guarantees that Plush never stores
single records on PMem by itself, which would amplify writes by 16
(updating a 256-byte block for each 16-byte record). The bu�ering
approach is an advantage over pure PMem data structures which
cannot bu�er and combine writes in DRAM by design.

Lookups. Lookups search for the key by probing a �lter in the
directory entry at each level consecutively ( a - c ). Only on a
�lter hit is the actual bucket accessed and searched as well ( d ).

Figure 3 shows the layout of the hash table’s directory and buck-
ets. Each directory entry consists of:

Filter. Plush uses per-directory entry �lters to e�ciently check
whether a bucket contains a key. In contrast to prior work like
the FPTree using �ngerprints [37], Plush uses a partitioned bloom
�lter [38, 39] where each partition covers the keys of one bucket.
By forgoing �ngerprints for bloom �lters, we sacri�ce the ability
to �nd the o�set of potential hits within the bucket upon a lookup
( a ) but achieve a far lower false-positive rate. Plush stores all keys
within a bucket sequentially, so that it can compare all of them
with the search key with two AVX-512 SIMD instructions. Since the
PMem block read latency dominates the bucket lookup, this does
not lose us signi�cant performance at the bene�t of a far lower
false-positive rate compared to �ngerprinting. A negative lookup
on a hash table level thus only has to load the bloom �lter, which
�ts into a single PMem block. When doing inserts, we bulk insert
multiple elements into the same directory entry, updating the �lter
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Figure 3: Layout of a directory entry, its buckets (for �xed
and variable-length keys), and the payload log for fanout 8.

in bulk. An insert of 16 elements thus only requires us to update
the �lter once (≡ 1 PMem block write).

Size and epoch. Since Plush �lls buckets sequentially, a single
size �eld in the directory entry su�ces to calculate into which
bucket and position a new element has to be inserted. The recovery
log (see Section 4.2) uses the epoch �eld to determine which entries
Plush has already migrated to a persistent hash table level on PMem.
Plush increments it after every migration.

Bucket pointers. The directory entry stores an array of pointers
to the buckets containing the records. Plush updates the array
whenever it allocates a new bucket. Plush distinguishes between
two kinds of buckets: Buckets for �xed-size records (up to 8B keys
and 8B values) and buckets for variable-length records. We discuss
the second kind in Section 4.3. Fixed-size buckets are the size of
a single PMem block and can thus store 16 records. Plush can
optionally drop the bucket pointers and pre-allocate all buckets
for all directory entries of the �rst : PMem levels at pre-de�ned
o�sets as an optional optimization. Pre-allocating buckets incurs
space overhead, especially if the utilization of the hash table is low.
On the �ip side, it speeds up lookups and inserts as the pointer
dereference (a PMem read) is replaced by an unconditional, pre-
calculated jump. Since we expect all but the last level to be full,
pre-allocating buckets for the upper levels will not impact space
consumption in the long run but considerably speed up lookups
and inserts. Section 6.5 evaluates the impact of this optimization.

Plush can also store 16-, 32-, and 64-byte keys and values in its
buckets. This is disabled by default as it reduces per-level capacity
and requires coarser locks for synchronization as C++ atomics
cannot be larger than 8 bytes.

4.2 Recovery Log
Plush guarantees that it persists records permanently when the
insert method returns. Since Plush stores the newest entries on the
DRAM part of its leveled hash table, it has to keep a persistent log
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Figure 4: Layout of a recovery log. Each log consists of a set
of chunks, split into in-use chunks and a free list.

of all entries that it has not yet migrated to a PMem hash table.
Before it inserts a record into the hash table, it persists the record in
such a log ( 2 ). Unfortunately, this is a “law of nature” we cannot
get around: To guarantee persistency for each 16-byte record, we
have to persist each record in the log with an expensive persistence
barrier and high write ampli�cation (since 16 � 256). However,
PMem’s write combining bu�er saves us: Since we write to each
log sequentially, it can combine multiple writes into a larger write
without weakening persistence guarantees. Plush’s design thus
prevents small random writes to PMem: Instead, it either batches
writes (hash table bucket migration) or issues sequential writes
(recovery logs) which the write combining bu�er batches internally.

Plush employs multiple logs, which it partitions by the key’s
hash. Partitioning is a trade-o�: The more logs Plush uses, the lower
the write contention on each log. However, more logs also mean the
write combining bu�er will not be as e�ective since more random
accesses hit PMem. Plush thus allows a con�gurable number of
logs independent of the DRAM hash table size. It uses 64 logs by
default. Since Plush partitions the logs by key, it can still ensure a
global ordering of updates on the same key, as it persists updates
to the same key in the same (sequential) log.

Figure 4 shows the layout of a log. It consists of a con�gurable
number of �xed-size chunks arranged in a linked list and a free list
of chunks currently not in use. A current pointer points to the
chunk that is currently being �lled. Each log entry consists of the
key, value, and epoch counter. The epoch counter signi�es during
which epoch of the DRAM hash table’s directory entry this record
was inserted. Plush increments the DRAM epoch when it persists
the corresponding buckets on PMem. It uses this information during
log compaction and recovery to determine whether it has already
moved the entry in the leveled hash table to PMem and can thus
discard it.

The log has to guarantee persistency and prevent torn writes.
Plush achieves both through the RAWL approach invented by
Mnemosyne [43]: PMem guarantees atomicity for up to 8-byte
integers. We thus distribute our data between 3 integers, each hav-
ing 63 bits of payload and a �ag bit 1. Plush considers an entry
valid if its �ag bits are equal to the �ag in the chunks header. Since
each integer was stored atomically, it is guaranteed that all data



is persisted if all �ags match. This approach needs just one persis-
tence barrier after writing all three integers. Invalidating a chunk’s
entries is cheap: Plush �ips the �ag bit in the chunk header.

When the free list is empty, Plush compacts the oldest log chunk
by iterating over its entries. When an entry is obsolete (i.e., its
epoch is smaller than that of the DRAM hash table entry it belongs
to), it skips the entry. Otherwise, it copies the entry to the chunk
pointed at by compact_tgt preserving order. Last, Plush invalidates
all chunk log entries by �ipping the �ag bit 1 in the chunk header
and inserting it into the free list. Since Plush uses a �xed number of
�xed-size chunks per log, the log space consumption is bounded.

Plush also exploits that the capacity of its DRAM hash table is
�xed. It sets the log’s total capacity so that all logs together can
hold more records than the DRAM hash table. This way, Plush will
probably already have migrated the corresponding records of the
oldest chunk’s log entries to PMem by the time it compacts the
chunk. In this case, compaction is just a sequential read without
writes as all entries can be discarded. Plush additionally stores
the highest epoch per chunk in DRAM. If that is lower than the
epoch of all DRAM directory entries belonging to the chunk’s log
partition, it can even skip this read. By choosing the right log size,
compaction is thus free. By default, Plush employs 64 logs with six
chunks of 5 MiB. This con�guration achieved free compaction at
Plush’s default DRAM directory size of 216 in our tests.

Plush using a DRAM bu�er with a separate PMem log has a
distinct advantage over other PMem data structures. Unlike Plush,
they trigger a PMem block write with high write ampli�cation for
every insert as they do not write to PMem sequentially and thus
cannot exploit the write combining bu�er.

4.3 Payload Log and Variable-Length Records
Plush also supports variable-length keys and values. It stores keys
and values larger than 8 bytes out of place in a separate payload log.
This separation keeps cache locality high, lookups inside buckets
fast, and write ampli�cation low. When storing records out of place,
Plush does not have to copy themwhenever it migrates their bucket
to the next level. The payload log is similar to the recovery log
except that log entries inside chunks can have arbitrary sizes, and
each chunk has a log epoch counter (cf. Figure 3). Whenever Plush
inserts a variable-length record, it �rst inserts the record into the
payload log ( 1 ) followed by a persistence barrier. Only then is the
record inserted into the recovery log and hash table. Plush uses
special buckets for variable-length values. Instead of a key and value,
they store a hash of the key and a pointer to the record’s position
in the payload logs. Plush pre-faults the recovery- and payload logs
at startup to reduce page fault overhead at runtime [10].

5 OPERATIONS
In this section, we take a closer look at Plush’s three operations:
upsert, lookup, and delete. We then explore how Plush’s design
guarantees that it is always in a consistent state and ensures it
scales with multiple threads. We �nally explore how Plush handles
recovery and how it can further speed up inserts for bulk loading.

5.1 Upsert
Like an LSM tree, Plush is an append-only data structure. It, there-
fore, combines inserts and updates into a single upsert operation.

1 void upsert(KeyType key , ValType val) {

2 uint64_t hash = hash(key);

3 DirectoryEntry& e = dram_directory[hash % dram_size ];

4 lock(e);

5 if (e.size == fanout * 16) {

6 migrate(e); ++e.epoch;

7 }

8 Log& log = logs[hash % log_num ];

9 LogEntry& entry = log.entries[log.size ++]; // Entries

are on PMEM , metadata (i.e, size field) is on DRAM.

10 entry.store(key , val , e.epoch); // Using RAWL

11 persist(entry);

12 e.buckets[e.size / 16]. keys[e.size % 16] = key;

13 e.buckets[e.size / 16]. vals[e.size % 16] = val;

14 ++e.size;

15 unlock(e);

16 }

Listing 1: Insertion algorithm for a �xed-size KV pair.

1 void migrate(DirectoryEntry& e) {

2 List <Record > rehashed[fanout ];

3 for (int idx = e.size - 1; idx >= 0; --idx) {

4 KeyType key = e.buckets[idx / 16]. keys[idx % 16];

5 ValType val = e.buckets[idx / 16]. vals[idx % 16];

6 List <Record > tgt =

7 rehashed [(hash >> lvl_bits) % fanout ];

8 if (!tgt.contains(key)) { tgt.append ((key , val)) }

9 }

10 for (int e_idx = 0; e_idx < fanout; ++e_idx) {

11 DirectoryEntry tgt = get_entry(lvl+1, index_of(e) *

fanout + e_idx);

12 for (int pos=0; pos < rehashed[e_idx].size; ++pos) {

13 if (tgt.size == fanout * 16) { // Target full?

14 migrate(tgt); // Recursive

15 }

16 update_filter(tgt , rehashed[e_idx][pos].key)

17 insert(tgt , rehashed[e_idx][pos]);

18 }

19 // Nothing is guaranteed to be persisted yet!

20 persist ([tgt.keys , tgt.values , tgt.filters ]);

21 // If crashing here: Filter has false -positives

22 tgt.size += elems_inserted;

23 tgt.epoch = e.epoch;

24 persist ([tgt.size , tgt.epoch]);

25 // If crashing here: Duplicates! -> will be cleaned

up with the next migration

26 }

27 e.size = 0; e.filters = 0;

28 persist ([e.filters , e.size]); // Consistent again!

29 }

Listing 2: Migration algorithm for a directory entry.

Internally, an update is just an insert. The lookup operation has to
ensure that it returns the latest value inserted for the speci�ed key.

Listing 1 shows the upsert algorithm for a �xed-size key-value
pair. Plush �rst determines the target directory entry in DRAM
(2-3) and locks it (4). Note that this is a regular lock in DRAM. If
there is no space for the record, it migrates the entries’ contents to
PMem (5-7). Note that the directory entries on the level to which
Plush migrates the records only accept records from the current
entry and are, therefore, indirectly locked. The migration thus only
needs to consider concurrent lookups, but no inserts. Plush then
inserts the record into the recovery log (8-11), persists it using
RAWL (cf. Section 4.2), and �nally inserts it into DRAM (12-15).



Listing 2 shows the migration process. First, Plush allocates a
temporary bu�er for re-hashing keys for the next level (2). It then
iterates over the records of the old level from back to front, inserting
them into the correct bu�er (3-9). It skips records with keys that
have already been inserted into the bu�er before and thus prunes
older versions of updated records. While this check has a runtime
complexity of O(=2) in theory, = is only 16 on average in practice
leading to negligible constant overhead. Afterward, it inserts the
contents of the bu�ers into the correct bucket on the next level
(10-26), with a recursive migration (14) if necessary. The order in
which it updates and persists the data is critical: Plush �rst persists
new keys, values, and �lters (20). Since it has not yet updated the
size �eld, the new values are not reachable yet and Plush will just
overwrite them after a crash and recovery. The �lters, however, are
not protected: If the system crashes after Plush has persisted the
�lters at least partially, they may yield false positives after a restart.
Inconsistent �lters are not an issue as they are probabilistic. Plush
has to deal with false positives anyway, leading to slightly degraded
performance for the partially migrated bucket after recovery at
worst. Plush automatically �xes this as it resets the �lters during
migration. After it has updated and persisted the size (22-24), the
migrated records are visible but are shadowed by their still valid old
version on the previous level. If a crash occurs now, those values will
be duplicated until they are migrated and merged into the next level.
While this leads to some potential data overhead after recovery,
Plush can migrate data holding no locks on PMem, keeping read-
and write ampli�cation low. In the last step, Plush marks the old
entry as empty by zeroing and persisting its size and �lters (27-28).

For variable-length records, migrations have to consider addi-
tional issues: As newly inserted records shadow old records with
the same key, the payload log may contain old, no longer reachable
entries. When a migration merges bucket entries, it does not purge
their records from the payload log leading to two inconsistencies
Plush has to consider:

(1) Plush updated a record in the hash table, but its old value
still lives in the log. Plush solves this through periodic garbage
collection. Whenever it runs out of memory, it compacts the oldest
chunk of each payload log to a new chunk. Plush checks whether
each entry is still reachable, i.e., a lookup with the logged key will
yield a pointer to the current log entry. If that is not the case, the
entry is stale, and Plush garbage collects it. Otherwise, it moves
the record and updates the log pointer. Like with the recovery logs,
we assume that the oldest entries are stale most of the time so that
Plush does not have to move many records on garbage collection.

(2) During a migration, Plush might discover that a pointer in the
hash table points to a log entry that no longer exists. Pointers dangle
if the user updated a record, and Plush then garbage collected its old
version but has not yet merged the old pointer on the higher hash
table level. For this reason, the log pointer contains the epoch of the
chunk it is pointing to. When Plush migrates a chunk, it increments
its epoch. It thus can detect a dangling pointer by comparing the
epochs and excluding them from migration to the next level.

In contrast to the recovery log, the payload log does not need
to detect torn writes: Plush deems log entries valid if a reachable
pointer points to them. It only persists pointers after it �ushed the
log entry to PMem. As torn log entries were never valid, no pointer
will point to them, and Plush will garbage collect them.

1 ValType lookup(KeyType key) {

2 uint64_t hash = hash(key);

3 DirectoryEntry& e = dram_directory[hash]; //Try DRAM

4 ValType val = lookup_in_bucket(key);

5 if (val) { return val;}

6 // Iterate over PMem until hit or reached last level

7 for (int lvl = 0; !val && lvl < pmem_levels; ++lvl) {

8 DirectoryEntry& e = get_entry(lvl , hash);

9 val = lookup_in_lvl(e, key);

10 }

11 return val;

12 }

13 ValType lookup_in_lvl(DirectoryEntry& e, KeyType key) {

14 RETRY:

15 int b_id = e.filter.get_bucket(key);

16 ValType result = nullptr;

17 if (b_id != -1) {

18 int epoch = e.epoch;

19 result = lookup_in_bucket(e.buckets[b_id]);

20 if (e.epoch != epoch) { goto RETRY; }

21 }

22 return result;

23 }

24 ValType lookup_in_bucket(Bucket& b) {

25 for (int i = get_size_of(b) - 1; i >= 0; --i) {

26 if (b.keys[i] == key) { return b.values[i]; }

27 }

28 return nullptr;

29 }

Listing 3: Lookup algorithm for a �xed-size KV pair.

5.2 Lookup
Listing 3 shows the lookup algorithm. Since updates are just

inserts, multiple versions of a record can co-exist on di�erent levels
of the hash table. Plush thus needs to ensure lookup returns the
latest version of a record. To guarantee that, it searches all levels,
beginning with DRAM (3-5) and ending with the highest PMem
level (7-12), and buckets from back to front (25-27). It only checks a
bucket if its bloom �lter cannot rule out a hit (15-17). This operation
is expensive as we can expect most data to live in the last PMem
level, leading to negative lookups at all lower levels. Plush mitigates
the issue by optionally storing the directory �lters in DRAM instead
of PMem. Storing �lters in DRAM does not weaken Plush’s persis-
tency guarantees as it can recover �lters from the records stored on
PMem but lengthens recovery time. Sections 6.5 and 6.7 evaluate
the trade-o�. DRAM consumption stays con�gurable as the user
can decide which level’s �lters Plush should store on DRAM.

5.3 Delete
Plush uses tombstone records for deletion. Deletes are thus just
inserts where the value equals a pre-de�ned tombstone marker.
During migrations, tombstone markers “cancel out” records with
the same key, i.e., drops the record.

5.4 Recovery
When Plush crashes, it loses the contents of its DRAM hash table
and has to rebuild it from the recovery logs. Plush iterates over
every log and compares each log entry’s epoch with the epoch of
its target bucket on the lowest PMem level. If the bucket’s epoch
is higher than that of the recovery log entry, Plush had already
persisted that entry before the crash and skips it. Otherwise, Plush



reinserts it into the DRAM hash table. As the recovery logs are
partitioned, Plush can trivially recover them in parallel.

If Plush crashes during compaction of a log (i.e., while copying
a log entry to a new chunk), there is no special case needed: Either
it did not wholly persist the new version of the copied log entry
and therefore recognizes the new value as torn, or both versions
are valid. If both versions are valid, Plush will discard the older
entry as it does a duplicate check when inserting recovered entries.
Since all recovered entries �t into DRAM by de�nition (they would
not need to be recovered otherwise), no migration is necessary
during recovery. Plush’s recovery is, therefore, idempotent. It can
just restart a crashed recovery. The payload log for variable-length
entries does not need a special recovery mechanism. An entry is,
by de�nition, valid if a value in the hashtable is pointing to it. If
Plush recovered no such pointer while iterating over the recovery
logs, it will drop the entry in the next garbage collection run.

5.5 Concurrency
Upserts lock each bucket non-persistently. Assuming a fanout of
16, in 255 out of 256 cases, no migration is required, and the lock
is thus just held for a short time. Since Plush uses hashing, inserts
are ideally uniformly distributed over the directory. This uniform
distribution is an advantage over LSM trees which have to keep
data sorted, which leads to higher contention. Logging is the bot-
tleneck here, as multiple directory entries share the same log. Even
though the logs use a lock-free atomic counter to assign slots, the
CPU’s cache coherency protocol adds some overhead. We have
found that for our system with 24 cores the best trade-o� between
synchronization overhead and space consumption is 64 logs.

Lookups do not acquire any locks but use optimistic concur-
rency control. Therefore, values, keys, epoch, and size have to be
atomic variables. Plush reads a bucket’s epoch before searching
for a record’s key. After it �nds the key, it re-reads and compares
the epoch . If the epochs match, Plush can be sure that the bucket
has not been migrated and overwritten during lookup. This design
allows for multiple lookups and up to one insert to operate on a
directory entry concurrently.

5.6 Crash Consistency
As long as the records are still on DRAM, crash consistency is guar-
anteed: Write-ahead logging ensures that entries are recoverable
before Plush inserts them into DRAM. If another thread sees the
key in DRAM, it is thus guaranteed to be recoverable.

It is more complex during migration. Plush ensures that there is
no inconsistent state being read by making migrated values visible
after it persisted them and only then removing the old version at
the previous level. This approach saves a lock and a persistency
barrier but allows for a small time window where an entry is valid
on both levels simultaneously. If the system crashes here, records
are duplicated. This duplication is, however, not an issue. Since
Plush’s append-only architecture forces it to deal with and merge
multiple records having the same key anyway, it will merge the
duplicates when it migrates them to the next level. We thus trade o�
cheap consistency guarantees for the small risk of some temporary
data duplication after a crash. Since inserts guarantee that Plush is
always in a valid state and data is duplicated at worst, Plush does
not need any additional consistency checks during lookups.

5.7 Bulk Loading
Some workloads do not need the strict persistency guarantees given
by Plush but would bene�t from increased throughput. Take bulk
loading as an example: A user has to insert some existing large data
set, but a (rare) crash is not world-ending as they can restart the
bulk loading process. Here, it would be su�cient that the user can
de�ne checkpoints after which all records that a user has inserted
before are guaranteed to be persisted (i.e. at the end of bulk loading)
instead of having a per-insert persistency guarantee.

Plush can increase insert throughput by disabling write-ahead
logging. When disabled, the persistency guarantees weaken as
records living in the DRAM hash table are now lost on a crash.
Plush mitigates this by allowing the user to create checkpoints
manually. Checkpointing moves all records from the DRAM table
to the �rst PMem level. It even supports mixing regular and relaxed
persistency inserts: The user can decide upon each insertion if Plush
should log the record. Section 6.5 evaluates bulk loading.

6 EVALUATION
In this section, we compare Plush against other persistent trees
and hash tables optimized for �xed- and variable-length records.
We also evaluate the impact of di�erent optimizations. Finally, we
examine Plush’s space utilization and recovery performance.

Our evaluation system is equipped with an Intel Xeon Gold
6212U CPU, with 24 physical (48 logical) cores and clocks at a 2.4
GHz base clock. The system has access to 192 GB (6×32 GB) DRAM
and 768 GB (6× 128 GB) of Intel’s �rst-generation DCPMM DIMMs.
It runs Ubuntu 20.04 LTS with kernel version 5.4.0. We con�gure
the DCPMM in AppDirect mode and provision it in fsdax mode with
an ext4 �lesystem. We manage via load and store instructions on an
mmap’d memory regions and do not use any additional libraries.

We implement Plush in C++20 and make use of AVX-512 instruc-
tions. To our knowledge, all CPUs supporting PMem also support
the AVX-512 instruction set. We compile Plush and all other data
structures with GCC 11.1.0 with the -O3 �ag. If not otherwise men-
tioned, we use the PiBench benchmarking suite by Lersch et al. [27].
It was designed for persistent tree indexes but also supports all work-
loads applicable to Plush. Using a third-party benchmarking tool
ensures our benchmarks do not accidentally favor Plush.

6.1 Plush Con�guration
Let us �rst discuss how to best con�gure Plush depending on work-
load characteristics. Assume we have # records and a fanout 5 .
Each directory entry thus holds up to 165 records. Further, assume
that the hashing is not perfectly uniform, so migrating a batch of
165 records to the next level writes to two buckets on average (cf.
Section 4.1). Thus a migration incurs 2 · 165 bucket writes and 165
�lter updates, so a media write ampli�cation of 3 per record. Due to
the write combining bu�er, we get away with a write ampli�cation
of 1 for the log. Since log compaction is free (cf. Section 4.2), there
is no additional ampli�cation. We thus expect a per-record write
ampli�cation of 3 · log5 # +1. We thus want to choose the fanout as
large as possible to minimize level count and thus write ampli�ca-
tion while still having acceptable directory size spikes when Plush
adds a new level. A high fanout also reduces read ampli�cation as
fewer levels have to be searched per lookup.
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Figure 5: Throughput of core operations under varying thread count for �xed-size records (8-byte keys, 8-byte values).

Table 2: Investigated Data Structures.

Name Type Var-length records DRAM Range qs

Plush LSM+ht 3 O(1) 32

`Tree tree just values O(=) 7

FPTree tree 7 O(=) 3

FAST+FAIR tree 7 O(=) 3

DPTree tree 7 O(=) 3

Dash ht just keys - 7

PmemKV ht 3 - 7

Viper ht 3 O(=) 7

RocksDB LSM 3 O(1) 3

FASTER ht+log 3 O(1) 7

We choose 5 = 16 resulting in 216 DRAM directory entries and
the same amount of PMem directory entries at level 1. With this
con�guration, Plush has a directory sized 32 MiB, 544 MiB, 8.7 GiB,
and 147 GiB at 1, 2, 3, and 4 levels holding 3.3×107, 3.0×108, 4.5×109,
and 7.3 × 1010 records, respectively. Plush uses 64 recovery logs,
each with six chunks of 5 MiB, the empirically determined sweet
spot between minimizing contention (more logs are better) and
maximizing write combining bu�er usage (fewer logs are better).

6.2 Comparison to Other Data Structures
We compare Plush against nine indexes listed in Table 2 which
can be grouped into hash tables and tree-like data structures. Plush
combines aspects of all those approaches allowing us to compare
di�erent trade-o�s made by each approach. We also compare two
versions of Plush. One, where the �lters for the top two levels
are stored in DRAM (cf. Section 5.2), and one, where all �lters
are stored on PMem. As the DRAM overhead of the �lters is just
256 MiB, we treat this case as the default case if not otherwise
mentioned. Dash [32] and PMemKV3 with the cmap backend are
PMem-only hash tables. Both support the same operations as Plush
but do not use any DRAM. PMemKV also supports variable-length
records, while Dash only supports (pointers to) variable-length
keys. Viper [3] stores its records in PMem but keeps a hash table
with �ngerprints of all keys in DRAM, thus requiring large amounts
of DRAM linearly growing with the number of records stored.

FPTree4 [37], FAST+FAIR [21], DPTree [52], and `Tree [9] are
persistent B-Trees, storing inner nodes (e.g., FPTree) or keys (e.g.,
2In range partitioning mode, see Section 6.6.
3https://pmem.io/pmemkv/
4We use SFU’s open-source re-implementation: https://github.com/sfu-dis/fptree

`Tree) on DRAM. As they sort their records at the cost of some
insert throughput, most support range queries in contrast to the
hash tables. The DRAM consumption of all trees and Viper grows
with the record count. The DRAM consumption of all other hash
tables and Plush is either constant in the record count or zero for
the PMem-only indexes.

FASTER [7] is a log-based kv-store designed for SSD and gives
weaker persistency guarantees. We place the persistent part of its
log on PMem. We con�gure FASTER to have the same amount of
DRAM available as Plush, with half reserved for its hash index and
the other half for the mutable part of its log. PMem-RocksDB5 is a
fork of RocksDB optimized for PMem. It serves as a representation
of all established LSM trees that were adapted to PMem.

6.3 Fixed-Size Records
First, we evaluate how Plush deals with �xed-size records. We
preload 100 million 16-byte records consisting of 8-byte keys and
values. Keys are uniformly distributed. We then execute 100 million
operations for varying thread counts. Figure 5 shows the results.

Throughput. For lookups (a), Viper and Dashwin over Plush and the
tree data structures as both have just a single level. Plush has to look
up the key at every level on average as it stores most records on the
last level and therefore cannot end the search early. For lookups, it
thus behaves like a tree. It still has an advantage (×1.41) over FPTree
but is beaten by `Tree and DPTree which store a copy of all keys
in DRAM. Plush beats the other trees because of its hybrid design
where it optionally stores bloom �lters in DRAM (cf. Section 6.5),
speeding up negative level lookups. Without this optimization,
Plush has a similar lookup performance to those trees.

Plush’s tiered design bene�ts from temporal skew: If Plush looks
up a key that was recently inserted, it will probably still be in
DRAM or a low PMem level: It can end the search early. Figure 5e
illustrates this advantage. Here, lookups are Zipf-distributed [14].
The higher the skew factor, the more likely a lookup is for a record
that was inserted just recently. While all data structures pro�t from
skew due to caching e�ects, Plush pro�ts disproportionally more,
catching up with Viper and nearly reaching Dash.

Plush outperforms all data structures for inserts (b), scaling
nearly linearly up to 48 threads. It improves over Viper by 1.44×,
Dash by 2.44×, and FPTree, the fastest tree, by 3.31×. The picture

5https://github.com/pmem/pmem-rocksdb

https://pmem.io/pmemkv/
https://github.com/sfu-dis/fptree
https://github.com/pmem/pmem-rocksdb
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Figure 6: Read and write ampli�cation for 16-byte records
on DRAM ( ) and PMem ( ). Overlayed hatched columns ( )
show PMemmedia ampli�cation.

looks similar for deletes (c), where Plush’s performance is identical
to inserts as a delete is just an insert of a tombstone record.

Figure 5d shows how the data structures behave for mixed work-
loads on 48 threads ranging from only lookups (left) to only inserts
(right). For insert ratios below 30%, Viper has higher throughput
than Plush as it can leverage its superior lookup throughput below
those insert ratios. Above that, Plush’s insert throughput dominates.

Overall, Plush is very predictable: It shows stable throughput at
all insert ratios, scales well for all operations due to its partition-
ing design, low write ampli�cation, lock-free lookups, and pro�ts
disproportionally from temporal skew.

Read/write amplification. Figure 6 explains the throughput di�er-
ences. It shows how much data is read/written per operation by the
CPU at cache line granularity (64 bytes) on average. The overlayed
hatched columns show data reaching the physical storage medium
at PMem block granularity (256 bytes). The di�erence between the
yellow and the hatched column is thus the overhead incurred by
not packing writes and reads into 256B-blocks perfectly.

Plush’s batching of reads and writes with a DRAM bu�er de-
creases ampli�cation on inserts: Its read and write ampli�cation
is just 63% resp. 70% of Viper, the runner-up. Viper, however, has
lower end-to-end write ampli�cation, as it always writes to PMem
sequentially. This is the optimal write pattern for PMem, but it
comes at a cost: Viper needs to keep a large hash table in DRAM
that indexes all records, signi�cantly increasing DRAM read- and
write ampli�cation. This experiment con�rms that DRAM latency
is not negligible for inserts, supporting our earlier observation that
PMem’s write latency is similar to DRAM’s. Plush, Viper, DPTree,
and Dash have similar PMem read ampli�cations for lookups, but
Plush is at a disadvantage as it also has to read from DRAM. Even
though `Tree reads 56% less from PMem than Plush, its throughput
is only 18% higher as it reads over twice as much data from DRAM.

This experiment con�rms our initial assumption that the through-
put of PMem data structures is heavily in�uenced by their write
ampli�cation, as write bandwidth is a bottleneck of PMem.

Latency. Plush’s weakness is its migration step. To increase through-
put by reducing communication overhead, Plush does not employ
separate background migrator threads. Thus, a single “unlucky”
insert might have to move a lot of data since a migration can start a
chain of recursive migrations leading to higher tail latencies. We in-
vestigate the impact of this design decision on latency. For this, we
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Figure 7: Tail latencies for 16-byte records with 23 threads.

run our workload on 23 threads (and one monitor thread) to rule out
any SMT e�ects. Figure 7 shows the latency at di�erent percentiles.
Plushs insert latency is close to Dashs at lower percentiles. At the
99.9-percentile, Plush’s latency increases sharply. This increase is
expected, as on average, every 256th insert triggers a migration.
However, Plush’s latency does not worsen signi�cantly at higher
percentiles, and it even outperforms Dash again. Plush’s and the
other tree-like data structures’ advantage is that they do not have
to do any rare but costly structural modi�cation operations like
directory splits. For lookups, all data structures behave similarly.

6.4 Space Utilization
We �ll all data structures with 16-byte records until we run out of
storage space on our PMem partition , out of DRAM, or just crash.
We then plot the total data set size (i.e., record count × 16 bytes)
against the actual space consumption. Figure 8 shows the results for
DRAM consumption (left) and overall space consumption (right).

DRAM consumption for both Plush variants andDash is constant,
with Plush using below 1 GB of DRAM and Dash not using DRAM
at all. Viper, `Tree, and DPTree store the bulk of their data in DRAM
and are thus limited by DRAM capacity and cannot scale with the
amount of installed PMem. They instead run out of DRAM or crash
at ≈ 70 GiB inserted records, which can also be seen on the right.

Regarding overall space consumption, both Plush variants show
a huge increase at ≈ 50 GiB when they create the directory for
PMem level 4 (directories for levels 1-3 are too small to be visible
here). The space consumption then shows a stair pattern: Plush
migrates all buckets to the next level whenever a directory entry is
full. Since the hash function is uniform, this happens roughly at the
same time for all directory entries. This leads to many new bucket
allocations at the last PMem level at once. After Plush has migrated
most entries of a level to the next level, the previous level’s buckets
are empty again. Since each PMem level is 16 times the size of the
previous level, the stair pattern repeats 16 times before Plush starts
a new level. While the trees show a more linear growth, Dash has
similar jumps in size as it doubles the directory whenever full.

6.5 Plush Tuning
As explained in Sections 4.1, 5.2, and 5.7, Plush supports multiple
optimizations trading o� DRAM consumption, PMem consumption,
or persistency guarantees for throughput. Figure 9 compares the
impact of the di�erent optimizations compared to the baseline.

Pre-allocation. When enabled (+prealloc), all buckets up to the
second PMem level are pre-allocated upon initialization. This set-
ting does not increase memory consumption when enough records
are inserted (as all levels except the last level are full anyway). How-
ever, it increases insert throughput (×1.36) and marginally increases
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lookup throughput (×1.05). Inserts are disproportionally faster as
every migration saves fanout pointer dereferences while reading
the records and ≈ fanout ·2 pointer dereferences for storing records
on the next level. For our experiments, we pre-allocate up to the
second PMem level which reserves 4.26 GiB PMem for the buckets.

Filters on DRAM. When additionally storing the �lters of the �rst
two levels in DRAM (+dramfilter), insert throughput improves
slightly (×1.05) while lookup throughput improves considerably
(×1.30). Here, lookups improve disproportionally as checking if a
level contains a key no longer involves a costly PMem block read.
As write latency is lower and inserts batch writes to PMem �lters
anyway, inserts do not bene�t.

Skipping logging. When additionally not logging inserts (-logs), in-
sert throughput increases dramatically (×1.89) while lookup through-
put stagnates as lookups log nothing. As explained in Section 5.7,
disabling logging is helpful for bulk loading. Creating a checkpoint
with a single thread takes ≈ 840 ms. Plush also supports creating
checkpoints concurrently. This is useful when Plush currently does
not run other operations, e.g., after a bulk load before accepting
requests. With 32 threads, checkpoint creation takes ≈ 69 ms.

6.6 Range Queries
By default, Plush partitions the key space into disjunct directory
entries by hash to avoid skew. However, it supports arbitrary par-
titioning functions. When choosing a range partitioning function,
Plush supports range queries: While records within a directory
entry’s buckets are still unsorted, it can use divide and conquer to
only iterate over a few such entries. This is prone to skew but is
an advantage over pure hash tables. Figure 10 shows Plush’s range
query performance in range partition mode. The workload consists
of a data set with 100 million records and 100 million lookups of
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Figure 11: Recovery time vs. data set size for �lters and logs.

random keys for which the next 100 larger records are returned in
order. Plush keeps up with FPTree but is outperformed by the other
trees as they can scan their sorted leaf nodes while Plush still has
to check all unsorted buckets with potential candidates.

6.7 Recovery
While crashes in a production system should be rare, Plush should
still recover quickly to keep downtime low. We load an increas-
ing number of 16-byte records, forcibly terminate Plush and then
measure the recovery time. Figure 11 shows the results.

Plush recovers three types of data: (1) Records in the PMem log
that had not been persisted in the hash table, (2) bloom �lters that
had been stored on DRAM (cf. Section 6.5), and (3) the status of the
allocator (i.e., until which address it already had allocated buckets).

(1) is constant as the log has a �xed size, (2) is constant as Plush
only allows DRAM �lters up to a given level (2, in this case) and
(3) is linear in the number of levels (so logarithmic in the number
of records). Note that this is the worst case as recovery time only
grows with the number of records, not the data set size: If storing
records larger than 16 bytes, Plush does not read the keys and values
themselves during recovery, but just the pointers referencing them.

6.8 Variable-Length Records
Figure 12 shows throughput for records having 16-byte keys and
1000-byte values. We evaluate a read-heavy (a), a mixed (b), and a
write-heavy workload (c) with varying thread count. Plush scales
well for read-heavy workloads but does not scale beyond 24 threads
for write-heavy workloads. This observation aligns with our earlier
�ndings that PMem’s write bandwidth can be saturated by just a
few threads. Themore inserts we issue, themore bandwidth-starved
all data structures become. For read-heavy workloads, Viper and
Dash keep up with Plush (a). For low thread counts on an insert-
heavy workload, FASTER overtakes Plush. Since FASTER gives
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fewer persistency guarantees, it may store records only in DRAM
and �ush them in bulk. This is an advantage over Plush, which
keeps a write-ahead log. All data structures beat the RocksDB fork
showing the advantage of designing a data structure optimized for
PMem from the ground up instead of adding it as an afterthought.
Figure 12d shows how throughput for the mixed workload changes
with varying record sizes. Plush is latency-bound for smaller sizes
but becomes bandwidth-limited as the record size increases. Plush
pro�ts from its low write ampli�cation as it stores records out of
place and from pre-faulting the payload log. Out-of-place storage
is also the reason for the drop in throughput from 16-byte records
to 32-byte records as Plush stores the latter records out of place,
leading to an additional level of indirection.

7 RELATEDWORK
PMem’s low bandwidth (compared to DRAM) has been researched
extensively [4, 11, 20, 23, 29, 44]. Plush speci�cally addresses is-
sues raised by Gugnani et al. [15] and Woo et al. [44]. Most data
structures mitigate this by adapting a hybrid design where recon-
structible data resides in DRAM [3, 9, 19, 37, 49, 52]. Such data
structures are usually B-Trees that store inner nodes inside DRAM
(e.g., NV-Tree [49] or FPTree [37]), or even store (�ngerprints of)
keys in DRAM (e.g., `Tree [9]). Viper [3] and HiKV [46] are hybrid
hash tables. Viper logs records to PMem and stores their �ngerprints
in a DRAM hash table for e�cient lookups and synchronization be-
tween threads. HiKV combines a PMem hash index with a DRAM B-
Tree. These approaches do not have control over how much DRAM
they consume as it depends on the data set size. LibreKV [30] uses a
�xed-size hash table on DRAM like Plush but does not optimize for
write ampli�cation. Multi-tiered bu�er managers [28, 41, 51] also
make use of DRAM. PMem-only data structures do not consume
any DRAM [1, 8, 18, 32, 34, 35, 53]. They are great for lookups but
su�er from high write ampli�cation during inserts. LB+-Tree [31]
and write-optimized skip lists [47] minimize write ampli�cation,
but are PMem-only and thus have only limited possibilities to reach
that goal. Plush straddles the line by using a �xed amount of DRAM.

Most approaches to making LSM trees PMem-aware use an ex-
isting LSM tree like LevelDB as a foundation [6, 24, 25, 48]. They
are, therefore, limited by LevelDB’s architecture which was not
designed with PMem in mind. NVLSM [50] is built for PMem from
the ground up. Plush is also inspired by approaches employed by
LSM trees not originally meant for PMem: Its value separation

approach was initially proposed by WiscKey [33] and has since
been adapted by other LSM trees like Parallax [45] or HashKV [6].
HashKV also inspired Plush’s approach to partition its logs by hash.
Haubenschild et al. propose global sequence numbers [16].

Plush’s logging approach was invented by Mnemosyne [43]
and further re�ned by our previous work [42]. PiBench [27] is a
benchmarking framework for persistent indexes that we also used
for our evaluation. Hu et al. adapted it for hash indexes [17].

8 CONCLUSION
We have presented Plush, a write-optimized data structure for per-
sistent memory. It employs techniques popularized by LSM trees to
minimize write ampli�cation and adapts them to PMem by replac-
ing sorted runs with leveled hash tables and optimizing for 256-byte
blocks. Because of Plush’s low write ampli�cation, it has higher
insert throughput than existing PMem-optimized hash tables (2.44×
of Dash) while having a lookup throughput comparable to fast tree-
like PMem data structures. This con�rmed our initial hypothesis
that PMem data structures are often bandwidth-limited. Plush prof-
its from temporal skew and excels at write-heavy workloads as its
throughput stays constant even at high insert ratios.

9 FUTUREWORK
As Plush’s DRAM consumption is independent of the data set size,
Plush is arbitrarily scalable and only limited by PMem capacity.
Since only 3 TiB of PMem can be installed per socket, scaling is
limited in practice. We intend to extend Plush to scale to SSD by
putting higher levels of the hash table on SSD. Each directory entry
currently points to up to 4 KiB of unsorted records. Plush could
sort those during migration and write them to an SSD page. During
future migrations, Plush could merge values into this sorted run
which is the root of a conventional LSM tree. With growing data
set size, more and more data would live in this LSM forest with
performance gracefully declining to SSD speed.
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