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ABSTRACT
I/O latency and throughput is one of the major performance bot-
tlenecks for disk-based database systems. Upcoming persistent
memory (PMem) technologies, like Intel’s Optane DC Persistent
Memory Modules, promise to bridge the gap between NAND-based
flash (SSD) and DRAM, and thus eliminate the I/O bottleneck. In
this paper, we provide one of the first performance evaluations of
PMem in terms of bandwidth and latency. Based on the results, we
develop guidelines for efficient PMem usage and two essential I/O
primitives tuned for PMem: log writing and block flushing.
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1 INTRODUCTION
Today, data management systems mainly rely on solid state drives
(NAND flash) or magnetic disks to store data. These storage tech-
nologies offer persistence and large capacities at low cost. However,
due to the high access latencies, most systems also use volatile main
memory in the form of DRAM as a cache. This yields the traditional
two-layered architecture, as DRAM cannot solely be used due to
its volatility, high cost, and limited capacity.

Novel storage technologies, such as Phase Change Memory, are
about to shrink this fundamental gap between memory and storage.
Specifically, Intel’s upcomingOptane DC Persistent Memory Modules
(Optane DC PMM) offer an amalgamation of the best properties of
memory and storage—though as we show in this paper, with some
trade-offs. This Persistent Memory (PMem) is durable, like storage,
and directly addressable by the CPU, like memory. We also expect
the price, capacity, and latency to lie between DRAM and flash.

PMem promises to greatly improve the latency of storage tech-
nologies, which in turn would greatly increase the performance of
data management systems. However, because PMem is fundamen-
tally different from existing, well-known technologies, it also has
different performance characteristics to DRAM and flash. In this
work, we show how to efficiently implement atomic log writing
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and page flushing—two critical I/O primitives for database systems.
While we perform our evaluation in a database context, these two
I/O primitives are transferable to other systems, as evidenced by
the fact that they are also implemented by the Persistent Memory
Development Kit (PMDK) [1]. The results reported are based on
a prototype of Intel’s Optane DC PMM rather than software or
hardware-based emulation. Our contributions can be summarized
as follows:
• We provide one of the first analyses of PMem on a proto-
type of Intel’s Optane DC PMM. We highlight the impact
of the physical properties of PMem on software and derive
guidelines for efficient usage of PMem.
• We introduce an algorithm for persisting small data chunks
(transactional log entries) that reduces the latency by 2× com-
pared to state-of-the-art algorithms.
• We investigate different algorithms for persisting large data
chunks (database pages) in a failure atomic fashion to PMem.
By combining a copy-on-write method with temporary delta
files, we achieve significant speedups.

2 PMEM CHARACTERISTICS
In this section, we first describe how we configured our system
before presenting latency and bandwidth results.

2.1 Setup and Configuration
There are two ways of using PMem: memory mode and app direct
mode. Inmemory mode, PMem replaces DRAM as the (volatile)
main memory, and DRAM serves as an additional hardware man-
aged caching layer (“L4 cache”). The advantage of this mode is that
it works transparently for legacy software and thus offers a simple
way of extending the main memory capacity at low cost. However,
this does not utilize persistence, and performance may degrade due
to the lower bandwidth and higher latency of PMem. In fact, as
we show later, there is a ≈10 % overhead for accessing data when
DRAM acts as a L4 cache instead of normally.

Because it is not possible to leverage the persistency of PMem
in memory mode, we focus on app direct mode in the remainder
of this paper. App direct mode, unlike memory mode, leaves the
regular memory system untouched. It optionally allows programs to
make use of PMem in the form ofmemorymapped files.We describe
this process from a developer point of view in the following:

We are using a two-socket system with 24 physical (48 virtual)
cores on each node. The machine is running Fedora with a Linux
kernel version 4.15.6. Each socket has 6 PMem DIMMs with 128GB
each and 6DRAM DIMMs with 32GB each.
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Figure 1: PMem Bandwidth: Varying Access Granularity – PMem bandwidth (a, c) with 24 threads compared to DRAM bandwidth (b,
d) with a varying number of adjacently accessed cache lines. We use a random access pattern that allows for out-of-order execution.
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Figure 2: PMem Bandwidth: Varying Thread Count – PMem bandwidth (a, c) compared to DRAM bandwidth (b, d) for 4 adjacent cache
lines with an increasing number of threads. We use a random access pattern that allows for out-of-order execution.

To access PMem, the physical PMem DIMMs first have to be
grouped into so-called regions with ipmctl1:

ipmctl create -f -goal -socket 0 MemoryMode=0 \

PersistentMemoryType=AppDirect

To avoid complicating the following experiments with a discussion
on NUMA effects (which are similar to the ones on DRAM) we run
all our experiments on socket 0. Once a region is created, ndctl2
is used to create a namespace on top of it:

ndctl create-namespace --mode fsdax --region 28

Next, we create a file system on top of this namespace (mkfs.ext43)
and mount it (mount4) using the dax flag, which enables direct
cache-line-grained access to the device by the CPU:

mkfs.ext4 /dev/pmem28

mount -o dax /dev/pmem28 /mnt/pmem28/

Programs can now create files on the newly mounted device and
map them into their address space using mmap5:

fd = open(("/mnt/pmem28/file", O_RDWR, 0);

res = ftruncate(fd, SIZE);

ptr = mmap(nullptr, SIZE, PROT_WRITE, MAP_SHARED, fd, 0);

The pointer can be used to access the PMem directly, just like
regular memory. Section 3 discusses how to ensure that a value
written to PMem is actually persistent. In the remainder of this
section, we discuss the bandwidth and latency of PMem.

1ipmctl: https://github.com/intel/ipmctl
2ndctl: https://github.com/pmem/ndctl
3mkfs.ext4: https://linux.die.net/man/8/mkfs.ext4
4mount: https://linux.die.net/man/8/mount
5mmap: http://man7.org/linux/man-pages/man2/mmap.2.html

2.2 Bandwidth
It is important to know that the PMem hardware works internally
on 256 byte blocks. A small write-combining buffer is used to avoid
write amplification, because the transfer size between PMem and
CPU is, as for DRAM, 64 byte (cache lines).

The block-based (4 cache lines) design of PMem leads to some in-
teresting performance characteristics that we show in Figure 1. The
experiment measures the bandwidth for loading/storing from/to
independent random locations on PMem and DRAM. We use all
24 physical cores of one socket to maximize the number of parallel
accesses. The figure shows store (PMem: (a), DRAM: (b)) and load
(PMem: (c), DRAM: (d)) benchmarks. The performance depends
significantly on the number of consecutively accessed cache lines
on PMem, while there is no significant difference on DRAM. Peak
throughput can only be reached when a multiple of the block size
(4 cache lines = 256 byte) is used.

As on DRAM, streaming (non-temporal) stores are more efficient
on PMem because the modified cache lines do not have to be loaded
first—thereby saving memory bandwidth. However, on PMem the
performance of regular stores can be increased to that of streaming
stores by issuing a clwb (cache line write back) instruction after
each store. The clwb forces a dirty cache line in the data cache to
be written to the underlying memory system (without evicting the
cache line). While this is beneficial on PMem (a), it does not change
the throughput on DRAM (b).

This effect is studied further in Figure 2, which shows the same
experiment, but instead of varying the number of cache lines load-
ed/stored we vary the number of threads. It shows that the clwb
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Figure 3: Read Latency – Random access read latency.

instruction only becomes necessary once several threads are writ-
ing to PMem: With more threads, cache lines are evicted more
randomly from the last level CPU cache, and thus arrive increas-
ingly out of order at the PMem write-combining buffer. It seems
that at a certain point (≈ 4 threads), the buffer is no longer able
to combine the cache lines into a single PMem block write. Using
the clwb instruction, we can force the order in which the cache
lines arrive at the PMem write buffer and thus enable it to combine
neighboring cache lines into a single block write.

Another effect we observe is that the throughput peaks at around
3 threads for streaming (and 12 for stores with clwb). Using addi-
tional threads decreases the throughput slightly.

Lastly, a largely unrelated but somewhat amusing effect of the
hardware pre-fetcher is shown in Figure 1 (c) and (d). Starting at
10 adjacent cache lines, the pre-fetcher becomes active and fetches
additional cache lines. If these are not needed, as in our experiment,
the effective throughput suffers.

In summary, judging from our experimental results, we recom-
mend the following guidelines for bandwidth-critical applications:
• Algorithms should no longer be designed to fit data on single
cache lines (64 byte) but on PMem blocks (256 byte).
• Streaming operations should be utilized when possible, other-
wise stores should be followed by clwb.
• Over-saturating PMem can lead to reduced performance.
• The experiments showed that the PMem read bandwidth is
2.6× lower and the write bandwidth 7.5× lower than DRAM.
Therefore, performance-critical code should prefer DRAM
over PMem (e.g., by buffering writes in a DRAM cache).

2.3 Latency
While bandwidth is critical for OLAP-style applications, latency
is much more important for OLTP workloads because the access
pattern shifts from large scan operations to (sequential I/O) to point
lookups, which are essentially random accesses into memory. The
performance of these random accesses is dominated by the latency
of the underlying device.

To measure the latency for load operations on PMem, we use a
single thread and perform loads from random locations. To study
this effect, we prevented out-of-order execution by chaining the
loads such that the address for the load in step i depends on the
value read in step i − 1. The results are shown in Figure 3.

We can observe that DRAM read latency is lower than PMem by a
factor of 3.2. Note that this does not mean that each access to PMem
is that much slower, because many applications can still benefit
from the regular on-CPU L3 cache. When PMem is used in memory
mode, it replaces DRAM as main memory and DRAM acts as an L4
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Figure 4: Persistent Write Latency – Access latency for writing
cache lines persistently.

cache. In this configuration, the data size is important: When using
8GB (as in the other modes) the performance is similar to that of
DRAM, because the DRAM cache captures all accesses. However,
when we increase the data size to 360GB, the DRAM cache (around
200GB on the socket we use) is not hit that frequently and the
performance degrades.

To store data persistently on PMem, the data has to be written,
the cache line evicted, and then an sfence has to be used to wait for
the data to reach PMem. This process is described in more detail in
Section 3.1. To measure the latency for persistent store operations
on PMem, we use a single thread that persistently stores data to an
array of 10GB in size. Each store is aligned to a cache line (64 byte)
boundary. The results are shown in Figure 4.

The four bars on the left show the results for continuously writ-
ing to the same cache line, in the middle we write cache lines
sequentially, and on the right randomly. In each scenario, we use
four different methods for flushing cache lines (from left to right:
flush, flushopt, clwb, and streaming stores).

When data is written to the same cache line, streaming stores
should be preferred. This pattern appears in many data structures
(e.g., array-like structures with a size field) or algorithms (e.g., a
global counter for time-stamping) that have some kind of global
variable that is often modified. Therefore, for efficient usage of
PMem, techniques similar to the ones developed to avoid conges-
tion in multi-threaded programming have to be applied to PMem
as well. Among non-streaming instructions, there is no significant
difference, because the Cascade Lake CPUs do not fully implement
clwb. Intel has added opcode to allow software to use it, but im-
plement it as flush_opt for now. Therefore, streaming operations
and clwb should be preferred over flush and flush_opt.

3 STORAGE PRIMITIVES FOR PMEM
The low write latency of PMem (compared to other storage devices)
makes it an ideal candidate for use in database systems, file systems,
and other systems software. However, due to the CPU cache, writes
to PMem are only persistent once the corresponding cache line
is flushed. Algorithms have to explicitly order stores and cache
line flushes to ensure that a persistent data structure is always in
a consistent state (in case of a crash). We call this property failure
atomicity and discuss it in Section 3.1. Intel’s Persistent Memory
Development Kit (PMDK) [1], an open-source library for Pmem,
abstracts from this complexity by providing two failure atomic
I/O primitives: log writing (libpmemlog) and block/page flushing
(libpmemblk). In Section 3.3 and Section 3.2, we apply the guidelines
developed earlier (Section 2), apply them to these two problems,
and analyze their performance.
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3.1 Failure Atomicity
As mentioned earlier, when data is written to PMem, stores are not
immediately propagated to the PMem device, but instead buffered
in the regular on-CPU cache. While programs cannot prevent the
eviction, they can force it using explicit write-back or flush instruc-
tions. This implies that any persistent data structure on PMem
always needs to be in a consistent state, otherwise a system crash—
interrupting an update operation—could lead to an inconsistent
state after a restart. The following code snippet shows how an ele-
ment is appended to a pre-allocated buffer:

struct Buffer {

int eles[128];

int next;

};

void append(Buffer* buf, int ele) {

buf->eles[buf->next] = ele;

clwb(&buf->eles[buf->next]);

sfence();

buf->next++;

clwb(&buf->next);

sfence();

}

The new element is first copied into the next free slot and the corre-
sponding cache line is forced to be written back to PMem. Instead
of using a regular flush operation, clwb (cache line write back) is
used, which is an efficient flush operation designed for PMem that
flushes the cache line without invalidating it. Before the buffer’s
size indicator (next) can be changed, a sfence (store fence) must
be issued to prevent re-ordering by the compiler or hardware. Once
next has been written, it is persisted to memory in the same fashion.
Note that persisting the next field is not necessary for the failure
atomicity of a single append operation. However, it is convenient
and often required for subsequent code (e.g., another append). In
the following, we will use the term persistency barrier and persist
for a combination of a clwb and a subsequent sfence:

void persist(void* ptr) { clwb(ptr); sfence(); }

Generally speaking, a persistency barrier is an expensive opera-
tion, as it forces a synchronous write to PMem (or, more precisely,
to its internal battery-backed buffers). Therefore, in addition to the
guidelines laid out in Section 2, it is also important to minimize
the number of persistency barriers while still maintaining failure
atomicity. In the following two sections, we show a manually-tuned
implementation for logging and page flushing.

3.2 Page Propagation
Besides logging, the other essential storage engine component that
requires I/O is the buffer manager. It is responsible for loading
(swapping in) pages from SSD/HDD into DRAM whenever a page
is accessed by the query engine. When the buffer pool is full, the
buffer manager needs to evict pages in order to serve new requests.
When a dirty page is evicted and has been modified, it needs to be
flushed to storage before it can be dropped from the buffer pool, in
order to ensure durability. This process has to be carefully coordi-
nated with the transaction and logging controller, i.e., a page can
only be flushed when the undo information of all non-committed
modifications is persisted in the log file (otherwise a crash would
lead to corrupt data). In addition, flushing a page needs to be failure
atomic: After a crash, the recovery component needs a consistent
snapshot of the page.

Flushing pages to persistent storage is an inherently I/O-bound
task. To reduce the latency for pages requests, the buffer manager
constantly flushes dirty pages to persistent storage in the back-
ground. This way, it can always serve requests without needing to
flush a page first. In addition, this makes flushing pages (on a back-
ground thread) a mostly bandwidth-critical problem (compared to
log writing, where latency is most important).

For SSDs/HDDs, this architecture is strictly necessary as pages
have to be copied to DRAM before they can be read or written by the
CPU.When PMem is used instead, the buffer pool becomes optional.
However, as recent work [6, 33] has shown, it is still beneficial to use
a buffer pool, due to the lower latencies and reduced complexity
when working on DRAM compared to PMem. In addition, this
architecture is used in most existing disk-based database systems.
In order to integrate PMem into existing systems, the page flushing
algorithm needs to be correct (failure atomicity) and efficient (high
bandwidth). In the following, we describe two algorithms for failure
atomic page flushing and then evaluate them.

3.2.1 Copy-on-Write. CoW does not overwrite the original PMem
page, but instead writes the DRAM page to an unused PMem
page [5] (left-hand side of Listing 1, line 1-3). Once the new PMem
page is persisted, it is marked as valid (line 5-10) and the old PMem
page can be reused. During recovery, the headers of all PMem pages
are inspected to determine the physical location of each logical page.
By adding a page version number (pvn) that is increased after each
flush, we can identify the latest version of a page. Using the pvn,
it becomes unnecessary to invalidate the old PMem page before
writing the new one. This lowers the number of required persis-
tency barriers from three to two and thus yields ≈ 10% increased
throughput. We illustrate the pvn in the following example:

B 5, b’
A 2, a
B 4, b B 4, a’ A 4, a’ A 3, a’

format: pid pvn, data

(1)
(2)
(3)

Pa
ge

sl
ot

Time

line
2,3

line
6,7
8,9

line
8,9

The green page slot (3) contains the latest persistent copy of
page B. The red one (2) contains the original version of page A.
The different versions of the blue page slot ((1)) show each step
of flushing a new version of page A. The line numbers where the
transition might occur are written over the arrow. In each step,
the pvn can be used to figure out the most recent version of each
page. In database systems, the log sequence number lsn could be
used instead of the pvn, however if the system crashes in line 6, log
entries might be reapplied to a page.

3.2.2 Micro Log. The micro-log technique uses a small log file to
record changes that are going to be made to the page. In order to
know, which cache lines have been changed, the page is required
to track modified areas since its last flush. During recovery, all
valid micro logs are reapplied, independent of the page’s state. This
forces us to invalidate the log (right-hand side of Listing 1, line
1-3) before changing the content (line 5-7), otherwise the changes
would be applied to the previous page in case of a crash. Only once
the changes are written, we set them to valid (line 8-10) and then
apply them to the actual page (line 13-15).
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Figure 5: Failure Atomic Page Flush – Flushing 16 kB pages (256 cache lines each) in a failure atomic way from DRAM to PMem.

Listing 1: Failure Atomicity – Pseudo code to flush a DRAM
page (page_v) to a PMem page (page_nv). CoW: left, µLog: right.
1 // 1. Write data
2 page_nv.data = page_v.data;

3 persist(page_nv);

4 // 2. Make PMem page valid
5 page_nv.pid = page_v.pid;

6 sfence();

7 page_nv.pvn = page_v.pvn;

8 persist(page_nv.pid

9 , page_nv.pvn);

10
11
12

// 1. Invalidate µlog
µlog.pid = INVALID;

persist(log.pid);

// 2. Write to µlog
µlog <- page_v.dirty_cls

persist(µlog);

// 3. Set µlog valid
µlog.pid = page_v.pid;

persist(µlog.pid);

// 4. Write to page
page_nv <- page_v.dirty_cls

persist(page_nv);

3.2.3 Experiments. Figure 5 details the page flush performance. All
techniques are implemented as a micro benchmark using streaming
(also known as non-temporal) writes, which have been shown to
provide the highest throughput in Section 2. When using copy-
on-write, we differentiate whether all cache lines are available in
DRAM ( ) or only the dirty ones ( ). As a performance metric,
we chose the number of pages that can be flushed to PMem per
second. We vary the number of dirty cache lines in (a) for a single
thread and in (c) for 7 threads. In (b), we vary the number of threads
to show the scale-out behavior.

The results show that the micro log is efficient when the num-
ber of cache lines that have to be flushed is low. We can observe
this effect for a single thread in (a). Using the micro log yields
performance gains for up to 112 dirty cache lines. A multi-threaded
experiment is shown in (c). Here the micro log only offers through-
put gains, when fewer than 32 cache lines are dirty. Therefore, a
hybrid technique based on a simple cost model should be used to
choose the better technique, depending on the number of dirty
cache lines (and single/multi threading).

The micro benchmarks in Section 2 suggested that streaming
instructions should be preferred over regular stores. We were able
to confirm this finding in the page flushing experiment (not shown
in chart). In addition, as in the bandwidth experiments, we can see
a performance degradation when too many threads are used: For
optimal throughput it is important to tailor the number of writer
threads to the system. As (b) shows, the performance degrades after
reaching a peak at around 7-11 threads.

3.3 Logging
In database systems, write-ahead logging is used to ensure the atom-
icity and durability of transactions. This is achieved by recording
(logging) the individual changes of a larger transaction in order to
be able to undo them in the event of a rollback. If any of the changes
to the data are persisted while the transaction is still active, the
log has to be persisted as well. Before a transaction is completed
(thereby guaranteeing to the user, that all changes of the trans-
action are durable), all log entries of the transaction are written
persistently. Logging allows a database to only persist the delta
of the modifications: For example, consider an insert into a table
stored as a B-Tree: Using logging, only the altered data needs to be
persisted instead of all modified nodes (pages). During restart, the
recovery component reads the log file, determines the most recent
fully persisted log entry, and applies the log to the database.

Logging constitutes a major performance bottleneck in database
systems using traditional storage devices (SSD/HDD) because each
transaction has to wait until the log entry recording its changes is
written. As a mitigation, reduced consistency guarantees are offered
and complex group commit protocols are implemented. However,
using PMem, a low-latency logging protocol can be implemented
that largely eliminates this problem.

3.3.1 Algorithms. In the following, we first explain and then eval-
uate three logging techniques: Classic, Header, and Zero:

Classic represents a form of logging commonly used in database
systems [32]. The following listing shows the algorithm in pseudo
code (left) and the file layout grammar (right). For clarity, only
information relevant to the protocol is depicted.

log << header << payload

persist(log);

log << footer

persist(log);

LogFile -> Entry*

Entry -> header ←↩

payload footer

A log entry is flushed in two steps: First, the header and payload
is appended to the log and persisted; second, the footer, which con-
tains a copy of the log sequence number (lsn; an id given to each
log entry). The lsn in the footer can be used during recovery to de-
termine whether a log entry was completely written and therefore
should be considered as valid and applied to the database. Note that
it takes two persistency barriers. Without the first barrier, parts of
the payload could be missing even if the footer is present in PMem,
due to the flushes being reordered.
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Figure 6: Transaction Log – The throughput for writing log entries of varying size to PMem.

Header uses the same technique as libpmemlog in the PMDK [1].
It is similar to appending elements to an array:

log << header << payload

persist(log);

log.size += entry_size

persist(log.size);

LogFile -> size, Entry*

Entry -> header payload

The log entry is also written in two steps: First, the header and
payload are appended to the tail of the log and persisted. Next, the
new size of the log is set in the header of the log file and persisted.
This eliminates the need to scan the log file for the last valid en-
try during recovery because the valid size is directly stored in the
header.

Zero is a novel technique we propose for PMem that requires
only one persistency barrier:

cnt = pop_count(header, payload)

log << header << cnt << payload

persist(log);

LogFile -> Entry*

Entry -> header ←↩

pop_cnt payload

Before logging starts, each log file is initialized to zero. This is com-
monly done anyway by database systems (e.g., PostgreSQL) to en-
force that the file system actually allocates pages to the file. When
a log entry is written, the number of set bits are counted (using the
popcnt instruction). Next the header, data, and bit count (cnt) is
written to the log and persisted together. Using the bit count, it is
always possible to determine the validity of a log entry: Either the
cache line containing the bit count was not flushed or it was. In
the former case, the field contains the number zero (because the
file was zeroed) and the entry is invalid. In the latter case, the bit
count field can be used to determine whether all other cache lines
belonging to the log entry have been flushed as well.

3.3.2 Experiments. In Section 2.3, we showed that there is a large
performance penalty when the same cache line is persisted twice
in a row. This effect is very relevant for latency-critical systems, as
shown in Figure 6. We use a micro-benchmark that measures the
throughput of flushing log entries of varying sizes. The left chart
shows a naive implementation, while the right one uses padding
on each log entry to align entries to cache line boundaries and thus
avoid subsequent writes to the same cache line. While padding
wastes some memory6, the throughput greatly increases (≈ 8×).

However, even with padding, the Classic approach still outper-
forms the Header one, because of the slowdown due to the writes

6Up to 1 cache line for Zero and Header ; up to 2 cache lines for Classic

to the same cache line in the header when the size is updated. This
problem can be solved by using a dancing size field: We use several
size fields on different cache lines in the header and only write one
(round-robin) for each log entry. By using 64 of these dancing size
fields, the throughput of Header can be increased to that of Classic.
However, both of these techniques still require persistency barriers
and therefore cannot compete with Zero logging (≈ 2× faster).

The log implementation (libpmemlog) of the PMDK [1] uses the
same approach (and therefore yields the same throughput, when
locking is disabled) as our naive Header implementation without
alignment and dancing. It has the advantage that the log file is
dense and can be presented to the user as one continuous memory
segment. However, this leaves the user with the task of reconstruct-
ing log entry boundaries manually. By moving this functionality
into the library, a better logging strategy can be implemented and
the usability increased.

For validation, we have integrated all techniques into our storage
engine prototype HyMem [33]. Running a write-heavy (100%) YCSB
benchmark [10] on a single thread with a DRAM-resident table,
Zero logging, Header, and Classic achieves a throughput of 2M,
1.7M, and 1.5M transactions per second, respectively.

4 RELATEDWORK
With PMem only being released recently, this is one of the two [17]
initial studies that have been performed on the actual hardware.
While our work proposes low-level optimizations, Swanson et al.
evaluate PMem with various storage engines as well as file systems.
Until now, software or hardware-based simulations, or emulations
based on speculative performance characteristics, have been used to
evaluate possible system architectures [4, 25, 27, 29]. The number of
persistent index structures [3, 9, 14, 21, 34, 37] is large, and has been
summarized by Götze et. al [15]. Similar techniques have been used
to build storage engines directly on PMem [5, 24]. These approaches
use in-place updates on PMem, which suffers from the lower-than-
DRAM performance. Therefore, a number of indexes [26, 36] as
well as storage engines [2, 8, 11, 18, 19, 22, 23] integrate PMem as
a separate storage layer or an extension to the recovery compo-
nent [28, 30]. Furthermore, buffer-managed architectures [6, 20, 33]
have been proposed to use PMem more adaptively. Recovery has
always been an essential (and performance-critical) component
of database systems [32]. Several designs have been proposed for
database-specific logging [7, 13, 16, 31, 35] and file systems [12].
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5 CONCLUSION
In our evaluation, we found several guidelines for using PMem
efficiently (cf. Section 2.2 and 2.3): (1) Instead of optimizing for cache
lines (64 byte) as on DRAM, we have to optimize for PMem blocks
(256 byte). (2) As inmulti-threaded programming, writes to the same
cache line in close temporal proximity should be avoided. (3) Forcing
the data out of the on-CPU cache (clwb or streaming) is essential
for a high write bandwidth. Furthermore, we evaluated algorithms
for logging and page propagation: (1) Our logging experiments
have shown that latency-critical code should minimize the number
of persistency barriers and avoid subsequent writes to the same
cache line. (2) Our zero logging algorithm reduces the required
persistency barriers from two to one, thus doubling the throughput.
(3) For flushing database pages, a small log (µLog) can be used
to flush only dirty cache lines. The I/O primitives introduced use
an interface similar to the one in PMDK [1], making them widely
applicable.
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