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ABSTRACT
Non-volatile memory (NVM) is a new storage technology that
combines the performance and byte addressability of DRAM with
the persistence of traditional storage devices like flash (SSD). While
these properties make NVMhighly promising, it is not yet clear how
to best integrate NVM into the storage layer of modern database
systems. Two system designs have been proposed. The first is to
use NVM exclusively, i.e., to store all data and index structures on
it. However, because NVM has a higher latency than DRAM, this
design can be less efficient than main-memory database systems.
For this reason, the second approach uses a page-based DRAM
cache in front of NVM. This approach, however, does not utilize the
byte addressability of NVM and, as a result, accessing an uncached
tuple on NVM requires retrieving an entire page.

In this work, we evaluate these two approaches and compare
them with in-memory databases as well as more traditional buffer
managers that use main memory as a cache in front of SSDs. This al-
lows us to determine how much performance gain can be expected
from NVM. We also propose a lightweight storage manager that si-
multaneously supports DRAM, NVM, and flash. Our design utilizes
the byte addressability of NVM and uses it as an additional caching
layer that improves performance without losing the benefits from
the even faster DRAM and the large capacities of SSDs.
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Figure 1: System designs under varying data sizes.

1 INTRODUCTION
Non-volatile memory (NVM), also known as Storage Class Memory
(SCM) and NVRAM, is a radically new and highly promising stor-
age device. Technologies like PCM, STT-RAM, and ReRAM have
slightly different features [35], but generally combine the byte ad-
dressability of DRAM with the persistence of storage technologies
like SSD (flash). Because commercial products are not yet available,
the precise characteristics, price, and capacity features of NVM
have not been publicly disclosed (and like all prior NVM research,
we have to resort to simulation for experiments). What is known,
however, is that for the foreseeable future, NVMwill be slower (and
larger) than DRAM and, at the same time, much faster (but smaller)
than SSD [13]. Furthermore, NVM has an asymmetric read/write
latency—making writes much more expensive than reads. Given
these characteristics, we consider it unlikely that NVM can replace
DRAM or SSD outright.

While the novel properties of NVM make it particularly relevant
for database systems, they also present new architectural challenges.
Neither the traditional disk-based architecture nor modern main-
memory systems can fully utilize NVM without major changes
to their designs. The two components most affected by NVM are
logging/recovery and storage. Much of the recent research on NVM
has optimized logging and recovery [5, 16, 22, 36, 45]. In this work,
we instead focus on the storage/caching aspect, i.e., on dynamically
deciding where data should reside (DRAM, NVM, or SSD).
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Two main approaches for integrating NVM into the storage
layer of a database system have been proposed. The first, suggested
by Arulraj et al. [4], is to use NVM as the primary storage for
relations as well as index structures and perform updates directly
on NVM. This way, the byte addressability of NVM can be fully
leveraged. A disadvantage is that this design can be slower than
main-memory database systems, which store relations and indexes
in main memory and thereby benefit from the lower latency of
DRAM. To hide the higher NVM latency, Kimura [25] proposed
using a database-managed DRAM cache in front of NVM. Similar
to a disk-based buffer pool, accesses are always performed on in-
memory copies of fixed-size pages. However, accessing an uncached
page becomes more expensive than directly accessing NVM, as an
entire page must be loaded even if only a single tuple is accessed.
Furthermore, neither of the two approaches supports very large
data sets, as the capacity of NVM is limited compared to SSDs.

In this work, we take a less disruptive approach and implement
NVM as an additional caching layer. We thus follow Michael Stone-
braker, who argued that NVM-DIMMs are . . .

“. . . not fast enough to replace main memory and they are not cheap
enough to replace disks, and they are not cheap enough to replace
flash.” [41]

Figure 1 sketches the performance characteristics and capacity
restrictions of different system designs (Buffer Manager is abbrevi-
ated as BM). Besides the two NVM approaches (“Basic NVM BM”,
“NVM Direct”), we also show main-memory systems (“Main Mem-
ory”), and traditional SSD buffer managers (“SSD BM”). Each of
these designs offers a different tradeoff in terms of performance
and/or storage capacity. As indicated in the figure, all existing ap-
proaches exhibit steep performance cliffs (“SSD BM” at DRAM size
and “Basic NVM BM” at NVM size) or even hard limitations (“Main
Memory” at DRAM size, “NVM Direct” at NVM size).

In this work, we propose a novel storage engine that simulta-
neously supports DRAM, NVM, and flash while utilizing the byte
addressability of NVM. As the “3 Tier BM” line indicates, our ap-
proach avoids performance cliffs and performs better than or close
to that of specialized systems. NVM is used as an additional layer
in the storage hierarchy supplementing DRAM and SSD [7, 13].
Furthermore, by supporting SSDs, it can manage very large data
sets and is more economical [18] than the other approaches. These
robust results are achieved using a combination of techniques:

• To leverage the byte-addressability of NVM, we cache NVM
accesses in DRAM at cache-line granularity, which allows
for the selective loading of individual hot cache lines instead
of entire pages (which might contain mostly cold data).

• To more efficiently use the limited DRAM cache, our buffer
pool transparently and adaptively uses small page sizes.

• At the same time, our design also uses large page sizes for
staging data to SSD—thus enabling very large data sets.

• We use lightweight buffer management techniques to reduce
the overhead of in-memory accesses.

• Updates are performed in main memory rather than directly
on NVM, which increases endurance and hides write latency.

The rest of this paper is organized as follows. We first discuss
existing approaches for integrating NVM into database systems in
Section 2. We then introduce some key techniques of our storage

engine in Section 3 before describing how our approach supports
DRAM, NVM, and SSDs in Section 4. Section 5 evaluates our storage
engine by comparing it with the other designs. Related work is
discussed in Section 6, and we conclude the paper in Section 7.

2 BACKGROUND: NVM STORAGE
Several architectures for database systems optimized for NVM have
been proposed in the literature. In this section, we revisit the two
most promising of these designs and abstract their general concepts
into two representative system designs. They are illustrated in
Figure 2 alongside the approach that we propose in this paper.

2.1 NVM Direct
NVM, which offers latencies close to DRAM and byte addressability,
can be used as the primary storage layer. A thorough investiga-
tion of different architectures for NVM Direct systems has been
conducted by Arulraj et al. [4]. Their work categorizes database
systems into in-place update, log-structured, and copy-on-write
engines, before adapting and optimizing each one for NVM. Experi-
mental results suggest that in most cases an in-place update engine
achieves the highest performance as well as the lowest wear on the
NVM hardware. Therefore, we chose this in-place update engine
as a reference system for working directly on NVM (Figure 2a).

One challenge of using NVM is that writes are not immediately
persistent because NVM is behind the same CPU cache hierarchy as
DRAM and changes are initially written to the volatile CPU cache. It
is only when the corresponding cache line is evicted from the CPU
cache that the update becomes persistent (i.e., written to NVM).
Therefore, it is not possible to prevent a cache line from being
evicted and written to NVM, and each update might be persisted
at any time. It is, however, possible to force a write to NVM by
flushing the corresponding cache lines. These flushes are a building
block for a durable and recoverable system.

Logging is implemented as follows. A tuple is updated by first
writing a write-ahead log (WAL) entry that logs the tuple id and
the changes (before and after image). Then, the log entry needs
to be persisted to NVM by evicting the corresponding cache lines.
Intel CPUs with support for NVM like the Crystal Ridge Software
Emulation Platform [14], which is also used in our evaluation, pro-
vide a special instruction for that: clwb allows one to write a cache
line back to NVM without invalidating it (like a normal clflush
instruction would). In addition, to ensure that neither the compiler,
nor the out-of-order execution of the CPU reorders subsequent
stores, a memory fence (sfence) has to be used. Thereafter, the
log entry is persistent and the recovery component can use it to
redo or undo the changes to the actual tuple. At this point, the
transaction can update and then persist the tuple itself. After the
transaction is completed, the entire log written by the transaction
can be truncated because all changes are already persisted to NVM.

As illustrated in Figure 2a, the design keeps all data in NVM.
DRAM is only used for temporary data and to keep a reference to
the NVM data. The log is written to NVM as well.

The NVM direct design has several advantages. By keeping the
log minimal (it contains only in-flight transactions), recovery is
very efficient. In addition, read operations are very simple because
the system can simple read the requested tuple directly from NVM.
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Figure 2: NVM-Based Storage Engine Designs – NVM Direct (a) stores all data on NVM, which allows for cache-line-grained accesses.
Basic buffer managers (b) fixed-size pages in DRAM, but require page-grained accesses to NVM. Our design (c) uses fixed-size pages to enable
support for SSD and, in addition, supports cache-line-grained loading for NVM-resident data to DRAM. ( hot, warm, cold cache lines)

However, there are also downsides. First, due to the higher latency
of NVM compared to DRAM, it becomes more difficult to achieve
a very high transaction throughput. Second, working directly on
NVM without a buffer wears out the limited NVM endurance, thus
potentially causing hardware failures. Third, an engine that works
directly on NVM is difficult to program, because there is no way
to prevent eviction and any modification is potentially persisted.
Therefore, any in-place write to NVM must leave the data structure
in a correct state (similar to lock-free data structures, which are
notoriously difficult).

2.2 Basic NVM Buffer Manager
Given the downsides of the NVM direct approach, using DRAM as
a cache in front of NVM may seem like a promising alternative. A
well-known technique for adaptive memory management between
a volatile and persistent layer is a buffer manager. It is used by most
traditional disk-based database systems and can easily be extended
to use NVM instead of SSD. We illustrate this idea in Figure 2b.

In buffer-managed systems, all pages are stored on the larger,
persistent layer (NVM). The smaller, volatile layer (DRAM) acts as a
software-managed cache called a buffer pool. Transactions operate
only in DRAM and use the fix and unfix functions to lock pages
into the buffer pool while they are accessed. In the traditional buffer
manager (DRAM + SSD/HDD), this was necessary because it is not
possible to make modifications directly on a block-oriented device.
In the case of NVM, we argue that it is still beneficial because of
the higher latency and the limited endurance of NVM.

An NVM-optimized variant of this approach has been introduced
in the context of the research prototype FOEDUS [25]. The memory
is divided into fixed-size pages, and transactions only operate in
DRAM. Instead of storing page identifiers, like a traditional buffer
manager, FOEDUS stores two pointers. One identifies the NVM-
resident copy of the page, the other one (if not null) the DRAM one.
When a page is not found in DRAM, it is loaded into a buffer pool.
FOEDUS uses an asynchronous process to combineWAL log entries
and merge them into the NVM-resident pages to achieve durability.

Thus, a page is never directly written back but only indirectly via
the log. The system is optimized for workloads fitting into DRAM.
NVM is mostly used for durability and cold data.

Our goal, in contrast, is to support workloads that also access
NVM-resident data frequently. Therefore, we extend the idea of
a buffer manager and optimize it to make NVM access cheap. A
non-optimized version is used as a baseline to represent layered
systems.

2.3 Recovery
Besides the storage layout, the logging and recovery components of
database systems are also greatly impacted by the upcoming NVM
hardware. Log entries can be written to NVM much faster than
to SSD. Therefore, from a performance perspective, it is always
beneficial to replace SSD storage with NVM as the logging device.

In this work, we focus on the storage layout and therefore im-
plement the same logging approach in each evaluated system. This
makes it possible to compare only the advantages and disadvan-
tages of the storage engine itself with less interference of other
database components.

We use write ahead logging with redo and undo information. The
undo entries enable one to perform rollback and to undo the effect
of loser transactions during recovery. The redo entries are used
to repeat the effects of committed transactions during recovery if
it was not yet persistent. The buffer-manager-based systems keep
a log sequence number per page to identify the state of the page
during recovery. In the NVM direct approach, this is not necessary,
as changes are always immediately written to NVM. Therefore,
only in-flight transactions need to be undone and every committed
transaction is durable already.

Logging for NVM-based systems can be and has been optimized
in prior work [5, 36]. While each of the described storage archi-
tectures can benefit from more advanced logging techniques, we
believe that the impact on the storage engine is largely orthogonal
and the two problems can be treated independently.
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Figure 3: Cache-Line-Grained Pages – The bit masks indicate
which cache lines are resident and which are dirty.

3 NVM BUFFER MANAGEMENT
The goal of our architectural blueprint is a system that performs
almost as well as a main-memory database system on smaller data
sets but scales across the NVM and SSD storage hierarchy while
gracefully degrading in performance (cf. Figure 1). For this pur-
pose, we design a novel DRAM-resident buffer manager that swaps
cache-line-grained data objects between DRAM and NVM—thereby
optimizing the bandwidth utilization by exploiting the byte address-
ability of NVM. As illustrated in Figure 2c, scaling beyond DRAM
to SSD sizes led us to rely on traditional page-grained swapping
between NVM and SSD. Between DRAM and NVM, we adaptively
differentiate between full-page memory allocation and mini-page
allocation to further optimize the DRAM utilization. This way, in-
dividual “hot” data objects resident on mostly “cold” pages are
extracted via the cache-line-grained swapping into smaller mem-
ory frames. Only if the mini page overflows, is it transparently
promoted to a full page—but it is still populated one cache-line at a
time. We also devise a pointer swizzling scheme that optimizes the
necessary page table indirection in order to achieve nearly the same
performance as pure main-memory systems, which obviate any
indirection but incur the memory wall problem once the database
size exceeds DRAM capacity.

3.1 Cache-Line-Grained Pages
Compared to flash, the lowNVM latency (hundreds of nanoseconds)
makes it feasible to transfer individual cache lines instead of entire
pages. Using this, our so-called cache-line-grained pages are able
to extract only the hot data objects from an otherwise cold page.
Thus, we preserve bandwidth and thereby increase performance.
In the following, we discuss the details of this idea.

A single SSD access takes hundreds of micro seconds. It is there-
fore important to transfer large chunks (e.g., 16 kB) at a time in
order to amortize the high latency. Therefore, a traditional buffer
manager has to work in a page-grained fashion: When a transac-
tion fixes a page, the entire page is loaded into DRAM and the data
stored on it can be processed. Our buffer manager, in contrast, ini-
tially only allocates a page in DRAM without fully loading it from
NVM. Upon a transaction’s request for a certain memory region,
the buffer manager retrieves the corresponding cache lines of the
page (if not already loaded).

The page layout is illustrated in Figure 3. The cache-line-grained
pages maintain a bit mask (labeled resident) to track which cache

lines are already loaded. In the example, the first, third, and last
cache line is loaded, as indicated by a bit set to 1 at the corresponding
position in the bit mask. Similar to the resident bit mask, the dirty
bit mask is used to track and write back dirty cache lines. The r
and d bits indicate whether the entire page is resident and dirty,
respectively. To allow for the loading of cache lines on demand,
pages additionally store a pointer (nvm) to the underlying NVM
page. With 16 kB pages, there are 256 cache lines and therefore the
two bit masks require 32 byte each. Together with the remaining
fields (|nvm| + |pId| + |r| + |d| = (8+ 8+ 1+ 1) byte = 18 byte), the
entire header ((2 ∗ 32 + 18)byte = 82 byte) fits into 2 cache lines
(128 byte) and thus incurs only a negligible space overhead of less
than 0.8 %.

While this cache-line-grained design includes an extra branch on
every access (to check the bit mask), it often reduces the amount of
memory loaded from NVM into DRAM drastically: As an example,
consider the leaf of a B-tree [6] where pairs of keys and values are
stored in sorted order. Assuming a page size of 16 kB and a key and
value size of 8 byte each, there are at most 16 kB÷

(
8 byte+8 byte

)
=

1024 entries on a single page. A lookup operation only requires
a binary search, which uses loд2(1024) = 10 cache lines at most.
Therefore, our design only needs to access 64 byte ∗ 10 = 640 byte,
instead of 16 kB. While this is already a huge difference, it can be
even greater. In the case of the YCSB and TPC-C benchmarks, which
we use in our evaluation (Section 5), we measured an average of
6.5 accessed cache lines per lookup.

A system allowing for cache-line-grained accesses is more dif-
ficult to program than a conventional page-based approach. The
reason for this is that all data needs to be made resident explicitly
before accessing it and marked dirty after modifying it. But working
with a cache-line-granularity is optional and it is also possible to
load and write back entire pages. Therefore, we only implement the
operations, that provide the most benefit, in a cache-line-grained
fashion: like lookup, insert, and delete. Other infrequent or compli-
cated operations (like restructuring the B-tree) are implemented by
loading and processing the full page (avoiding the residency checks).
The overhead of checking the residency of every single cache line
only pays off if we access a small number of cache lines. During scan
operations or the traversal of inner nodes in a B-tree, many cache
lines are accessed and cache-line-grained loading should therefore
not be used.

3.2 Mini Pages
Cache-line-grained pages reduce the consumed bandwidth to a min-
imum by only loading those cache lines that are actually needed.
However, the page layout described previously still consumes much
more DRAM than necessary. In this section, we introduce a second,
smaller page type calledmini page, which reduces the wasted mem-
ory. Consider the B-tree leaf example from above: Merely 640 byte
out of 16 kB are accessed, but the system still allocates the 16 kB (ex-
cluding the header) in DRAM for the page. This problem is known
from traditional disk-based systems: An entire page is loaded and
stored in DRAM even if only a single tuple is required, wasting
valuable NVM bandwidth and DRAM capacity. In the following, we
will use the term full page to refer to a traditional page, as it was in-
troduced before. Note that both pages (mini and full) are able to use
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Figure 4: Mini Pages – The slots array indicates which cache
lines are loaded (max 16). If promoted, full points to the full page.

cache-line-grained loading to optimize bandwidth utilization—but
not DRAM utilization. Hence, the term cache-line-grained page can
refer either to a mini page or a full page.

The implementation of mini pages is illustrated in Figure 4. It
consumes only 1088 byte of memory and is able to store up to 16
cache lines. The slots array implements the indirection. It stores
the physical cache line id for each of the 16 cache line slots. For
example, the cache linewith the content “San Francisco” is located at
the physical index 255 on the page but loaded into slot 2 on the mini
page. Therefore, the slots array stores the index 255 at position 2.
The array only requires 16 byte because each physical cache line id
fits into one byte. In total, the mini page header fits into a single
cache line: |nvm| + |slots| + |pId| + |count| + |dirty| + |full| =
(8 + 16 + 8 + 1 + 2 + 8) byte = 43 byte. This is a very low overhead
(0.3 %) when compared to the size of a full page, which would be
used in a system without mini pages. The count field indicates
how many cache lines are loaded, e.g., a value of three means that
the first three cache line slots of the mini page are occupied. The
additional dirty bit mask indicates which cache lines must be
written back to NVM when the page is evicted. In our example, the
cache line “Redwood City” changed to “Munich” and needs to be
written back.

Accessing memory on a mini page is more complicated than on
a full page. Due to the mapping of cache lines, data members on the
page can-not be directly accessed. Therefore, we use an abstract
interface that enables transparent page access:
void ∗ MakeRes ident ( Page ∗ p , in t o f f s e t , in t n )

The function takes a page p as an input and returns a pointer
to the memory at the specified offset with a length of n bytes.
In case p is a full page, the specified cache lines are loaded (if
not yet resident) and a pointer to it is returned. Otherwise, in
case of a mini page, the function searches the slots array for
the requested cache lines. If these are not yet resident, they are
loaded and added to the slots array. Afterwards, a pointer to the
offset in the (now) resident cache line is returned. Thus, this basic
interface transparently resolves the indirection within the mini
pages. Compared to a traditional page, the only difference is that
memory on mini pages can no longer be accessed directly but only
via this function.

Mini pages need to guarantee that the memory returned by these
functions is always contiguous, i.e., if more than one cache line is
requested (e.g., cache lines with id 3 and 4), they need to be stored

6

5

7

par off: 0
pId: 6 cnt: 1
ptr pId: 5 . . . pId: 8

par off: 12
pId: 7 cnt: 0

. . .

par off: 0
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Figure 5: Pointer Swizzling – A B-tree with a root (pId: 6) and
three child pages: A swizzled page (pId: 7), a normal DRAM page
(pId: 5) and a page currently not in DRAM (pId: 8).

consecutively (i.e., 4 needs to be stored directly after 3) in the mini
page’s data array. Otherwise, the returned pointer would only be
valid for the first cache line. To guarantee this, our implementation
maintains the cache lines in sorted order (w.r.t. their memory loca-
tions). The overhead of maintaining order is small because, there
are at most 16 elements and it is not on the critical path (only after
loading from NVM). The benefit of this approach is that it simplifies
implementation, as it avoids complicated reordering logic.

When a mini page does not have enough memory left to serve
a request, it is promoted to a full page. To do this, an empty full
page is allocated from the buffer manager and stored in the mini
page’s full member. Next, the current state of the mini page is
copied into the newly allocated full page: all resident cache lines,
the residency and dirty information. If the example mini page in
Figure 4 was promoted, the newly initialized full page would look
like the one in Figure 3. Finally, the page mapping table in the buffer
manager is updated to point to the full page. From now on, the mini
page is called partially promoted and all requests to the mini page
are forwarded to the full page. It is only safely garbage collected,
once the last transaction unfixes it. This is guaranteed to happen,
as the page mapping table points to the full page and therefore
no new references to the mini page are created. This feature is
convenient for the data structures using mini page because this way
its reference to the mini page is not invalidated when a promotion
happens. Thus, a promotion is hidden from data structures and
does not incur additional complexity.

3.3 Pointer Swizzling
While the buffer pool, allows the system to benefit from the low
latency DRAM cache, it also introduces a non-neglectable overhead.
In this section, we introduce pointer swizzling, a technique that
reduces this overhead (mainly the page table lookup) by dynam-
ically replacing page ids with physical pointers. In a traditional
buffer manager (DRAM+SSD/HDD), this overhead is only notice-
able if most of the working set fits into DRAM. Otherwise, the
page has to be loaded from SSD/HDD anyway, which is orders of
magnitude slower compared to the hash table lookup. In contrast to
traditional buffer managers, in our proposed system, this overhead
is also relevant for larger workloads. We cannot hide the overhead
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behind even slower loads because (a) these loads are not that much
slower (NVM latency is a lot lower than that of flash) and (b) the
amount of data read is much less due to the cache-line-grained
loading. Therefore, it is important for our system to minimize these
management overheads as much as possible.

Pointer swizzling has recently been proposed in the context of
traditional buffer managers (DRAM + SSD/HDD) [17]. The idea is
to encode the address of the page directly in the page identifier for
DRAM-resident pages. Themost significant bit of the page identifier
determines whether the remaining bits constitute a page identifier
or a pointer. Thus, when accessing a page, the system first checks
whether the most significant bit is set. If so, the remaining bits
encode a pointer that can be dereferenced directly. Otherwise, the
remaining bits are a page identifier and the system has to check the
hash table in the buffer manager to find the page or load it from
NVM if not present. This way, the hash table lookup is avoided for
DRAM-resident pages and thereby the overhead is reduced to a
single branch.

Figure 5 illustrates our implementation of pointer swizzling.
On the left-hand side, the buffer manager’s page mapping table
is shown. It maps page identifiers (numbers in the table) to pages
(represented by arrows). The example shows a B-tree with one root
node (pId 6) and three leaf nodes: The first one (pId 7) is a swizzled
leaf. The root can use a pointer (blue arrow) to access it instead of
the page id. The second one (pId 5) is a normal leaf (not swizzled)
and the third one (pId 8) is a swapped out leaf—currently not
located in DRAM.

In the example, the root page has one swizzled child (as indi-
cated by the cnt) field. A page with swizzled children can never be
swapped out because the pointer to the swizzled child would be per-
sisted. When a swizzled page (the left child with page identifier 7 in
the example) is swapped out, it needs to update its parent (located
via the par pointer): First, it decreases the child count, which is
located at a fixed offset. Second, it converts the pointer pointing to
itself back into a normal page identifier. The location of this pointer
can be found using the offset field (off). The parent pointer (8 byte)
and the offset (2 byte) require an additional 10 byte of space in the
page header and therefore still fit into the mini page (1 cache line)
and full page header (2 cache lines). Pointer swizzling is compatible
with various data structures (trees, heaps, hashing); it only requires
fix-sized pages and these additional header fields.

Consider a swizzled mini page. When a mini page is promoted to
a full page, the swizzling information needs to be updated as well.
This happens when the partially promoted mini page is unfixed.
Until then it acts as a wrapper around the full page. When it is
unfixed, the pointer in the parent page needs to be redirected to
the full page. In addition, the pointer to the parent (par) and offset
(off) in the mini page need to be copied to the full page.

4 THREE-TIER BUFFER MANAGEMENT
So far we have presented cache-line-grained loading, mini pages,
and pointer swizzling as building blocks for an efficient DRAM
buffer pool over an NVM storage layer. The next step towards our
goal of building a storage engine that scales across the NVM and
SSD hierarchy (cf. Figure 1) is to add flash (SSD) as a third layer. Such
a three-tier design drastically increases the maximum workload
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Figure 6: Page Life Cycle – There are five possible page transi-
tions and the three critical decisions (DRAM eviction, NVM admis-
sion, and NVM eviction).

size in comparison to that of an in-memory or NVM-only system.
This section describes the involved buffer replacement strategies
and a low overhead way of adding this third layer.

Although adding support for SSDs does not improve perfor-
mance, it is still important, as it allows for the management of larger
data sets and can also be more economical: Real-world data is often
hot/cold clustered (e.g., older data is accessed less frequently). To
process the hot data as fast as possible, it should reside in main
memory. But it is neither a good practice to keep the cold data in
a separate system nor is it cheap to buy huge amounts of DRAM
to obtain enough storage to keep the cold data in DRAM as well.
Our layered approach solves this problem by providing close to
main memory speed for the hot data (provided it fits into DRAM)
while also supporting cheap SSD storage for cold data in a single
system. Beyond other systems, it even allows one to compactify the
individual working sets of an application via mini pages.

4.1 Design Outline
In our three-tier architecture, buffer management is done by using
both NVM and DRAM as selective caches over the SSD storage
layer (Section 4.2). Pages are only accessed (read and written) in
DRAM, and write ahead logging (WAL) is used to ensure durability.
When a page is evicted from DRAM, it is either admitted to NVM
or written back to SSD, depending on how hot the page is.

To locate pages on NVM, a page table (similar to the one in
DRAM) is required. To avoid overheads, this can be implemented
by using a combined page table for both DRAM andNVM—reducing
the number of table lookups from two to one (Section 4.3).

For recovery (Section 4.4), we propose using textbook-style write
ahead logging and an ARIES-based restart procedure. In a three-tier
architecture, it becomes necessary to reuse the content of NVM-
resident pages to allow for faster restarts. Therefore, the content of
the combined mapping table is reconstructed after a restart.



4.2 Replacement Strategies
A three-tier architecture needs to manage two buffer pools (DRAM
and NVM) instead of one. In this section, we detail the page transi-
tions that can occur and describe the three necessary replacement
decisions: DRAM eviction, NVM eviction and NVM admission. The
process is illustrated in Figure 6 and can be used as an overview.

Initially, all newly-allocated pages start out on SSD. When a
transaction requests a page, it is loaded directly and completely into
DRAM ( 1 ). The pages are loaded completely because the block-
based device only allows for a block-based access. We do not put
pages into NVM when they are loaded from SSD because accesses
are served directly from DRAM and putting them into NVM as
well would only waste NVM memory. Pages are only admitted to
NVM when they are swapped out of DRAM. Pages loaded directly
from SSD are not NVM-backed and therefore cannot operate in a
cache-line-grained fashion. This is only possible when the page is
loaded from NVM ( 2 ) and therefore NVM-backed.

When there are no more free slots available in DRAM, the buffer
manager needs to evict any of the DRAM-resident pages ( 3 ) in
order to make room for a new one. DRAM eviction is the first out
of three decisions our buffer manager has to perform. The goal is
simply to keep the hottest pages in DRAM. We use the well-known
clock (or second chance) algorithm, which performs reasonably
well in both overhead and quality. It continuously loops through
all pages in the buffer pool and swaps those pages out that have
not been touched since the previous iteration.

Once a page is chosen to be evicted from DRAM ( 3 ) and is
not already resident in NVM, it is considered for NVM admission,
which is the second out of three decisions. This decision is a more
difficult one because the goal is to identify warm pages instead of
hot pages. It has been studied in the context of the ARC replacement
strategy [34], where two queues are used to identify warm pages
in order to optimize the replacement of hot pages in a two-layer
system. Building on this idea, we use one set, which we call the
admission set, to identify recently accessed pages. The idea is to
admit pages to NVM that were recently denied admission. Each
time a page is considered for admission, the system checks whether
the page is in the admission queue. If so, it is removed from the set
and admitted into NVM ( 4 ). Otherwise, it is added to the set and
remains only on SSD ( 5 ). By limiting the size of the admission set,
we make sure that it only contains pages that were recently consid-
ered for admission. This way, pages that are frequently swapped
out of DRAM are admitted into NVM, but those that are only loaded
once do not pollute NVM.

The third replacement decision is NVM eviction, i.e., choosing
a page to be swapped out of NVM ( 6 ) when a new page is admitted.
To keep our implementation simple, we also use the clock algorithm
for this decision; however, as this is a rather expensive operation
(writing a page (16 kB) to NVM and, if it was dirty, to SSD), one
could opt for a slower algorithm that in turn yields better quality.

4.3 Combined Page Table
For workloads fitting into NVM, the third layer (SSD) is not used
and should therefore not cause an overhead. We achieve this by
the use of a combined page table, which stores both mappings (page
identifier 7→ DRAM location and page identifier 7→ NVM location)
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Figure 7: Single-Table Mapping – Using one hash table for
DRAM and NVM-resident pages eliminates most overhead for man-
aging the SSD layer. The hash table entries are identified by their
location in memory (DRAM or NVM).

in one hash table. The resulting structure is shown in Figure 7.
When retrieving a page, the memory address of the page can be
used to determine whether it is located in DRAM or NVM. If a
page is not found in DRAM, its NVM-resident copy is still found
and can be directly used without an additional hash table lookup.
Therefore, there are no extra steps involved compared to a two-
layer system. However, the size of the hash table differs because of
the additionally stored mapping for NVM pages. According to our
experimental results, the introduced overhead is less than 5%.

4.4 System Restart
The page mapping table is performance critical and is therefore
stored in DRAM. After a restart, it needs to be rebuilt instead of re-
covering solely from SSD, which would have two major drawbacks:
First, the time until the system can process the first transaction
would be higher because more log entries have to be replayed, as
the SSD version of the pages are older than the NVM version. Sec-
ond, once the system is restarted, it takes a longer time to reach the
pre-crash throughput again because not only the DRAM cache but
also the NVM cache is empty. Therefore, our system reconstructs
the page mapping table after a restart. This requires scanning over
all NVM pages, reading their page identifiers and adding them to
the DRAM-resident page table. This technique was not feasible for
slow non random access mediums (like flash or HDD) but performs
reasonably well for NVM. Reading the page identifiers for 100GB
of NVM takes slightly less than 1 second, but allows for a faster
restart.

5 EVALUATION
In this section, we present an experimental analysis of our proposed
architecture and compare it with other NVM management tech-
niques. To provide a fair comparison, all evaluated architectures
are implemented within the same storage engine. Consequently, all
systems use the same logging scheme, B+-tree, and test driver. The
only difference is the way DRAM, NVM, or/and SSD are accessed.
This allows us to measure the difference between the architectures
mostly independent of individual implementation choices.

5.1 Experimental Setup
We conduct our experiments on the Crystal Ridge Software Em-
ulation Platform (SEP) provided by Intel [14]. It is a dual-socket



system equipped with Intel(R) Xeon(R) CPU E5-4620 v2 processors
(2.6GHz, 8 cores, and 20MB L3 cache). This processor is extended
to include the clwb instruction and is able to configure the NVM
latency between 165 ns to 1800 ns (unless otherwise noted, 500 ns
are used). The clwb instruction in combination with memory fences
(sfence) is used to persist a certain cache line. Unlike the clflush
instruction, it does not invalidate the cache line, thus triggering a
reload on the next access, but only writes it back to the underly-
ing memory and marks it as unmodified. We use the libpmem [1]
library from the libpmem.io stack as a platform-independent wrap-
per around these instructions. The machine is equipped with 48GB
of DRAM, out of which 32GB are connected to the first socket. To
avoid NUMA effects, we conduct our experiments exclusively on
this socket. The simulated NVM-DIMMs are exposed as a block
device, which is formatted as an ext4 file system and mounted
with DAX (direct access) support enabled. This file system is then
mapped into the address space of our process and can be directly
accessed without file system overheads due to DAX. Note that
buffer-managed systems do not require a special NVM allocator [38]
because pointers into or the dynamic allocation of NVM are not
used.

We implement each table as a B+-tree using C++ templates
and 16 kB pages (page size is not restricted to the OS’s virtual
memory page size). The B-tree uses binary search and stores key
and payloads in separate arrays (sorted by keys).

When ingesting data in preparation for a benchmark, the load
factor of the B-tree is configured to 0.66. The term data size is used to
describe the total memory consumption of the B-tree after loading
the data. Therefore, if the flat data is 5 GB in size, the resulting
data size would be around 7.5GB due to the tree structure and
the load factor. Transactions are executed on a single thread. By
using no-steal and no-force in the buffer manager in combination
with traditional write ahead logging (WAL), we ensure durability.
In all experiments, the transactions and the code executing them
are implemented in C++ and compiled together with our storage
engine into one binary.

5.2 Workloads
We used YCSB and TPC-C in our experiments, which mostly use
OLTP-style transactions. These are better suited to evaluate a stor-
age engine, as they pose a greater challenge than OLAP-style full
table scans.

YCSB is a popular key-value store benchmark framework [11].
It consists of a single table with a 4 byte primary key and 10 string
fields of 100 byte each. YCSB defines simple “CRUD”-style oper-
ations on this table, which can be combined into workloads. In
the YCSB experiments, we focus on point lookups, updates, and
range scans (inserts and deletes are evaluated using TPC-C). We
use Zipf-distributed (z = 1, non clustered popular keys) keys to
model real-world data skew [20]. The corresponding row is located
in the table and a (uniformly) randomly chosen field is read (lookup,
range scan) or updated (updates). We define three workloads, which
are generalizations of the five pre-defined example workloads (A-E)
in YCSB.

YCSB-RO uses 100 % point lookup operations (same as YCSB
“Workload C”).
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Figure 8: YCSB-RO – Performance for varying data sizes on read-
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Figure 9: TPC-C – Performance in TPC-C for an increasing num-
ber of warehouses. The capacity of DRAM, NVM, and SSD is set to
2GB, 10GB, and 50GB, respectively.

YCSB-R/W uses x% update and (100 − x)% point lookup oper-
ations, where x can be configured between 0 to 100 (config-
urable mix of “Workload A” and “Workload C”).

YCSB-SCAN uses 100 % range scan operations. Each one has
a random length between 1 and 100 (like “Workload E”, but
without the 5% inserts).

TPC-C is considered the industry standard for benchmarking
transactional database systems. It is an insert-heavy workload that
emulates a wholesale supplier. Like most research TPC-C imple-
mentations (e.g., [25, 42]), we do not implement think times.

5.3 Architecture Comparison
In this paper, we set out to design a system that performs well in
all three layers (DRAM, NVM, and SSD) of next generation servers.
This experiment compares the performance of different storage
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engines with two workloads: YCSB-RO (in Figure 8) and TPC-C
(in Figure 9). In both scenarios, we use 2GB of DRAM, 10GB of
NVM and 50GB of SSD. The horizontal axis increases the workload
size by 1GB at a time starting at 1 GB up to 15GB.

The figures are divided into three areas by two dashed lines that
show the capacity of DRAM and NVM. Therefore, the area on the
left shows the performance for workloads fitting completely into
DRAM; the one in the middle covers workloads fitting into NVM
and the one on the right is for workloads exceeding NVM capacity.
In the following, we describe the behavior of the different storage
engines in these areas.

DRAM Area: For both workloads the main-memory variant
( ) performs best (YCSB-RO with 3.6MTx/s and TPC-C with
88 kTx/s). It is clear that it is impossible for any buffer-managed
architecture ( , , ) to outperform a main memory system
in this area. The overheads of fixing and unfixing pages and, in
the case of our proposed system, checking the residency of indi-
vidual cache lines can be minimized but never completely avoided.
The basic buffer manager for DRAM and NVM ( ) and the tradi-
tional buffer manager for DRAM and SSD ( ) have roughly the
same throughput as our approach ( ) in the DRAM area. The key
differences related to performance are pointer swizzling and the
cache-line-grained access. Mini pages do not play a role here, as
they are rarely used (without the need to swap pages out, every
page becomes a full page eventually). Our system needs to check
whether a cache line is resident before accessing it. But, as the figure
shows, the pointer swizzling speedup is higher than the cache-line-
grained access slowdown. If the Basic NVM BM or the traditional
one was extended to use pointer swizzling as well, they would come
out slightly ahead. The NVM Direct system ( ) performs worst
in the first area because it does not use the fast DRAM but only the
slower NVM.

NVM Area: In the NVM area, the line for the main memory
system ( ) vanishes, because such a system cannot support work-
loads exceeding the size of DRAM. The NVM Direct system ( )
is not impacted by the fact that the workload no longer fits into
DRAM, as it is not using DRAM. Its performance is decreasing
because of the growing workload size and the fewer L3 cache hits.
The two buffer management systems suffer a lot, as they have to
start swapping pages in and out of SSD. The throughput of Basic
NVM BM ( ) and the SSD BM ( ) drop below that of NVM
Direct because page misses are more likely (due to the lack of mini
pages) and each page miss needs to retrieve an entire page (due to
the lack of cache-line-grained pages). Our three-tier system ( )
also drops in performance, but is still able to outperform the NVM
Direct system due to the benefits of caching data in DRAM. The
performance decrease is less severe in TPC-C than in YCSB-RO.
This can be explained by the fact that the working set (the hot data)
in TPC-C is only a portion of the entire data and can therefore be
better cached in the buffer-managed systems.

SSD Area: In the last area, the NVM Direct system ( ) and the
Basic NVM BM ( ) can no longer handle the large amounts of
data and therefore no longer show up in the figure. Our system
( ) has another performance drop, as it needs to load more and
more data from SSD now. In the TPC-C experiment, this drop is
delayed and does not occur right after the dashed line, as the hot
data still fits into NVM at this point. Only when scaling the data size
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Figure 10: Performance Drill Down – Effect of proposed opti-
mizations relative to a traditional buffer manager on NVM (YCSB-
RO with 10GB of data, read only, 2 GB DRAM, and 10GB NVM).

up to around 90 warehouses does it start accessing SSD and drops
in performance. This drop is unavoidable because even a single
SSD access (around 1millisecond) every 26 transactions (number
of transaction executed per 1millisecond at 90 warehouses) will
cut the transaction rate in half. On the very right of both figures
(15GB of data), the performance advantage of having NVM is still
present. The SSD BM ( ) is a factor of 4.3 slower in YCSB-RO and
2.8 in TPC-C.

These results show that a carefully engineered buffer manager
can outperform an NVM direct system, be competitive with an in-
memory system and greatly speed up workloads exceeding NVM
capacity.

5.4 Performance Drill Down
Traditionally, buffer management is viewed as a technique with
high overhead [21]. Therefore, working directly on NVM is, initially,
a good idea. In this section, we show that by leveraging the novel
properties of NVM (mainly byte addressability), it becomes possible
to outperform an NVM in-place engine. We first break down the
performance gains of the individual techniques proposed in our
architecture and then analyze their overheads. In both experiments,
we use 2GB of DRAM, 10GB of NVM, and around 6.5million tuples,
which amount to roughly 10GB.

5.4.1 Performance Gains Breakdown. The benefits of the pro-
posed techniques are shown using YCSB-RO in Figure 10. We first
measure the performance of our system configured as a Basic NVM
BM and then cumulatively enable the optimizations proposed in
this paper (cache-line-grained pages, mini pages and pointer swiz-
zling). The performance of the improvements is given relative to
that of the Basic NVM BM. For comparison, we also added a line
showing the performance of the NVM Direct engine.

As the first improvement, we add cache-line-grained accesses,
as described in Section 3.1. It allows the buffer manager to load
individual cache lines fromNVM instead of having to load the entire
page, which dramatically reduces the number of loaded cache lines
by a factor of 55 from around 652.5M to 11.8M.

The next improvement are mini pages, which are detailed in
Section 3.2. These pages can store less cache lines compared to a
full page, but in turn also require less storage. This allows them to
use the available DRAM more efficiently because, on many pages,



only a few cache lines are touched and thus more hot tuples are
kept in DRAM. Using mini pages, the number of loaded cache lines
is reduced by a factor of 2 and ends up at 5.6M.

The last improvement, introduced in Section 3.3, is pointer swiz-
zling. It essentially avoids the costly hash table lookup to map the
page identifier to a page and replaces it with a single branch and
a pointer chase for hot pages. Thus, lowering the overhead of the
buffer manager indirection and making it more competitive with
the architectures that do not require this indirection.

Overall, the experiment shows that it is possible to leverage the
system’s DRAM to increase the throughput by deploying a buffer
manager. It also shows that it is necessary to specifically optimize
buffer managers for NVM to achieve good performance on these
new systems.

5.4.2 Overhead Analysis. On the other side, the proposed opti-
mizations also have overheads associated with them. To show these
CPU overheads, we measure YCSB-SCAN using a fill factor of 100%.
We start with our base line, the “Basic NVM Buffer Manager” in the
first row, and cumulatively add our optimizations showing their
throughput relative to the baseline:

Small Scan
(range = 100)

Full Scan
(range = |table|)

Basic NVM BM (100%) 50 000 scans/s 0.34 scans/s
+ Cache-Line-Grained 104.2 % 91.3 %
+ Mini Pages 93.1 % 90.8 %
+ Pointer Swizzling 93.8 % 90.9 %

While the base line implementation loads each page completely
during the scan, the cache-line-grained one loads each tuple individ-
ually. Due to the perfect fill rate of leaf pages, almost no loads are
avoided when all tuples on a page are needed. But, for small scans,
cache-line-grained loading still benefits, as only around 3 pages
(50 tuples) are touched and the pages on the edges of the range are
not read completely. In the case of the full table scan, each page is
loaded completely and the tracking of individual cache lines has
no benefit and thus reduces the throughput.

The use ofmini pages is almost never beneficial for scans because
due to the large YCSB tuples, the mini pages are promoted as soon
as more than 1 tuple is accessed. This happens frequently in both
cases, therefore, the system suffers in throughput.

Lastly, the use of pointer swizzling has little effect on the perfor-
mance of scans, as it is only used for finding the starting point of
the scan. The only difference is an additional branch when fixing
and unfixing a page during the scan and the increased memory con-
sumption (16 byte of additional data in the buffer frames header).

This experiment shows that the proposed techniques incur amax-
imum overhead of around 10%. Note, however, that this overhead
can trivially be avoided using a hinting mechanism that selectively
disables cache-line-grained and mini pages for full table scans.

5.5 Hybrid Structures
Using only NVM can result in sub-optimal performance due to its
fairly high latency. Therefore, some NVM-optimized data structures
incorporate DRAM into their design. One recent proposal of a
hybrid data structure is the FPTree [39]. It is a B+-Tree that places
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Figure 11: Hybrid DRAM-NVM Systems – Uniformly dis-
tributed lookup keys in tree with 100M 8 byte keys values pairs.

its leaf nodes in NVM and its inner nodes in DRAM, thus gaining
fast lookups (as inner node traversal is fast due to low DRAM
latencies) and still being durable (as leaf nodes are in NVM and can
be used to reconstruct inner nodes upon a restart).

In the experiment shown in Figure 11, we compare our approach
with a reimplementation of the FPTree. For a fair comparison, we
use the same experimental setup as the original FPTree paper:
Uniformly-distributed point lookups in a single tree with 8 byte
integer keys and values. As in the paper, the FPTree is configured to
use 4096 entries in inner pages (64 kB) and 56 entries in leaf pages
(960 B). Our tree uses a page size of 16 kB for all nodes (around
1000 entires). We use 100M tuples, resulting in a tree size of roughly
2.5GB in both systems. The horizontal axis depicts the percentage
of pages that fit into DRAM for the buffer-managed systems.

The results show that our system ( ) can only outperform the
FPTree ( ) when 100 % of the data fits into the DRAM cache. This
is caused by a different leaf node layout in the trees: While our
leaves use a sorted array of keys and binary search, the FPTree uses
a hash-based leaf node layout (“fingerprints”). For point lookups,
this layout allows the FPTree to reduce the number of NVM accesses
in leaf nodes (from around 8 down to 2).

However, our proposed three-tier architecture is agnostic to
the leaf node design. Therefore, we can optimize our leaves for
point lookups by implementing a hashing structure (based on open
addressing). The resulting system ( ) remains competitive with
the FPTree, even with lower DRAM cache sizes. While a hashing
layout performs well for point lookups, it introduces overheads for
scans (the nodes need to be sorted just in time) and lower bound
queries (nodes need to be scanned completely).

The most important advantage of a buffer-managed approach re-
garding performance is that it is able to adapt to skewed workloads.
In this experiment (Figure 11), we measured a uniformly-distributed
access pattern, which is the worst case for caching. When using
a Zipf distribution (z = 1), the buffer-managed system is able to
cache larger portions of the data with limited DRAM. This achieves
a 30 % higher throughput at 50 % DRAM and only slightly drops
beneath the FPTree line at 10 % DRAM.

5.6 Impact of NVM Characteristics
As of today, NVM is not commercially available as a byte address-
able storage device. Therefore, there is still uncertainty about the
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Figure 12: NVM Latency – The impact of varying NVM latencies
on the YCSB-RO performance (YCSB with 10GB of data, read only,
2 GB DRAM, and 10GB NVM).

exact characteristics of the hardware. In this section, we evaluate
how the NVM latency and capacity impact the individual engines.

5.6.1 NMV Latency. We first investigate how the three systems
perform under various NVM latencies. Our test platform allows us
to vary the latency between 165 ns to 1800 ns. We use the YCSB-RO
workload to determine in which areas the benefit of a buffer man-
ager outweigh the incurred overheads. The data size is 10GB, the
NVM capacity is 10GB, and the DRAM capacity is 2 GB. The results
are shown in Figure 12. The vertical axis shows the throughput,
while the horizontal one depicts the various NVM latencies.

At the lowest possible latency (around 165 ns), the NVM Di-
rect system ( ) is slightly faster than our NVM optimized buffer
manager ( ). At this point, the DRAM latency advantage is too
marginal for a buffer manager to be beneficial. With increasing
NVM latency, all systems become slower, but the buffer-managed
ones are not as much impacted by the latency increase because they
use the constantly fast DRAM as a cache. The NVM Direct system,
on the other hand, loads all its data from the increasingly slow
NVM. Starting at a latency of around 300 ns, the buffer manager
outperforms the NVM Direct system.

The Basic NVM BM ( ) also decreases in performance with
an increasing NVM latency. The slope of the curve suggests that
for even higher latencies, this non-optimized approach would also
outperform the NVM Direct system. This is because the fast DRAM
cache becomes more valuable as the latency difference between
NVM and DRAM increases.

5.6.2 NVMCapacity. Besides latency, the exact capacity of NVM
is another unknown parameter. In this experiment, we look at the
ratio between the capacities of DRAM and NVM. The results are
shown in Figure 13. The NVM capacity is fixed at 10GB. The DRAM
capacity is increased from 100MB up to 10GB (horizontal axis).
Consequently, a value of 20 % implies a DRAM capacity of 2 GB.

The NVM Direct engine ( ) is not impacted by the changing
ratio between NVM and DRAM, as it is not using DRAM. The
other two engines benefit from more DRAM. The Basic NVM BM
( ), however, requires a lot more DRAM (around 80% of NVM)
to outperform the NVM Direct engine. The 3 Tier BM ( ), on
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Figure 13: DRAM Buffer Size – YCSB-RO performance for vary-
ing amounts of DRAM and a fixed NVM capacity (YCSB with 10GB
of data, read only and 10GB NVM).

the other hand, outperforms the NVM Direct engine very early on
(around 7%). In addition, it is worth noting that starting at around
85 %, the 3 Tier BM does not require any NVM accesses anymore
due to the mini pages. Thus, from this point on, the performance
remains constant.

6 RELATEDWORK
NVM will likely trigger a drastic redesign of existing database
systems. In this section, we first analyze the state of the art for
integrating NVM into database systems at the storage layer before
discussing other aspects.

The SOFORT database engine [36, 40] proposes a copy-on-write
architecture for NVM. All primary data is placed and modified
directly in NVM, thus eliminating the need to load it into main
memory after a restart. This way, SOFORT is able to achieve an
almost instantaneous restart and can resume working at a pre-
shutdown throughput instantly. The placement of secondary data,
like indexes, can be considered a tuning parameter: Placing sec-
ondary data in main memory allows the user to increase system
performance due to the lower latencies, but it also increases the
restart time, as the data needs to be reconstructed.

For systems that modify primary data directly in NVM, one
interesting question is the endurance of this storage technology.
NVM has a limited endurance [35], i.e., a given NVM cell will fail
after a certain number of write operations. Therefore, Arulraj et
al. [4] compare three generic approaches for data management on
an NVM-only architecture: in-place updates, copy-on-write and
log-structured (LSM) system. Their experiments suggest that an
in-place update architecture is usually best, as it delivers good
throughput while minimizing the wear on the NVM hardware. This
is not a coincidence, as these two goals (maximizing endurance
and throughput) are in support of each other: By minimizing the
number of accesses to NVM, one also improves performance, due
to the, compared to DRAM, relatively high NVM latency.

FOEDUS [25] tries to take advantage of this finding: Modify-
ing data directly on NVM has the advantage of fast restart times,
but it suffers from a higher access latency, leaves the available
DRAM unused, and wears out the NVM. FOEDUS therefore uses a



two-layered approach: data can reside either on NVM or DRAM.
The idea is similar to classic disk-based systems: The memory is
divided into fixed-size pages, which are loaded from NVM into a
DRAM-resident buffer pool for read and write operations. In order
to update the persistent state on NVM, FOEDUS periodically runs
an asynchronous process that updates the NVM-resident snapshot
using the databases log.

The SAP HANA in-memory database system integrates NVM
by utilizing its “delta” and “main” storage separation [2]. The im-
mutable and compressed bulk of the data (“main”) is stored on
NVM, while the updatable part (“delta”), which contains recent
changes, remains in main memory. This simple approach nicely
fits HANA’s architecture, but is not applicable to most database
systems. Another specific way of exploiting NVM is to use it as a
cache for LSM-based storage [30].

Microsoft Siberia [15] is an approach for extending the capacity
of main-memory database systems. By logging tuple accesses [31],
infrequently-accessed tuples are identified and eventually migrated
to “cold” storage [15] (e.g., SSD). This high-level concept could
also be used to add support for NVM-based cold storage for main-
memory systems.

There are also proposals to integrate persistency into NVM-
resident data structures. However, performing in-place updates
on NVM requires customized data structures to avoid data cor-
ruption [9]. Multiple NVM-specialized data structures, including
CDDS Tree [43], HiKv [46], NV-Tree [47], FPTree [39], WORT [26],
wBTree [10], and BzTree [3], have been proposed. These data struc-
tures optimize the node layout for NVM and explicitly manage
persistency using appropriate cache write back instructions. In our
design, in contrast, the data structure design is largely transpar-
ent to the storage engine (except for the requirement of fixed-size
pages). Furthermore, since the storage engine takes care of persis-
tency, write back instructions are inserted automatically.

In contrast to the approaches discussed above, we propose trans-
parently integrating NVM into the memory hierarchy. While some
systems use NVM mostly as a means to achieve durability or to
extend the main memory capacity, in our approach, NVM is an
integral part: We leverage not only the persistency but also the
byte addressability by loading individual cache lines from NVM
into DRAM. This way, we can deploy variable-size pages, which
allow us to keep hot tuples in DRAM instead of hot pages.

Our three-layer architecture unites DRAM, NVM, and SSD into
one transparent memory, thus enabling workloads that far exceed
the capabilities ofmain-memory databases.We are, to the best of our
knowledge, the first to study memory management in a database
context for DRAM, NVM, and SSDs. Three-layer architectures have
already been investigated [8, 12, 23, 32, 33] for different storage
layers (namely: DRAM, SSD, HDD). However, the vastly different
properties of NVM (low latency and byte addressability) compared
to traditional durable storage technologies (SSD and HDD) requires
a drastically different architecture. For instance, when loading data
from SSD, it has to be done in a page-grained fashion. This is neither
required nor the most efficient way of dealing with NVM.

While this paper focuses on storage, NVM also poses challenges
and opportunities for other aspects, for example, for testing [37],

memory allocation [38], and query processing [44]. Another compo-
nent affected by NVM is logging/recovery [5, 16, 22, 36, 45]. Write-
behind logging [5], for example, is a recovery protocol specifically
designed for multi-version databases that use NVM as primary
storage. On commit, all newly-created changes of a transaction
(versions) are persisted—instead of only persisting the traditional
write-ahead log. While our current implementation uses write-
ahead-logging and single-version storage, it would also be possible
to combine our storage engine with write-behind logging. We defer
evaluating different logging and recovery schemes to future work.

The pmem.io library [1] is the de facto standard for managing
NVM. It offers various abstraction levels, from low-level synchro-
nization utilities (libpmem) to full-fledged transactional support
(libpmemobj). Like all NVM-optimized database systems, we use the
low-level primitives in order to have full control over persistency.

7 CONCLUSIONS
NVM will have a major impact on current hardware and software
systems. We evaluated three approaches for integrating NVM into
the storage layer of a database system: One that works directly on
NVM, a FOEDUS-style buffer manager based on fixed-size pages,
and our novel cache-line optimized storage engine. We found that
by taking the byte addressability into account, it becomes possible
to outperform the other two approaches while supporting large
data sets on SSD as well.

This result is achieved using a number of techniques. While
a traditional buffer manager loads entire pages, we use NVM’s
byte-addressability to load individual cache lines instead, reducing
the transferred memory between DRAM and NVM enormously.
Enabled by the cache-line-grained pages, we introduce mini pages,
which store only a few cache lines but also use less memory. These
pages use the limited DRAM capacity more efficiently. We also
optimized our buffer manager for in-memory and in-non-volatile-
memory workloads by using pointer swizzling. This enables us
to be competitive with in-memory DBMSs and systems working
directly on NVM. In summary, we ended up with a system that
achieved a performance close to that of main-memory database
systems if the workload fits into DRAM. At the same time, our
system performs better than NVM-only systems if the workload
fits into NVM and similar to disk-based performance for even larger
workloads.

In isolation, each of these techniques is either well-known or
fairly simple. The novelty comes from combining these ideas into
a coherent and effective system design. We argue that conceptual
simplicity is a major advantage, or in the words of Jim Gray:

“Don’t be fooled by the many books on complexity or by the many
complex and arcane algorithms you find in this book or elsewhere.
Although there are no textbooks on simplicity, simple systems work and
complex don’t.” [19]
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A APPENDIX
A.1 Multi Threading
In this paper, we compared 5 radically different storage system de-
signs. To keep the implementation effort reasonable and the compar-
ison fair, all implementations and experiments are single-threaded.
However, given current hardware trends, any modern storage en-
gine should efficiently support multi-threading. The FOEDUS [25]
and LeanStore [27] projects have shown that page-based storage en-
gines can efficiently be synchronized for modern multi-core CPUs.
The two key techniques for achieving this are version-based latches
that allow readers to proceed optimistically without physically ac-
quiring latches [29], and epoch-based memory reclamation [42].
Another alternative for implementing synchronization is hardware
transactional memory, which has been shown to be effective at syn-
chronizing B-trees [24, 28, 39]. In the following, we discuss some
additional synchronization aspects of our design. We assume the
use of per-page, version-based latches (and do not rely on hardware
transactional memory).

Cache-line-grained accesses may cause a read to physically
change a page if the requested page is not yet resident. There-
fore, such “cache line faults” make it necessary to upgrade the page
latch to exclusive mode. Note that this only affects a single (leaf)
page and is therefore unlikely to cause contention. Furthermore,
frequently-accessed (hot) pages will generally be fully resident and
will therefore not cause latch upgrades for read accesses. Another
aspect that requires some care is the promotion of mini pages to a
full pages, which becomes necessary once more than 16 cache lines
have been accessed. Promotion is done by exclusively latching the
mini page (source) and the full page (destination) before copying
the data.

In traditional (textbook-style) buffer managers, the mapping ta-
ble itself often becomes a synchronization bottleneck because all
page accesses have to touch this data structure. In our design, in
contrast, all frequently accessed pages will be swizzled. Accessing
a hot page therefore does not require accessing the mapping ta-
ble. Finally, regarding the replacement strategies, to achieve good
scalability, decentralized algorithms like Second Chance should be
preferred over centralized ones like LRU.

A.2 Scaling the Data Size
In this section, we evaluate the performance of the proposed system
under larger workloads. The results of this experiment are shown
in Figure 14. The vertical axis shows the throughput in million
transactions per second. On the horizontal axis, we scale up the
number of tuples and the capacity of the database proportionally.
The axis shows the data size, which is the required space for the
tuples once loaded into a B-tree. The DRAM capacity is set to a
fifth of that of NVM.

Starting at the bottom, the Basic NVM BM ( ) is dominated by
the cost of reading entire pages from NVM. Therefore, the through-
put is barely impacted by the increasing number of tuples or the
larger control structures in the database.

The NVM Direct system ( ) and the 3 Tier BM ( ) both drop
in performance as the workload size is increased. But this decrease
is a lot more severe for the NVM Direct system (almost a factor of
two). This can be explained by the decreasing ratio of hot tuples
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Figure 14: Large Workloads – YCSB-RO point lookup perfor-
mance for large workload sizes. The NVM capacity is configured
to match the data size, and the DRAM capacity is set to a fifth of
that of NVM.
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Figure 15: Update Performance – YCSB-R/W performance with
an increasing amount of write transactions (YCSB with 10GB of
data, 2 GB DRAM, and 10GB NVM).

fitting into the L3 cache. Therefore, it is important to measure larger
workloads when working with NVM, as the L3 cache can speed up
small ones and hide the difference between DRAM and NVM.

Finally, there is a bump in the performance of the 3 Tier BM.
Before it starts to drop at around 30GB, the performance increases.
This is an artifact of the Zipf distribution generator we used. The
ratio of accessed pages that fit into the buffer pool increases up to
30GB.

A.3 Updates
We now analyze the impact of writes. To do this, we set up an ex-
periment where we run YCSB with an increasing amount of update
transactions. The results are shown in Figure 15. The horizontal
axis shows the percentage of update transactions, while the ver-
tical one depicts the throughput. We, again, measured the three
competing systems: Our NVM-optimized buffer manager ( ), the
system working directly on NVM ( ) and a basic buffer manager



for NVM ( ). The systems are configured to use 2GB of DRAM
and 10GB of NVM. The size of the workload is 10GB, just fitting
into NVM.

With an increasing amount of write transactions, all systems
degrade in performance, because more log entries and more tuple
data needs to be written back to NVM. Compared to the read-only
setting, the throughput of the Basic NVM BM is only half as high
in the write-only case. The other two systems, NVM Direct and
our NVM-optimized buffer manager, still outperform the Basic
NVM BM in every setting, but also drop by a similar factor in
performance. The experiment shows that our system is as stable
as the other systems under a write-heavy workload. In addition,
consider that the figure shows a rather unfavorable configuration.
Our system would benefit from a change of the workload size in
either direction: On the one hand, with a smaller workload, the
ratio of tuples fitting into DRAM becomes higher and therefore, the
buffer manager faster. On the other hand, with a larger workload,
the NVM direct system could not run at all because it would not fit
into NVM any more.

A.4 Endurance and Wear
In the previous experiments, our system has demonstrated a large
performance benefit for workloads fitting in DRAM and has allowed
for workloads larger than the capacity of NVM.We also showed that
with write-heavy workloads, the performance remains competitive.
In this section, we show another important advantage of using the
buffer manager instead of working directly on NVM.

NVM has a limited endurance and therefore wears out and even-
tually fails. By using a buffer manager, the life-time of NVM can be
greatly increased. To back up this hypothesis, we added counters
that measure the number of writes to each individual NVM cache
line. The results are shown in Figure 16.

The vertical axis shows the number of writes for each cache line.
The cache lines are ordered by the number of writes and displayed
on the horizontal axis. Both axes are logarithmic to better visualize
the data. In the experiment, we compare a write only run of YCSB
with 10 million transactions. As in the previous experiments, the
data size is 10GB, the NVM capacity 10GB and the capacity of
DRAM 2GB.

The figure shows two advantages of our proposed system ( )
compared to the NVM Direct system ( ). First, the total number
of writes to NVM is reduced down to 4.7M from 25M. Second, and
even more importantly, these write operations are spread out a lot
more evenly. While the NVM Direct system has several cache lines
that are written to 60 K times, the cache lines written to most with
the buffer-managed approach are written to 3 times. The reason for
this can easily be explained: The buffer manager caches pages that
are frequently accessed in DRAM to increase performance. As a
nice side effect, this also prevents many writes to these cache lines
in NVM.

A.5 Restart Time
One major advantage of NVM is fast recovery and restart time. In
our implementation, a write ahead log (WAL) is written to NVM.
The creation of a WAL has two advantages: First, high availability
is extremely important in a production environment and usually
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Figure 16: NVM Wear – The sorted number of writes for each
cache line (YCSB-R/W (x = 100) with 10GB of data, 2 GB DRAM,
and 10GB NVM).
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Figure 17: Restart Time – Ramp-up phase for uniformly dis-
tributed lookups with 100M 8 byte key/8 byte value pairs. The en-
tire workload fits into the buffer pool.

achieved with hot standbys in the event the primary system goes
down. To keep the standby system up to date, it is necessary to
supply it with a stream of changes from the primary. Second, (in
comparison with hybrid and NVM-only systems) a write ahead log
bundles many small writes into one large sequential write at the
end of the transaction. This is beneficial considering the limited
endurance and asymmetric write latency of NVM.

In the experiment shown in Figure 17, we compare the through-
put immediately after a clean restart (until peak throughput is
reached). In the “NVM direct” system ( ), the durable storage
and the working memory are the same (both NVM). Therefore,
these systems achieve a very fast, almost instantaneous, restart,
because nothing has to be loaded explicitly (except for warming
the CPU caches). FPTree ( ), in contrast, must reconstruct its
inner pages by scanning all leaf nodes, which takes about 5 seconds
in our experiment. Once the reconstruction is completed, FPTree
reaches pre-restart throughput almost instantaneously. Traditional
buffer managed systems ( ) can begin processing transactions
immediately after a restart, but they suffer in performance due to



a cold buffer cache and high SSD latencies. The basic NVM buffer
manager ( ) is similar, but recovers much faster, as it can fill its
buffer cache from NVM instead of SSD. Our three-tier architecture
( ) needs to perform the reconstruction of the combined page
table (cf. Section 4.3), which is quite fast, however (around 200ms).
It reaches peak performance slightly more slowly than the basic
NVM BM due to mini pages, which only get lazily promoted.

A.6 Debugging Cache-Line-Grained Access
To easily detect usage failures in mini pages, we developed a debug-
ging mode that checks both reads and writes. For reads, all cache
lines within the page are marked as uninitialized memory when it
is fixed. A memory checking tool (e.g., valgrind) can then be used
to detect invalid reads. To detect invalid writes, the page initializes
all cache lines to a specific (“magic”) sequence. When it is unfixed,
it validates that only those cache lines that are marked as dirty have
been changed (false positives are possible but very unlikely).
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