

WEBSTYLEGUIDE

REFERAT I I IA6 (INTERNET)

Email edv.internet@verwaltung.uni-muenchen.de
Servicetelefon 089 / 2180 – 9898
Mo./Di./Do./Fr. 09:00 Uhr bis 12:00 Uhr
Di./Do. 14:00 Uhr bis 17:00 Uhr

INSTITUT FÜR SOFTWARE & SYSTEMS ENGINEERING

Universitätsstraße 6a D-86135 Augsburg

Specification-based
and Concolic Testing for Games

Alexander van Renen

Masterarbeit im Elitestudiengang Software Engineering

WEBSTYLEGUIDE

REFERAT I I IA6 (INTERNET)

Email edv.internet@verwaltung.uni-muenchen.de
Servicetelefon 089 / 2180 – 9898
Mo./Di./Do./Fr. 09:00 Uhr bis 12:00 Uhr
Di./Do. 14:00 Uhr bis 17:00 Uhr

INSTITUT FÜR SOFTWARE & SYSTEMS ENGINEERING

Universitätsstraße 6a D-86135 Augsburg

Specification-based
and Concolic Testing for Games

Matrikelnummer: 1280500
Beginn der Arbeit: 4. März 2015
Abgabe der Arbeit: 31. August 2015
Erstgutachter: Prof. Dr. Alexander Knapp
Zweitgutachter: Prof. Dr. Bernhard Bauer
Betreuer: Prof. Dr. Alexander Knapp

I assure the single handed composition of this master’s thesis only supported by declared
resources.

Hiermit versichere ich, dass ich diese Masterarbeit selbständig verfasst habe. Ich habe dazu
keine anderen als die angegebenen Quellen und Hilfsmittel verwendet.

Augsburg, den 13. Dezember 2015 Alexander van Renen

Abstract

We compare and evaluate three tools for automated test input generation for Java pro-
grams. With manual software testing being a labor intense process, these tools can signi-
ficantly reduce the amount of work for writing tests. We present two specification-based
tools, Korat and TestEra, and one concolic tool, JCute. After explaining each tool indi-
vidually, an analysis of their performance and usability for different testing scenarios is
given. A key contribution of this work lies in the improvements made to Korat. By fixing
several bugs and rewriting parts of its algorithm, we made it possible to use Korat for a
wider range of projects. Due to lacking features and usability issues in the other evaluated
tools, Korat appears to be the most favorable tool at the moment: Our experiments show
that Korat is able to generate all possible instances of a data-structure up to a moderate
size. For binary trees it is possible to generate all instances with up to 13 nodes in under a
minute: This corresponds to over a million trees.

4

Kurzfassung

Wir vergleichen und bewerten drei Tools zur automatischen Testgenerierung für Java-
Programme. Diese Tools können den arbeitsintensiven Prozess des manuellen Schreibens
von Softwaretests deutlich verbessern. Wir stellen zwei spezifikationbasierte Tools, Korat
und TestEra, und ein concolisches Tool, JCute, vor. Jedes Tool wird zunächst individuell
vorgestellt. Im Anschluss wird ihre Performance und ihre Usability untereinander in ver-
schiedenen Test-Szenarios verglichen. Einer der wichtigsten Beiträge dieser Arbeit besteht
in den Verbesserungen, die an Korat vorgenommen wurden. Durch das Beseitigen eini-
ger Fehler und durch Verbesserungen am Algorithmus ist es nun möglich, Korat für ein
umfangreicheres Anwendungsgebiet zu nutzen. Aufgrund des Fehlens zentraler Features
in den anderen untersuchten Tools scheint Korat derzeit das am besten entwickelte Tool
zu sein: In unseren Experimenten ist zu sehen, dass Korat in der Lage ist, alle möglichen
Instanzen einer Datenstruktur bis zu einer moderaten Größe zu erzeugen. Bei binären Bäu-
me ist es möglich, alle Instanzen mit bis zu 13 Knoten in unter einer Minute zu generieren:
Das sind über eine Million Bäume.

5

Contents

Abstract 4

1 Automated Testing in Software Development 7
1.1 Manual Software Testing . 7
1.2 Specification Based Testing . 10
1.3 Concolic Testing . 14

2 Korat 18
2.1 Description . 18
2.2 Algorithm . 23
2.3 Modifications . 37

3 TestEra 51
3.1 Description . 51
3.2 Transformations . 55
3.3 Limitations . 59

4 JCute 63
4.1 Description . 63
4.2 Algorithm . 69

5 Experiments and Evaluation 77
5.1 Environment . 77
5.2 Sample Project: Chelone . 78
5.3 Experiment: Expression Tree Serialization . 78
5.4 Experiment: Collision Detection . 83
5.5 Experiment: Item Bonus Calculation . 87
5.6 Experiment: Input Queue Synchronization 88

6 Conclusions and Future Work 91
6.1 Korat . 91
6.2 TestEra . 93
6.3 JCute . 94
6.4 Overall . 95

6

1 Automated Testing in Software
Development

Testing is a key component of software development. With formal verification techniques
mostly being used in high risk environments, testing remains the primary way for assuring
the quality of a product in most companies. Next to functional correctness, testing can also
serve as a documentation, give confidence in software components and help with keeping
the code base modular [36, 27].

Nevertheless, developers often see testing as a burden, as it slows down their progress.
This is undoubtedly true for the immediate presence: It does take time and therefore
money to write tests. Even so this effort is necessary for the product to succeed, the amount
of required manual work can be significantly reduced with automated testing [10].

In addition, writing tests manually is not only a labor intense process, in general it is
very difficult (if not impossible) to test all possible inputs. Even testing all inputs up to a
given size is difficult, as the developer has to write down all inputs manually or invent an
algorithm to iterate over possible inputs. One way to solve this problem for some kinds of
tests is to use specification-based or concolic testing.

1.1 Manual Software Testing

As an example, consider an algorithm for traversing a binary tree. These kinds of algo-
rithms are often implemented using a visitor pattern [18]. They are used to walk through
all nodes of a tree in a specific order. They can be used when working with syntax trees
to analyze or interpret the language. Another use case is a simple Java program, which
prints out or inspects the content of a tree by iterating over each node.

Next to reading a binary tree, another example is to modify the tree. Depending on the
tree, these algorithms can be quite difficult. An interesting candidate here is the red black
tree [20]1. Its good runtime characteristics makes it a prime candidate for the implementa-
tion of sorted sets and maps in libraries. For example in the JDK, a red black tree is used to
implement the TreeMap [4] and TreeSet [5] data-structures. They are also often used in
the kernel of operating systems and in other standard libraries like C++ or C#. This wide
usage makes it extremely important that the operations (like insert, remove or iterate) are
well tested.

1Originally known as symmetric binary B-Tree [9].

7

1 Automated Testing in Software Development

1 class TreeSetTests {
2 @Test
3 public void testTreeSetInsert1() {
4 // Generate a tree
5 TreeSet<Integer> treeSet = new TreeSet<>();
6 treeSet.add(0);
7 treeSet.add(1);
8 treeSet.add(2);
9 treeSet.add(3);

10

11 // Pre condition
12 assertTrue(treeSet.contains(2));
13

14 // Test
15 treeSet.remove(2);
16

17 // Post condition
18 assertFalse(treeSet.contains(2));
19 }
20

21 // ... more tests
22 }

Listing 1.1: A test for remove function in TreeSet.

Section 1.1 shows a typical test for a remove function on a tree structure: A developer
first has to write code, which creates a tree object with the respective properties (line 5-9).
After that the code has to invoke the algorithm to be tested on the tree (line 15) and then
verify the result (line 18).

Even though this code seems straightforward, there are a number of problems with this
attempt:

• Modifiability
It is not clear how the tree looks like and which kind of node is being removed in
the test case. A good test suite for a remove function should at least exercise more
structurally different node types, for example: A root node, a leaf node, a node with
one child and a node with two children should be removed from the tree in order
to increase the coverage of the remove method. This becomes difficult, as the tester
does not know how the tree looks like after simply inserting nodes.

To solve this problem, the tester needs to know the structure of the created tree. With
that it is possible to remove a node of a specific structural type. This could be done
in two ways: First, one could create the tree structure directly by setting the internal
fields, or second, the insert method calls could be ordered in such a way that the
resulting tree has the wanted structure.

Either approach gives the tester knowledge of the underlying tree structure and al-
lows him to remove a specific node. Thus all structurally different remove operations

8

1 Automated Testing in Software Development

(0) (1) (2) (3) (4)

Figure 1.1: All possible binary trees with exactly 3 nodes.

can be tested. But both solutions have the same problem: They make the tests depen-
dent on the internal implementation of the tree. Any changes there would break the
tests or lead to a test suite which still runs cleanly, but does not validate the removal
of certain node types.

• Scalability
Depending on the tree, there are usually more interesting cases for the remove func-
tion than the earlier mentioned structurally different four node types. In the red
black tree example, it could be helpful to generate trees which need different rota-
tions to re-balance the tree during the remove operation. The function:

f(n) =

n∑
i=0

(2n)!

(n+ 1)!n!

describes the number of binary trees with up to n nodes. The formula is derived in
section 2.2.1.1. It shows that it is practically impossible to manually write down all
test cases for the remove function for all binary trees with a bigger than tiny node
size. With only up to 5 nodes there are already 65 possible trees. Writing down tests
for 65 different trees generates huge amounts of test code and is very time consum-
ing.

• Completeness
Besides the huge number of possible binary trees for a larger node size, it is difficult
to verify that all 65 test cases generate different trees. Figure 1.1 shows all trees with
exactly 3 nodes. Developers are often under a lot of pressure to create new features.
With time being limited, developers often have to skip some of the cases. This leads
to an incomplete test suite even for the small tree size.

A solution to these problems seems rather straightforward: An algorithm which gen-
erates binary trees. The problem is that these kinds of algorithms are not trivial to write.

9

1 Automated Testing in Software Development

Therefore, one needs to test the generation algorithm, in order to check that all possible
trees are generated. In addition, the tester needs to implement such an algorithm for every
data-structure which ought to be tested.

Therefore, one should not try to reinvent the wheel for every data-structure by creating
custom generators, but rather use a tool which is able to generate any data-structure up
to a given size using a specification. This would allow the developer to test the algorithm
for all possible inputs, without the manual labor of creating them or an algorithm for
generating them every time.

This is exactly what tools for specification based testing help the developer with: Given
a formal specification for the input, the tool is able to generate all instances which are
conform with the specification.

1.2 Specification Based Testing

Next to manual software testing, there are several automated ways to test software. Using
automated tools can significantly improve the productivity when testing software. This
section introduces one of these techniques: Specification Based Testing.

Specification based testing is a form of functional testing [10, 11], which is also known
as black box testing. The idea is to look at the program or function which is to be tested as
a black box: The tester or the testing tool is only interested in the input and output. How
the function works internally is irrelevant as long as the observable output is correct.

This stands in contrast to structural testing (or white box testing), where the tester or the
testing tool uses the implementation of the function under test to derive test cases.

1.2.1 On Specifications

The goal of specification based testing is to compare the specification of a function2 with
the behavior of its concrete implementation. Any differences imply a failure, either in the
specification or the implementation or both. The absence of failures shows the compliance
of the implementation with the specification for the tested subset of the input domain.
However, it does not, as always in testing, prove that the function is correct. Only exam-
ining the complete input domain would prove that the function is fully conform with the
specification.

As already hinted, a specification is not necessarily perfect, either. It is simply a model
of the desired system in a different format or language written by another (or the same)
developer. Therefore, it may also be incorrect or incomplete. In addition, there is a chance
to over- or under-specify the system. And even when assuming a correct and complete
specification, still it may not be what the customer or system actually needs. All speci-
fication based testing can do is to show the compliance of the implementation with the

2From now on we will only refer to single functions. The same concepts can be applied to testing programs,
components, modules and so on.

10

1 Automated Testing in Software Development

1 abstract class TreeSet<T> {
2

3 /**
4 * Removes the specified element from this set if it is present.
5 * More formally, removes an element {@code e} such that
6 * <tt>(o==null ? e==null : o.equals(e))</tt>,
7 * if this set contains such an element. Returns {@code true} if
8 * this set contained the element (or equivalently, if this set
9 * changed as a result of the call). (This set will not contain

10 * the element once the call returns.)
11 *
12 * @param o object to be removed from this set, if present
13 * @return {@code true} if this set contained the specified element
14 */
15 public boolean remove(Object o) {
16 // ...
17 }
18 }

Listing 1.2: Informal method specification in Oracle’s JDK 1.7.

specification.
There are two different forms of specifications. Automated tools require the second one:

• Informal Specification

This form of specification includes anything reaching from contracts or emails to user
requirements or meeting notes. For single functions the specification can also consist
in the documentation or it can be implied by the function name in combination with
the coding standard of the project.

An informal specification is usually less precise and complete than a formal specifi-
cation. It is written in natural language, thus no special skills are required to under-
stand it, neither by the developer nor the customers.

As an example consider the specification in section 1.2.1. It is taken directly3 from
the source code in Oracle’s JDK 1.7. During development, most programmers would
look here to learn what the method does.

It is written using JavaDoc [32], which is widely used throughout the Java commu-
nity. As shown in the example it is directly inserted into the source code, but it can
be automatically extracted and transformed into a documentation4. JavaDoc is not
a specification language, but only a formating language. The actual specification is
still written in natural language.

Besides not being readable by a computer, there are two smaller problems with this
specific specification (section 1.2.1). First, parts of it are difficult to read (line 6) when

3Line breaks are modified and @throws clauses are removed.
4For example, the documentation for Oracle’s JDK is generated using JavaDoc [5, 4].

11

1 Automated Testing in Software Development

1 abstract class TreeSet<T> {
2

3 /*@
4 @ ensures \result == \old(contains(o))
5 @ && !contains(o);
6 @*/
7 public boolean remove(Object o) {
8 // ...
9 }

10 }

Listing 1.3: Formal method specification for remove method using JML.

looking at it without a tool to parse the HTML codes. Second, it is redundant, be-
cause the return value is described twice (line 7-8 and line 13).

• Formal Specification

These are written in a formal language like Z specifications [21, 42], JML [31, 30, 13]
or OCL [43]. They are often expressed as pre- and post-conditions and invariants.
Therefore, they can be processed, understood and worked with by a computer. This
makes it possible to derive certain test cases from the specification automatically.
Therefore, it’s possible for a tool to check the compliance of the implementation and
the specification. In turn, it is less intuitive to write and harder to understand for
people without training in formal languages (in general especially customers).

As an example, consider the specification in section 1.2.1. It is written in the Java
Modeling Language (JML). In the first line of the specification (line 4) the ensure
keyword tells JML that we are defining a postcondition. It can be read like this: “the
method ensures that (1) its result is equal to the result of the call to contains(o)
before its execution and (2) that after its execution the result of contains(o) is
false”.

One advantage, compared to the informal specification, is its size: it only takes up 2
lines instead of the 9 lines needed for the informal specification in section 1.2.1. In
addition, it is readable by an automated tool. For example, this specification could
be directly used by Korat. The drawback is that it can not easily be understood by a
developer unfamiliar with JML.

1.2.2 Generating Test Cases from Specification

This thesis focuses on formal specifications. Tools like Korat [12] or TestEra [35] can use a
formal specification of a function to automatically generate valid inputs for the function.
Usually they can not generate all possible inputs, as the input spaces of a function tend to
be extremely large5. Hence, the tester has to define bounds on the input space. Figure 1.2

5Consider a function working on a 64 bit integer. There are already 264 = 1.8e19 possible inputs.

12

1 Automated Testing in Software Development

Testing Tool Input

FunctionSpecificationBounds

OutputTest Oracle

usesuses

uses

generates

handed to

produces

validates

Figure 1.2: Automated specification based testing tools.

illustrates this process.
Using the Specification and the Bounds, the Testing Tool is able to generate a valid Input

for the function under test. The generated Input is then passed to the Function under test.
Its Output is then validated by the Test Oracle using the Specification again. The process is
repeated for as long as the Testing Tool is able to find more valid inputs within the specified
Bounds.

The usage of an automated tool to generate the input for the test function takes care of
some of the problems with manual testing in section 1.1:

• Modifiability
The tree is no longer constructed via method calls to the tree interface. It is usually
(in case of Korat and TestEra) created by assigning the internal fields of the class
directly. These tools guarantee that all possible instances are created. Therefore, the
developer’s tests run on all tree instances (within the bounds). Thus, all structurally
different node types are covered.

Just like when writing tests manually, this creates a dependency on the internal struc-
ture of the data-structure under test. In a specification, which is detailed enough to
describe the structure to be generated, all internal fields and references of the object
are specified. Hence, any change there will cause a problem.

• Scalability
Using the automated tool, the developer does not have to write code for every tree
instance anymore. After writing a single specification, one can generate as many

13

1 Automated Testing in Software Development

trees as one wants. The only limitation is the runtime, as generating thousands of
trees takes some time.

In practice our experiments (section 5.3) have shown that it is possible to create all
trees with up to 11 nodes (82500 trees) in about 3.3 seconds. In order to keep the
test suite of a project fast, one could easily make this value configurable. This way,
developers could run a fast test with only 5 nodes (65 trees) on their development
machines. In addition, there would be a larger test suite with 10 or 11 nodes on their
continuous integration server, which runs only every night.

• Completeness
Tools like Korat and TestEra guarantee the exhaustive exploration of the entire search
space. Hence, there is no risk that a developer overlooks certain cases. Using one of
these tools, the development team can be sure that all cases have been tested.

Note: As the number of structures usually grows really fast, one is only able to generate
structures up to a small size. Hence, it might be necessary to write additional tests, which
exercise larger structures. However, our anecdotal experience has shown that most bugs
are already present in relatively small structures and not only in trees with hundreds of
nodes.

1.3 Concolic Testing

Another alternative to manual software testing is concolic testing. The word concolic is
a combination of concrete and symbolic. Similar to specification based testing, concolic
testing aims to improve productivity by automating the labor intense process of manually
generating inputs for test cases.

Concolic testing is a structural (white box) testing method: It does not view the method
under test as a black box with only input and output, but looks at its inner workings. It
analyses the code to gain additional knowledge and thereby improve the test case genera-
tion process.

For any method, the possible paths through the program can be visualized as a control
flow graph. Figure 1.3 shows an example: The program shows an implementation of a
comparison method between two integer values. The method returns -1, 0 or 1 if the first
integer is less than, equal or greater than the second integer. On the right hand side of the
code, the control flow graph is shown. Obviously, there are three different paths through
this method.

The idea of concolic testing is to explore all possible paths, thus covering all possible
outcomes for all conditions in the program. If there are loops or jumps involved, there can
be a large number or even an infinite amount of possible paths. In addition, not all paths
are always possible. Concolic testing aims to cover as many as possible.

To achieve this, a concolic testing tool combines concrete and symbolic testing principles:

14

1 Automated Testing in Software Development

1 int compare(int lhs, int rhs) {
2 if(lhs < rhs) {
3 return -1;
4 } else {
5 if(lhs == rhs)
6 return 0;
7 else
8 return 1;
9 }

10 }

lhs < rhs

ret -1 lhs == rhs

ret 0 ret 1

Figure 1.3: Control flow graph of a simple function.

• Concrete
The method or program under test is simply executed. The code is not analyzed. The
idea is to randomly generate the method’s input parameters, run the program and
hope to trigger a fault. The advantage of this approach is that it can be completely
automated.

One member of this group of tools is JCrasher [16], which does purely random test
input generation. To make this process more efficient, a lot of tools try to guide
the random search by observing the methods behavior. One example is DART [19],
which can be used to test interfaces of data-structures. Starting with a single method
call, it successively chains calls to the interface, trying to find a sequence to cause a
fault.

The main problem of these approaches lies in generating more complex data-
structures. If the method under test expects a data-structure as an input, it first has to
make sure that the generated input is valid, i.e. the invariants of the structure are ful-
filled. The problem with randomly generating these structures is that it becomes very
unlikely to find them. And therefore, even more unlikely to find different ones [38].

• Symbolic
Most of the tools [17, 8] using this approach inspect the code itself. They abstract
a formal model and use a model checker to check certain properties. In Java, these
checks often test whether a null reference is dereferenced, an array is accessed out of
bounds or a certain statement is reachable.

There are two problems with this approach: First, as the tools are working on an ab-
stract of the actual code, not every issue they find is necessarily a problem in the real
program (no soundness). Second, for more complex algorithms, especially involving
pointer arithmetic, it is often too hard to solve the constraints [40].

15

1 Automated Testing in Software Development

1.3.1 The Idea

In concolic testing, the worlds of concrete and symbolic execution are combined: The
method under test is executed multiple times. For the first execution, the input values are
chosen randomly. After that, they are derived from the previous execution. To achieve this,
the concolic testing framework gathers constraints on the input variables at each branch-
ing point of the method. After the method is finished executing, these constraints are con-
juncted. The resulting logical formula describes the characteristics of the input parameters
for this particular path. All inputs satisfying the formula lead to the same path through
the method. For the next iteration, parts of the formula are negated and a constraint solver
is used to find concrete values which satisfy the new formula. The resulting set of input
parameters lead to a different execution path.

In practice, this approach can achieve a high coverage within few iterations. The ad-
vantage, compared to specification-based testing, is that it mostly explores different paths
through the method. Nevertheless, the usage of the constraint solver is still rather slow, as
examined in chapter 5. Using concolic testing, one can avoid some of the problems with
manual testing, which were introduced in section 1.1:

• Modifiability
When asking how concolic testing handles changes on the tested data-structure, one
first has to understand how concolic testing can be used to generate data-structures.
Therefore, recall the previously introduced example in fig. 1.3: A concolic testing tool
can systematically explore the three possible paths through the compare method.
This feature can be used for generating data-structures: One simply generates val-
ues and inserts these into the data-structure via method calls6. The concolic testing
framework will try to explore all different paths through the insert method by choos-
ing different values. Thus, creating structurally different structures. Note that unlike
the generation process in specification based testing, this approach does not guar-
antee the exhaustive exploration of the search space. It is highly dependent on the
insert method.

As an example, consider a binary tree structure for storing integer values. Trees with
4 nodes can easily be generated using the following code snippet:

1 int testBinaryTree(int a, int b, int c, int d) {
2 BinaryTree tree = new BinaryTree();
3 tree.insert(a);
4 tree.insert(b);
5 tree.insert(c);
6 tree.insert(d);
7

8 // Perform tests on the tree
9 }

6This assumes that the data-structure under test offers some kind of method to add values.

16

1 Automated Testing in Software Development

The concolic testing tool tries to explore all different paths through the insertmeth-
ods, thus creating all structurally different trees. In this example, it is assumed that
the testBinaryTree method is called by the concolic testing framework with gen-
erated values.

There is a big advantage of using the interface of the data-structure to generate it: It
is independent of the internal structure and therefore any changes in the implemen-
tation will not cause any problems with the test suite. Only changes in the API of the
data-structure could cause problems, but these kinds of changes are unlikely as they
would also break the production code which is using the data-structure.

• Scalability
As shown for the binary tree example, one can use concolic testing tools for auto-
mated test case input generation. In order for this to work, the data-structure that
is to be tested only has to offer a method which can be used to construct it. This
approach frees the developer from writing all test cases by hand.

Due to the complex nature of constraint solving, it is not possible to generate as many
structures as with specification based tools, like Korat. In practice, we were able to
generate trees with up to 3 nodes (9 tress) in about 6.7 seconds, for more details see
section 5.3.

• Completeness
While the concolic testing tool is able to generate data-structures automatically, it
does not guarantee an exhaustive exploration of all possible instances. Only these,
which can be created by a sequence of constructing method calls, can be generated.
Therefore, some instances could be overlooked.

17

2 Korat

Korat [12, 33] is a Java framework for specification-based testing, which was developed
around 2004 at the MIT Laboratory for Computer Science. It can be used to automatically
generate all non-isomorphic instances of a given data-structure or object graph up to a
specified size.

In order to make this work, the user specifies a so called finitization of the data
structure to be tested. The finitization specifies all objects which should be generated
and how they are connected. Korat uses this information to generate all possible instances
of the data structure. For each one, a Java predicate1 (supplied by the user) is evaluated
to determine the validity of the instance at hand. Not all possible instances of a data
structure are valid, for example they could violate the data structure’s invariants. Each
instance which fulfills the predicate is passed to the user’s test cases.

This system allows the user to easily iterate over all possible instances of a data structure
without missing any. Therefore, all input variations can be tested without the labor intense
task of manually writing down code to generate them. This exhaustive testing strategy
naturally includes all corner cases of the input which could have been overlooked by a
human tester.

In order to minimize the runtime, Korat monitors how the user code is using each gen-
erated instance of the data structure under test. Doing so, Korat is often able to discard
large portions of the search space and thereby optimizes the runtime of the tests.

The specifications can be written in any language as long as the language can be au-
tomatically translated into Java predicates. In all experiments conducted in this thesis,
Java is used to write the predicate method (usually called repOK). The ability to write the
specification in the same language as the actual code has the advantage that it eliminates
the need for programmers to learn new languages and in addition keeps source code files
homogeneous regarding the programming language.

This chapter first gives an example guided explanation of how Korat works and how a
developer can use it in section 2.1. After that the details of Korat’s algorithm are explained
in section 2.2. Lastly, section 2.3 provides a list of all changes made to Korat.

2.1 Description

As previously stated, Korat is able to automatically generate input data for test cases.
These generated inputs can be used to basically execute any method. Each of these gen-

1A predicate is a method with no arguments (except the implicit this reference) returning a boolean

18

2 Korat

1 class BinaryTree {
2 static class Node {
3 Node left;
4 Node right;
5 }
6

7 Node root;
8 }

Listing 2.1: A simple binary tree.

erated inputs is just a normal Java object consisting of primitive and reference fields. The
primitive values for the primitive fields can be generated and the reference fields can ref-
erence other generated objects.

As an example throughout this subsection we will use a binary tree as shown in List-
ing 2.1. The class BinaryTree has a field root, which is a reference to an object of type
Node. In Addition, there is a static inner class which defines a Node. A Node has two child
nodes: left and right. In this section we will show how Korat can be used to generate
all non-isomorphic BinaryTree instances up to a specified size.

In order to make this work, Korat first calls a finitization method. This method
defines the structure of the input: Which objects are involved and how are they connected.
The implied set of elements is called a search space. Korat iterates through this space and
invokes a repOK method on each element. This method checks if the given element is in a
valid state. All valid elements are passed to the test method specified by the user.

In the binary tree example, one could try inserting or removing nodes from the tree.
With Korat generating all possible trees, the insert or remove tests would be able to test
for all node constellations: Nodes with no children, with one child, with two children, the
root and so on.

2.1.1 Finitization

In order to generate test cases, Korat needs to know which objects it should generate and
how they are connected. This information is defined by a finitization object. Korat
will do an exhaustive walk through all elements of the implied search space. As these
search spaces tend to be very large, Korat optimizes the search by pruning invalid and
isomorphic elements (see section 2.2.3 and section 2.2.4).

For each field to be generated by Korat, the user has to assign a FieldDomain via
the set-method of the Finitization object. A FieldDomain defines which values
or references should be assigned to the particular field. For fields with a non-primitive
type, it holds a set of ClassDomains, which all need to be assignable to the class of
the FieldDomain. Each ClassDomain represents one class. This structure allows
for fields with polymorphism by simply adding two different ClassDomains to one
FieldDomain. Korat also allows for FieldDomainswith primitive, array or enum types.

19

2 Korat

1 class BinaryTree {
2 // ...
3

4 static IFinitization finBinaryTree() {
5 IFinitization f;
6 f = FinitizationFactory.create(BinaryTree.class);
7

8 IClassDomain nodeCD = f.createClassDomain(Node.class, 3);
9 IFieldDomain nodeFD = f.createObjSet(nodeCD, true);

10

11 f.set(BinaryTree.class, "root", nodeFD);
12 f.set(Node.class, "left", nodeFD);
13 f.set(Node.class, "right", nodeFD);
14

15 return f;
16 }
17 }

Listing 2.2: Finitization method.

Listing 2.2 defines the Finitization for our BinaryTree example. We start off
by creating a Finitization object (line 6). In order to do this, we need to tell the
FinitizationFactory the class of our test input. An object of this class will always
be passed to the test method and this class needs to define the repOK method. In our ex-
ample we use the BinaryTree class2. After that we create a class domain for the three
Node objects (line 8). This class domain is then wrapped in a field domain (line 9). The
true argument for the createObjSet method tells Korat to include null values in the
field domain.

Having defined all involved objects, we move on to defining their connections: The
Node objects may be used for the root field of the BinaryTree class (line 11) and for the
left and right field of the Node class (line 12 and 13).

2.1.2 The repOK Method

The second ingredient to supply Korat with is the repOK method, which defines con-
straints for the input. This method is either generated from the pre-conditions of the
method under test or it is directly written in Java as a predicate.

In both cases, the method is called for each test input before Korat executes the actual
test method. Its purpose is to check if all objects of the input are in a valid state and
therefore represent a valid input, i.e. satisfy all pre-conditions and invariants. For a valid
input, Korat will run the test method. Otherwise it will continue with the next element in
the search space.

Listing 2.3 shows the repOK method for our BinaryTree. It will walk the tree via

2In other experiments conducted in this thesis, it often proved useful to use a wrapper class here.

20

2 Korat

1 class BinaryTree {
2 // ...
3

4 boolean repOK() {
5 if (root != null)
6 return root.repOK(new HashSet<Node>());
7 return true;
8 }
9 static class Node {

10 // ...
11

12 boolean repOK(HashSet<Node> alreadySeen) {
13 if (!alreadySeen.add(this))
14 return false;
15 if (left != null && !left.repOK(alreadySeen))
16 return false;
17 if (right != null && !right.repOK(alreadySeen))
18 return false;
19 return true;
20 }
21 }
22 }

Listing 2.3: repOk method.

depth first search and check that each node only occurs once. This makes sure that only
acyclic trees are passed to the test method. It does so by creating a Set (line 6) and passing
it to the root node. Each node will add itself to the set and check if it was already contained
in the set (line 11). If the node was already in the set, it has been visited before and the tree
is invalid.

2.1.3 Instrumentation

As described in section 2.1, Korat needs to monitor accesses to fields of the objects it
has generated. Therefore, each time a field is accessed, the central test object, named
TestCradle, is notified via a method call. The TestCradle stores which fields were
accessed during the execution of repOK and uses this information for pruning the state
space.

In order to get these notifications, Korat modifies the byte-code using the javassist[14]
library. The instrumentation is done when a class is being loaded. The JVM loads a class
only when it is being used (for example when it’s being instantiated). This lazy class load-
ing concept allows for a faster startup of the JVM and prevents wasting time on loading
classes, which are never going to be used. Korat hijacks this system by replacing the de-
fault class loader with a custom one.

21

2 Korat

Human

- name : String
- age : int

Human

- testCradle : TestCradle
- name : String
- korat_name_id : int
- age : int
- korat_age_id : int

+ Human(t : TestCradle)
- korat_get_name() : String
- korat_get_age() : int

instrumentation

Figure 2.1: Instrumentation for non-array fields.

2.1.3.1 Monitoring Fields

For each non-array field of all classes Korat generates a special getter method and wraps
all read access behind this new method. Inside the special getter method a notification
method is called on the TestCradle object before the value of the field is returned.

To find out which field triggered a notification, Korat associates each field with a unique
id. To achieve this, Korat further changes the byte-code and adds an id field for each field.
The id field is initialized together with the value of the actual field when Korat creates a
new object for the test input. Every time the field is accessed (using its special getter) this id
is passed via the notification method to the TestCradle which is then able to determine
which field is responsible for the notification.

The last thing missing in this system is a way to access the TestCradle object from
within the generated getter methods. For this, Korat modifies the class once more and
adds a reference field for TestCradle and a special constructor, which initialized the
TestCradle field.

This system is illustrated by the two UML Class Diagrams in fig. 2.1. On the left hand
side it shows the original class Human with a name and an age field. On the other side it
shows the transformed class after the instrumentation. An id field and a getter was added
for each field. In addition, there is a new constructor and a field for the TestCradle.

2.1.3.2 Monitoring Arrays

As an array represents not a single element but a collection of elements, it has to be handled
differently. Korat needs to be able to monitor access to the array’s length and to each
element independently. Therefore, the developers of Korat chose to encapsulate each plain
Java array in a so called KoratArray.

During the instrumentation phase (at class load time), Korat replaces all array fields by
KoratArray fields. A new KoratArray class is generated for each type. In Figure 2.2,
a KoratArray for the Integer type is shown. This class would be used to substitute
a field of type Integer[]. In addition, Korat modifies the byte-code and replaces each
array access by the corresponding methods in the KoratArray.

22

2 Korat

KoratArray_Integer

- tester : TestCradle

- values : Integer[]
- values_ids : int[]

- length : int
- length_id : int

+ KoratArray(maxSize : int)

+ get(index : int) : Integer
+ set(index : int, newValue : Integer) : void

+ getLength() : int

Figure 2.2: Instrumentation for non-array fields.

2.2 Algorithm

With these two methods, (finBinaryTree and repOK), Korat is able to generate all valid
instances of a data-structure as an input for the user’s test method. The problem is that
search spaces tend to be rather large, as they grow exponentially with the number of in-
volved fields. Usually, not all possible instances represent a valid state of the object. When-
ever the ratio between valid instances and possible ones is low (i.e. the repOK method
filters a lot of instances), Korat generates a lot of objects which are immediately discarded
by the repOK method.

From a functional point of view, this is not a problem. But considering the large size of
the search spaces, it is a performance problem, as it leads to a longer runtime for the test
suite. To solve this problem, Korat uses pruning to discard large portions of the search
space and an isomorphism detector to filter isomorphic objects, which do not differ struc-
turally, but only have different object ids3. Together, these two optimizations limit the
number of explored instances (the ones passed to repOK) significantly.

The following sections are structured as follows: Section 2.2.1 shows the optimization
potential for the pruning and isomorphism filter by deriving formulas for the number
of potential and explored instances for binary trees. After that, the naive algorithm for
exploring the search space is explained in section 2.2.2 and then extended by the pruning
(section 2.2.3) and isomorphism (section 2.2.4) filter.

2.2.1 Optimization Potential

To calculate the potential for these optimizations we need to compare the number of pos-
sible instances with the number of valid instances. We can describe these in the following

3Korat’s notion of isomorphism is defined in section 2.2.4.

23

2 Korat

two functions:

• f(n) The number of valid trees with up to n nodes. As the nodes are not distinguish-
able, this function does not include isomorphically equal trees. Therefore, it shows
the number of trees which are actually generated by Korat after both filters.

• p(n) The size of the search space, i.e. the number of valid and invalid trees with up
to n nodes. This function includes all possible assignments for all fields.

2.2.1.1 Deriving f(n)

In our BinaryTree example, the only constraint expressed in the repOK method is that a
given node may only occur once in a tree. The number of binary trees with exactly n nodes
can be calculated with the formula C(n). This sequence is known as the Catalan numbers [1]:

C(n) = (2n)!

(n+ 1)!n!

To get the number of binary trees with up to n nodes f(n), it is simply a matter of
forming the sum from 0 to n. This formula f(n) represents the number of trees which are
passed to the user’s test function for a given node count.

f(n) =
n∑

i=0

C(n)

2.2.1.2 Deriving p(n)

The size of the search space can be calculated by counting all possible instances. For this,
one simply has to multiply the cardinality of the field domain (i.e. number of possible
values for the field) for all fields. Let |f | be the cardinality of field f and F the set with all
fields references in the finitization. Then the following expression describes the size
of the search space:∏

f∈F
|f |

In the binary tree example, all fields generated by Korat have the same type (Node)
and are assigned the same field domain. Therefore, all fields have the same number of
possible values: n + 1 (n nodes and 1 null value). Each node has two fields (left and
right) and there is one field in the BinaryTree itself, hence when using n nodes, there
are 2n+ 1 fields to which Korat can assign one of the n+ 1 Node objects. This leads to the
following formula for the search space size of our binary tree example:

p(n) = (n+ 1)2n+1

24

2 Korat

0 1 2 3 4 5 6 7

101

103

105

107

109

1011

1013

Node count

St
ru

ct
ur

e
co

un
t

Possible instances: p(n)

Explored instances

Valid instances: f(n)

Figure 2.3: Generated binary tree structures in respect to number of nodes.

2.2.1.3 Putting it together

Figure 2.3 shows a plot of p(n) and f(n). In addition, there is also a plot for the number of
instances Korat passes to the repOK method (labeled “Explored instances”). These values
were obtained experimentally, by running Korat for the BinaryTree with the respective
number of nodes. In addition it is worth noting that the number of valid instances (calcu-
lated by f(n)) matches the number Korat actually finds (the ones accepted by repOK and
passed to the user’s test method).

The plot depicts the number of structures for the respective category on the y axis in
respect to the number of nodes on the x axis. It is a semi-logarithmic plot, meaning the y
axis has a logarithmic scale, while the x axis has a linear scale.

Considering the function’s complexities, it was to be expected that there are a lot more
possible instances than there are valid ones. It is interesting to see that Korat is able to trim
a huge portion of the search space (consider the logarithmic scale) and explore only a little
more than what is actually valid.

As an example: With 6 nodes, the cardinality of search space is about 20 million larger
than the number of valid instances. But Korat only explores (calls repOK for) 20 times as
many objects as there are valid ones. Assuming a 3 GHz processor could generate and
validate an instance within a single cycle, it would still take an hour to explore the entire
search space.

25

2 Korat

2.2.2 Naive Algorithm

The naive algorithm simply iterates through the search space element by element. The va-
lidity of every element is evaluated by invoking the repOK method and depending on the
result, it is passed to the user’s test cases. This algorithm forms the foundation for iterat-
ing the search space, but it is only used in combination with the pruning and isomorphism
optimization in Korat. Without the filtering optimizations, the runtime of the algorithm
would be too slow for most applications as explained earlier.

2.2.2.1 Search Space Representation

The search space is explored using a so called candidate vector. It is like an iterator [18]
for the search space structure: It identifies an element of the search space and can be incre-
mented to move to the next element. This allows to write a very simple high level algo-
rithm as shown in alg. 1 for exploring the search space: Using the range based for loop, the
candidate vector is iterated (line 1). Each element which is accepted by the repOK method
(line 2) is passed to the test case (line 3).

Input: testCase
Input: candidateVector

1 foreach candidate in candidateVector do
2 if executeRepOK(candidate) then
3 runTestCases(candidate)
4 end

Algorithm 1: Pseudo code for state space iteration without filters.

The candidate vector is represented as a Java array of integers4 with one element for
each field specified in the finitization. Each element is an index into the field domain
of the corresponding field. As described in section 2.1, a field domain consists of all pos-
sible values for its field. These values have a fixed order within the field domain and can
therefore be referenced via an index. Hence, the candidate vector assigns a value to each
field.

In the running example for the binary tree with three nodes, there is only one field do-
main, which is used for the node references. This field domain consists of two class do-
mains. The first one was explicitly created and contains the three node objects. The second
one was implicitly created and contains the null value we requested. Together, the two
class domains form a field domain, which contains four values and has the following or-
der: null, n0, n1, n2. A candidate vector could for example reference n1 using the index
2.

4The primitive integer type “int”, as arrays may consist of primitive type and no null values are required.

26

2 Korat

Field Index Value

bT.root 1 n0

n0.left 2 n1

n0.right 3 n2

n1.left 0 null

n1.right 0 null

n2.left 0 null

n2.right 0 null

binaryTree

n0

n1

left

n2

right

root

Field Index Value

bT.root 1 n0

n0.left 2 n1

n0.right 2 n1

n1.left 0 null

n1.right 0 null

n2.left 0 null

n2.right 0 null

binaryTree

n0

n1

root

rightleft

Figure 2.4: A candidate vector for a valid and an invalid tree.

27

2 Korat

Figure 2.4 shows two concrete candidate vectors and their corresponding tree object for
the binary tree example. The table on the left of each tree represents the candidate vector.
Each row of the table shows one element of the candidate vector. The first column (Field)
identifies the field which is represented by this row. The second column (Index) is the
index into the field domain and the third column (Value) shows the value to which this
index corresponds.

The top part of the figure shows a valid binary tree with respect to the repOK method:
There are no circles and each node is only used once. The tree in the lower part of the
figure is, however, broken. The node 1 is used as a left and right child of the node 0, which
violates the invariant specified by the repOK method.

2.2.2.2 Search Space Iteration

In order to iterate through the search space, Korat needs to be able to increment the can-
didate vector. The algorithm to this is similar to incrementing a number where the base of
each digit is the size of the corresponding field domain.

In the beginning, each element of the candidate vector is set to zero. For one increment
Korat first increments the index of the last element. If the new index exceeds the field
domain, it is reset to zero and the next element of the search space is also incremented,
using the same overflow handling system. The search space exploration is completed as
soon as the index contained in the first element overflows.

2.2.3 Pruning Filter

The idea of the pruning filter is that the result of the repOK method only depends on the
fields it accessed. Therefore, it is independent of all fields it did not access. Hence, Korat
knows that different values for the independent fields will not change the result of the
repOK method.

2.2.3.1 Algorithm

Algorithm 2 shows the pseudo code for the pruning algorithm. The details of the algorithm
are explained throughout this section. Whenever a field of the generated test structure is
accessed, its candidate vector index is added to the accessedFields list if it was not already
contained in it. In order to do this in the concrete implementation, Korat instruments the
Java byte code as described in section 2.1.3).

After initialization, the algorithm starts by executing repOK (line 4). Each time the
method returns false and thus marking the current candidate as invalid, Korat skips
over all elements with different values for the independent fields. This is done by tracking
which fields of the generated test structure are read during the execution of repOK. Only
these fields can change the outcome of repOK.

As an example consider the invalid binary tree in fig. 2.4: After the execution of
repOK, the list with accessed field indexes contains: {0, 1, 2}. This corresponds to

28

2 Korat

1 candidateVector←− 〈0, 0, . . . , 0〉
2 do
3 accessedFields←− 〈〉
4 if executeRepOK(candidateVector.candidate) then
5 runTestCases(candidateVector.candidate)
6 touchReachableFields(candidateVector.candidate)
7 while candidateVector has next

Algorithm 2: Pseudo code of pruning algorithm.

the fields: {bT.root, n0.left, n0.right}. Korat knows that changing other fields
would not change the outcome of repOK. Therefore, all candidate vectors of the format
{1,2,2,*,*,*,*} represent invalid objects, too. These 44 = 256 candidates can be safely
pruned from the search space.

In order to skip over these irrelevant fields, an algorithm similar to the naive algorithm
is used. Instead of always incrementing the last element in the candidate vector, Korat
starts by incrementing the element identified by the last entry in the list with accessed
fields. If the incremented index exceeds the size of the field domain, Korat resets it to zero
and moves on to the element in the candidate vector identified by the next entry in the list
with accessed fields. Once there are no more entries in the list with accessed fields, the
search is complete.

In our example, Korat first increments the third element in the candidate vector:
n0.right. After that, the next candidate is found, because the new index (3) does not
exceed the field domain size (4). This new candidate represents the valid tree shown in
fig. 2.4.

After that, the algorithm jumps back to the start of the exploration loop (line 3). It re-
moves all entries from the accessedFields list and continues by executing repOK again.
Each time the method returns true and thus marking the current candidate as valid, Ko-
rat passes the found object to the user’s test cases (line 5). After that, Korat needs to make
sure to iterate through all elements of the search space which have the same values for the
fields and which were accessed during the execution repOK. All of these represent valid
candidates, too. In order to do that, Korat adds all fields which are reachable starting from
the root object (the one which is passed to the user’s test) to the accessedFields list.
Doing so, Korat is able to prune unreachable parts of the search space, as these parts can
never be accessed by the user’s test cases.

Assuming that the order in which the fields are accessed in the repOK method is deter-
ministic, the pruning algorithm will always explore all valid elements of the search space.
Otherwise, for non-deterministic repOK methods, the algorithm only guarantees that no
invalid element is passed to the user’s test cases. However, it is possible that the algorithm
will miss valid elements, hence, the exhaustive exploration of the search space is no longer

29

2 Korat

0 1 2 3 4 5 6 7

101

103

105

107

109

1011

1013

Node count

St
ru

ct
ur

e
co

un
t

Possible instances: p(n)

Pruning filter

Explored instances

Valid instances: f(n)

Pruning Filter

Figure 2.5: Generated binary tree structures in respect to number of nodes.

guaranteed. By disabling the pruning optimization, Korat could be used to explore the
entire search space in a non-deterministic environment. As invariants (repOK methods)
tend to be deterministic, this seems more like a corner case problem. Therefore, this thesis
continues work under the assumption of a deterministic repOK method.

2.2.3.2 Effectiveness of Pruning in Practice

Figure 2.5 shows the benefit of the pruning filter. The number of nodes in the previous
graph is depicted on the x axis and the number of generated structures on the y axis. Start-
ing from the top, the first line shows the number of possible instances. The next line is new
and it shows how this number is improved when using the pruning optimization. After
that, the following two lines show the number of explored instances (passed to repOK)
and the number of valid instances (passed to the user’s test cases) again.

It is clear to see that there is already a huge improvement: for 7 nodes, the pruning filter
reduces the number of generated instances from 3.5e13 node to 6.8e7 nodes.

In order to achieve efficient pruning, the repOK method should reject invalid instances
as soon as possible. The lesser fields it touched before returning false, the better Korat
is able to prune the search space. The worst case for the pruning optimization is a repOK
method which always touches all fields of the structure before deciding if it is valid. This
prevents Korat from pruning anything. Korat has to assume that the result of repOK de-
pends on all fields. Hence, all instance have to be explored (passed to repOK).

30

2 Korat

Ord
ere

d Arra
y

Red
-B

lac
k Tr

ee

Fibonac
ci

Hea
p

Doubly
Lin

ked
List

105

109

1013

1017

1021
St

ru
ct

ur
e

C
ou

nt

Possible Instances

Explored Instances

Valid Instances

Figure 2.6: Pruning filter effectiveness for different data-structures.

As stated by the original Korat authors [12], the algorithm works well in practice:

“In practice, our search algorithm prunes large portions of the search space,
and thus enables Korat to explore very large state spaces.”

The experiments shown in the paper show how much of the search space is explored
when using both the pruning and the isomorphism filter. We conducted an experiment to
see the effectiveness of the pruning filter in isolation. Its results are shown in fig. 2.6. The y
axis shows the number generated structures. Each group of three bars on the x axis shows
one of the tested data-structure:

• Ordered Array
An array of size 30. Each element is an integer between one and five. Only the ones
sorted in ascending order are considered valid.

• Red-Black Tree
Simple red-black tree implementation where each node has a parent reference, two
child references, a key and a color. Six nodes were used in the experiment.

• Fibonacci Heap
Each of the five nodes of the Fibonacci heap [15] used in the experiment keeps a
reference to its parent, right, left and child node. In addition each node is assigned
its degree and a key.

31

2 Korat

• Doubly Linked List
An implementation of a doubly linked list: Each element has a reference of its pre-
decessor and its successor. Null marks the end and the start of the list. In addition
each list element holds a value object.

The diagram shows that the pruning filter is able to achieve a significant reduction for
the number of explored instances for every tested data-structure. It reduces the number of
explored instances by a factor of 1010 to 1015.

2.2.4 Isomorphism Filter

The benefit of the isomorphism filter is twofold: First, it decreases the number of explored
instances (the ones which are passed to the user’s test method) and thus improving the
performance. Second, it prevents calling the user’s test method with structurally equal
object graphs, i.e. isomorphic ones.

In order to explain the algorithm, we first describe what it means for two object graphs
to be isomorphic in section 2.2.4.1. After that, the algorithm used by Korat for the filter is
explained in section 2.2.4.2. A different and more detailed explanation including a prove
for the correctness of the algorithm can be found in [33]. Lastly, in section 2.2.4.3, we show
how this filter helps to decrease the number of explored instances in practice and thereby
allows the tester to explore larger search spaces.

2.2.4.1 Isomorphism Definition

In object oriented languages like Java, there are usually two kinds of variables, one of
which holds a reference to an object and the other one stores a primitive value. For storing
a primitive value, the physical memory of the variable simply contains this value. For
storing a reference, the physical memory contains the identity of the other object5. This
identity can be used to find the other object and use it. Hence, each object has a unique
identity. In Java, this identifier can be obtained using the System.identityHashCode
function.

This implies that two different objects are never equal, because their id always differs,
though the structure they represent can be equal. This is basically the idea of the isomor-
phism in Korat: When generating structures, Korat ignores the object’s identity6. Hence,
when comparing two object graphs, only the actual values matter and not the ids of the in-
volved objects. In Java, this is also the intended difference between comparing two objects
via the == operator and using the equals method: The == operator simply checks if the
identity of the operands is the same. The equals method checks whether the represented
structure is equal7.

5Usually the identity of an object is its physical address.
6Korat supplies an option to disable this mechanic.
7The equals method needs to be implemented by the user and therefore can do anything, but the described

behavior is the usual and intended one.

32

2 Korat

Input: o1, o2 // Objects to be compared

1 if o1 = null or o2 = null then return o1 = o2

2 if typeOf(o1) 6= typeOf(o2) then return false

3 foreach field in o1 do
4 if field is primitive then
5 if o1.field!= o2.field then return false
6 else
7 if (o1.field, o2.field) ∈ visited then continue
8 visited.add(〈o1.field, o2.field〉)
9 if not areIsomorph(o1.field, o2.field) then return false

10 end
11 end
12 return true

Algorithm 3: areIsomorph Method in pseudo code.

Algorithm 3 shows a recursive definition for Korat’s isomorphism. A relational defi-
nition can be found in [12]. We chose this definition as it is more intuitive to read and
therefore simpler to understand. The areIsomorph function gets two objects o1 and o2 as
input. It returns true if the two objects are isomorph and false otherwise.

First, the algorithm has to do a null check: If either of the objects is null, the other
one has to be null, too. Otherwise the algorithm aborts and returns false. If both input
objects are not null, the algorithm continues in line 2. There, the type of the two objects is
compared. If it is different, the structures are obviously not isomorph and the algorithms
returns false.

Otherwise, for two objects with the same type, the structure is isomorph if all of their
fields are isomorph. Hence, the algorithm loops over all fields (line 3). Primitive and
reference fields are treated differently: For primitive fields (line 5), the value of the field
has to be equal in both objects. For reference fields (line 7-9), only the referenced objects
have to be isomorph to each other. To validate this, the algorithm recursively invokes itself
if the object pair has not been visited before.

2.2.4.2 Algorithm

Using the isomorphism definition, one can partition the search space into partitions which
only contain isomorphic object graphs: isomorphism partitions. The goal of the isomor-
phism filter is to only explore one object graph out of every partition. Korat traverses the
search space in a fixed order8. The idea of the isomorphism filter is to only explore the first

8The order is implied by the list of access fields after each call to repOK together with the ordering in the
field domains

33

2 Korat

element of every isomorphism partition in respect to the exploration order. Conceptually,
this is achieved by incrementing the index in the candidate vector of a field by more than
one and thereby skipping isomorph structures.

Input: F
Input: f

1 mf ←− max({indexcd(f’) | f ′ ∈ F ∧ cd(f’) = cd(f)} ∪ {−1})
2 if indexcd(f) ≤ mf then
3 indexfd(f)←− indexfd(f)+ 1
4 else
5 indexfd(f)←− indexfd(f)+ cd(f).size− indexcd(f)
6 end

7 if indexfd(f) ≤ fd(f).size then
8 found new candidate
9 else

10 continue backtracking
11 end

Algorithm 4: skipIsomorphStructures Method in pseudo code.

The details of the algorithm are shown in alg. 4 as pseudo code. The single steps of the
algorithm are illustrated using the example in fig. 2.7, which shows one step of the state
space exploration. Like in fig. 2.4, a binary tree with three nodes is used. On the left hand
side, the entries of the candidate vector are shown in a table, while the other side depicts
the corresponding tree structure. For simplicity, the values for the left and right child
of node n1 and n2 are left out, as they are always null. The shown step is an example
for a step where the isomorphism filter skips some isomorph structures. In this case, the
algorithm skips the structure where the right child of n0 is n2, as it would be isomorph
to its predecessor.

The algorithm for the isomorphism filter builds on the pruning algorithm which was
introduced in section 2.2.3. Recall how the pruning algorithm only increments the field
domain index in the candidate vector of the fields which were accessed during the execu-
tion. Instead of simply incrementing the last accessed field (and backtracking in case of
an overflow), the isomorphism filter code as shown in alg. 4 is used instead. Whenever it
detects an isomorph structure, it increments the field domain index by more than one.

The isomorphism filter algorithm gets two input arguments: First, the field f in the can-
didate vector, which should be changed next. And second, the remaining fields in the list
of accessed fields F (excluding f). In the example in fig. 2.7, f is the third element in the
candidate vector, n0.right and F contains 〈bT.root, n0.left〉.

The algorithm starts by calculating mf. To do this, it takes the highest value for the class

34

2 Korat

Field Index Value

bT.root 1 n0

n0.left 0 null

n0.right 2 n1

binaryTree

n0

n1

Field Index Value

bT.root 1 n0

n0.left 1 n0

n0.right 0 null

binaryTree

n0

n0

Isomorphism Skip Step

Figure 2.7: Isomorphism filter example with three nodes.

domain index9 of all fields in F which refer to the same class domain as f does (if there
are no such fields, -1 is used). The indexcd function returns the class domain index of
the field and cd function returns the current class domain of the field. In the example, the
only field in F with the same class domain is bT.root, because m0.left refers to the null
class domain. Therefore, mf evaluates to 0.

Next, the algorithm tests whether incrementing the field domain index of f will generate
an isomorph structure: If the class domain index of f is less than or equals to mf, then
the field domain index of f can be simply incremented. Otherwise the algorithm skips
over all remaining elements of the current class domain. In the binary tree example, the
else-branch is taken and the algorithm skips over all remaining objects in the Node class
domain. Therefore, the field index of f is increased to 4 and points to the first element of
the class domain after the node class domain, thus skipping the one structure where the
right child of n0 is n2, because it would be isomorph to the previous one.

The original structure represented the smallest element of its isomorphism partition in
terms of field indexes. Using an object from the same class domain with a larger index for
the last accessed field would not change the structure, but only put a different object (in
terms of object identity) in the same place. Therefore, Korat skips all remaining objects of
the same class domain.

Lastly, the algorithm needs to check for an overflow of the field domain index of f. If
so, the algorithm backtracks to the next field in the accessed fields list. Otherwise a new
candidate was found and is passed to the repOK method. In the example, there was an
overflow: The field domain of n0.right has only 4 elements (null and three nodes).
Therefore, the field domain index for n0.right is reset to 0 and the algorithm is called

9Recall the difference between class and field domain: The class domain index is the index in the current class
domain, while the file domain index is the index in the field domain. In the example, the field domain index
of bT.root is 1 and its class domain index is 0.

35

2 Korat

0 1 2 3 4 5 6 7

101

103

105

107

109

1011

1013

Node count

St
ru

ct
ur

e
co

un
t

Possible instances: p(n)

Only isomorphism filter

Explored instances

Valid instances: f(n) Isomorphism Filter

Figure 2.8: Generated binary tree structures in respect to number of nodes.

again for the next field in the accessed fields list: n0.left. This time, the then-branch in
line 3 is taken and the field domain index for n0.left is incremented by one. The resulting
structure10 is shown at the bottom of fig. 2.7.

2.2.4.3 Effectiveness of Isomorphism Filter in Practice

Figure 2.8 shows the effectiveness of the isomorphism filter. As before, the number gen-
erated binary tree structures is plotted on the logarithmic y axis in respect to the number
of nodes on the x axis. There are four lines in the diagram: The first one shows the num-
ber of possible instances. These are all object graphs Korat could possibly create using the
given set of objects. The next one shows how many structures are created and passed to
the repOK method using only the isomorphism filter. The third and fourth line show, just
like in the previous plots, the number of explored and valid instances. The latter one de-
picts the instances which actually represent valid binary trees and which are passed to the
user’s test method. The line for the explored instances shows the number of object graphs
being passed to the repOK method: the invalid ones are still included here.

The diagram shows that the isomorphism filter alone cuts off a large portion of the
search space. For 7 nodes, only 1.1e9 structures are explored instead of 3.5e13. Therefore,
this kind of filtering is less effective than the pruning filter, where the number of explored

10Note that the generated structure represents an invalid tree and will be filtered by the repOk method.

36

2 Korat

structures was reduced to 6.8e6 for 7 nodes. But unlike the pruning filter, the isomorphism
filter can only remove isomorph valid structures.

2.3 Modifications

The initial publications around Korat [12, 33] use the framework only for testing data-
structures in isolation. Later studies [34] did not change this focus and kept Korat as a
tool for testing data-structures. Korat proved itself very useful for automated test input
generation for data-structures and therefore as a useful tool for for these specific projects,
where custom data-structures are required.

This thesis aims to extend Korat to be applicable for testing larger applications. But
by using Korat for hole projects instead of single data-structures, it also has to deal with
a larger code base. While the number of lines itself is not a problem, the Java language
features being used in larger applications is a problem, as some of them cause Korat to
break.

The initial intend when starting to use Korat for testing the example game Chelone was
to experiment with automated input data generation. But some of the issues described
in this section made it impossible to use Korat for testing the Chelone code base, without
rewriting large portions of it. Therefore, the authors took the liberty to resolve these issues
in Korat first. This makes it possible to use Korat in a lot more projects and benefit from its
automated test input generation.

This section lists the issues in Korat which were found throughout the research con-
ducted in this thesis and documents the modifications. Korat’s source code was released
under the GNU General Public License 2 [3]. This allows programmers to use and modify
the code freely as long as they also publish their modifications. In particular, this allows
us to explore the code to fix problems in it.

In our efforts to apply Korat to the Chelone code base, which is written in Java 1.7,
we ran into several issues as mentioned above. In almost all cases, Korat had problems
with various code patterns in our code. One of the key contributions of this thesis are the
modifications to Korat, which makes it work with more common code patterns in Java and
thus improving its usability for the community.

2.3.1 Issue 1 - Reference to TestCradle

As described in section 2.2, Korat needs to track accesses to fields of the Objects it has
generated. Therefore, each time a field is accessed, the central test object, named TestCradle,
is notified via a method call. The TestCradle stores which fields were accessed during the
execution of repOK and uses this information to generate the next test input.

In order to get these notifications, Korat modifies the byte-code with the help of the
javassist[14] library. For each field of each class Korat generates a special getter method
and wraps all read access behind this new getter method. Inside the getter method a noti-
fication method is called on the TestCradle object before the value of the field is returned.

37

2 Korat

Human

- name : String
- age : int

Human

- testCradle : TestCradle
- name : String
- korat_name_id : int
- age : int
- korat_age_id : int

+ Human(t : TestCradle)
- korat_get_name() : String
- korat_get_age() : int

instrumentation

Figure 2.9: Initial State of the instrumentation.

To find out which field triggered a notification, Korat associates each field with a unique
id. To achieve this, Korat further changes the byte-code and adds an id field for each field.
The id field is initialized when Korat creates a new object for the test input. When the
field is accessed via its special getter this id is passed via the notification method to the
TestCradle, which is then able to determine which field is responsible for the notification.

The last thing missing in this system – and the reason for this issue – is a way to access
the TestCradle object from within the generated getter methods. The following paragraphs
will explain several solutions and their limitations, starting with the initial implementation
used in the original Korat release and ending with the one this work came up with after
several attempts.

2.3.1.1 Initial state

The instrumentation of the byte-code is done when a class is being loaded. The JVM loads
a class only when it is being used (for example when it’s being instantiated). This lazy
class loading concept allows for a faster startup of the JVM and prevents wasting time on
loading classes which are never going to be used. Korat hijacks this system by replacing
the default class loader with a custom one: the so called InstrumentationClassLoader.

The InstrumentationClassLoader adds an id field and a special getter for each field. It also
modifies the read accesses to call the special getters instead of reading the field directly. In
the initial version of Korat it also adds a field for the TestCradle and a special constructor
which gets a reference to the TestCradle as an argument and initializes the newly added
field. Whenever Korat creates an object for a test case, it calls this special constructor and
the reference to the TestCradle would be initialized.

This system is illustrated by the UML Class Diagram in Figure 2.9. On the left hand side
it shows the original class Human with a name and an age field. On the other side it shows
the transformed class after the instrumentation. An id field and a getter was added for
each field. In addition, there is a new constructor and a field for the TestCradle.

38

2 Korat

2.3.1.2 Fix 1: Virtual Methods

This system works well until the code uses inheritance. When Korat creates the special
constructor’s body, it adds a call to the super classe’s special constructor, if the super class
was already instrumented. Otherwise it will only initialize the reference to the TestCradle
in the current class. Hence, the TestCradle reference in the super class is not initialized.

As an example, consider two classes: Derived and Base, where Derived extends
Base. We take a look at both instrumentation orders:

• When Base is instrumented first, a call to the special constructor of Base is added
during the instrumentation of Derived. In this case, the TestCradle field in Base is
initialized during the construction of the Derived class. Therefore, all accesses to
the fields in Base are tracked correctly, because the TestCradle reference in Base is
initialized.

• In the other case, when Derived is instrumented first, Korat does not add a call to
the special constructor of Base. Therefore, the reference to the TestCradle in Base is
not initialized. This has the consequence that Korat can not track the accesses to fields
in Base and assumes that nothing was accessed during the execution of repOK. This
has the consequence that Korat may prune portions of the search space, which could
potentially contain valid input configurations.

In our first attempt to fix this problem, we created a getter method for the TestCradle field
in each class we instrument. Whenever we needed to access the TestCradle, we’d call the
getter method. This method call is dispatched by the JVM at runtime and always executes
the implementation of the most derived class. Therefore, the method is always executed
in the class of the object itself. The TestCradle field of this class is initialized correctly, as
we called the constructor of this class when we created it. Therefore, we can always find a
valid reference to the TestCradle and notify it correctly.

2.3.1.3 Fix 2: Global Reference

This initial fix works well until enums are used. Enumerations or enum types are rather
powerful in Java. Just like in other languages, an enum type can only have a fixed set of in-
stances, called enum constants. But unlike in many other languages, these enum constants
can define functions, constructors and fields. Without going into too much detail, one in-
teresting example for using these enum features is shown in listing 2.4. It was taken from
the Java specification [26], to which the interested reader is referred to for more details on
enums.

From the perspective of Korat, it is only important that enums are able to contain fields,
because these need to be tracked. The problem is the reference to the TestCradle: Each
enum constant is created at class load time by the JVM itself and it is prohibited by the
Java language specification to create new enum constants. Hence, we are not able to call
our constructor and initialize the TestCradle reference.

39

2 Korat

1 enum Coin {
2 PENNY(1), NICKEL(5), DIME(10), QUARTER(25);
3

4 Coin(int value) {
5 this.value = value;
6 }
7

8 private final int value;
9 public int getValue() { return value; }

10 }

Listing 2.4: Capabilities of enum types in Java.

The easiest way to solve a dependency issue like this is to introduce a global variable
which references the TestCradle. Each time a field is accessed, the special getter uses the
global variable to obtain a reference to the TestCradle and calls the notification method.

2.3.1.4 Fix 3: Injection

Global variables are considered bad practice in modern software design and Korat already
uses several global variables, which have caused problems in other parts of the system (see
section 2.3.4). Introducing more dependencies on these global variables would likely lead
to more problems in the future. Therefore, a better solution was developed:

When Korat initializes a search space, it creates each object which was defined in the
Finitization upfront (enums are directly passed in the Finitization and not cre-
ated). Previously this was done using the special constructor, which received the TestCra-
dle object as an argument. Now, the default constructor is used and Korat simply sets the
fields directly using reflection in the class itself and all its parent classes.

2.3.2 Issue 2 - Static Arrays

As explained in section 2.1.3, Korat monitors arrays by wrapping them inside objects and
thereby tracking access to the array’s entries. To make this work, Korat needs to replace
each read and write access to the array by a method call to the wrapper object.

This technique was also used for static arrays. By doing so, Korat broke essentially
all switch statements. The reason for this is that Java compilers often handle switch
statements by introducing a static array, which serves as a jump table. If Korat instruments
the class and replaces the array by a wrapper object, the switch statement does not work
anymore and the program crashes at runtime.

This issue was fixed by removing the instrumentation for static arrays. This is a valid
fix, because Korat does not support the generation of static variables anyway. In addition,
the usage of static variables is not a very good object oriented design pattern.

40

2 Korat

2.3.3 Issue 3 - Non-Static Arrays

During our experiments, we also encountered a few low level bugs in the Java byte code.
These issues were caused by the instrumentation of the byte code. The solution for these
bugs is usually rather simple. The difficult part is finding them. In order to not exceed the
scope of this thesis, only one of these bugs is described here to give an idea of the type of
problems which can arise when instrumenting large amounts of source code.

2.3.3.1 Normal Instrumentation

In order to track accesses to an array, Korat replaces it with a wrapper object, a so-called
KoratArray. Whenever an entry of the original array is read or written to, the access is
replaced by a method call on the KoratArray. This is achieved by altering the byte code.
Assume a read from an int array:

public void test () {
int var = myIntArray[2];

}

Using a standard Java compiler, the following byte code is generated:

ALOAD_0
GETFIELD
ICONST_2
IALOAD
ISTORE_1

First, ALOAD_0 loads the this reference onto the stack. The GETFIELD instruction
is used to load a field from the object on top of the stack. In this case, it loads the
myIntArray member of this onto the stack. Next, ICONST_2 puts the constant 2 onto
the stack. The following instruction consumes the two values which were loaded onto the
stack. It is used to load an element from an array. In this case it loads the second element
of the myIntArray array onto the stack. Lastly, this value is popped from the stack and
stored in the first register using ISTORE_1.

Korat needs to replace the access to the array – namely IALOAD – by a method call to
the wrapper object. This is done by replacing IALOAD with a INVOKEVIRTUAL instruc-
tion. The new instruction works on an object reference and an integer value, instead of
an array reference and an integer value. In the instrumented code, Korat has replaced the
myIntArray array by a wrapper object. Therefore the GETFIELD instruction puts an ob-
ject reference onto the stack instead of an array reference. Hence, the INVOKEVIRTUAL
instruction gets the correct input types.

The IALOAD instruction is one byte in size, while the INVOKEVIRTUAL instruction re-
quires three bytes: One byte for the instruction itself and two byte for the method descrip-
tor. Because of the larger size of the new instruction, Korat can not simply replace it. To
work around this problem, the javassist library offers a function to insert a gap into the

41

2 Korat

Line Original Code With Gap After Overriding

0x0 IALOAD NOP

0x1 NOP INVOKEVIRTUAL

0x2 NOP

0x3 NOP NOP

0x4 IALOAD IALOAD

Figure 2.10: Byte code instrumentation bug.

byte code. Using this function Korat can insert two byte after the IALOAD instruction and
then override the three bytes with the INVOKEVIRTUAL function.

2.3.3.2 The Buggy Part

A problem may arises when there is a jump after the array access. The JVM does not allow
to jump to any address in the byte code, therefore the jump target needs to be aligned.
When javassist adds a gap of two bytes, it may have to add a larger gap instead in order
to keep the alignment of the following code intact.

Figure 2.10 shows the problem which occurs. The first column shows the byte number
and the second one the original byte code. It is one byte long and only contains the IALOAD
instruction. Next, in column three, the byte code after the gap insertion is shown. The
gap was inserted before the IALOAD instruction and instead of the requested two bytes,
javassist inserted four bytes to keep the alignment constraints of the following code intact.
In the next step Korat overrides the first three bytes with the INVOKEVIRTUAL instruction.
The resulting byte code is shown in the fourth column.

Essentially Korat expected the inserted gap to always be 2 byte in size. If this is not
the case, Korat no longer overrides the previous instruction. This causes a crash during
the execution, because two additional elements are popped from the stack and thereby
corrupting the stack.

Once one understands the problem, there are a few straightforward ways to solve it. The
interesting part is finding out what’s going on. One possible solution is to insert the gap
after the IALOAD instruction or Korat could override the IALOAD instruction with a NOP
instruction before inserting the gap.

2.3.4 Issue 4 - Global Variables

Global variables are evil and should be avoided whenever possible.

• On a design level, global variables encourage coupling by making dependencies be-
tween modules possible and easy to create, which can lead to a bad architecture.
A global variable exposes internal information of a module to all other parts of the

42

2 Korat

system. As soon as one other part or even a customer starts using it, it becomes
extremely difficult to change or remove it.

• On a function level, global variables make it difficult to read code, as they have an
infinite scope, which makes reasoning about their state extremely difficult. The scope
of a variable should be as small as possible. If a variable is only being used in a small
confined scope, it is easy to reason about its state. The larger the scope of the variable
gets, the harder it is to understand what is going on with the variable, because it is
used from many different contexts and each one has to be understood first.

• On a application level, global variables make it difficult to run the code more than
once without restarting the program. Unlike member variables they are not initial-
ized or reset when the object containing them is created. A method which only uses
non-static variables can be run multiple times without any problems. If global vari-
ables are involved, this becomes difficult, as they need to be explicitly reset. In addi-
tion, running the method several times in parallel can be even more difficult.

These points have been discussed many times and are certainly not the focus of this
work. Though, since we ran into problems with each of the mentioned points, we wanted
to state this issue again: Korat uses a few global variables and they made it unnecessarily
difficult to understand the code. We had to add code for resetting them, to be able to
run Korat multiple times within a JUnit test suite, and because of the dependencies to the
global variables, some refactoring tasks became needlessly complicated.

2.3.5 Issue 5 - Array Wrapping Rewrite

This issue, as some of the previous ones, is also related to arrays. But instead of bugs in
the instrumentation, this problem is of a different nature: As already stated, Korat replaces
every non-static array by a so-called KoratArray. These objects wrap the original array and
notify Korat whenever an entry of the array is read. To make this work, all accesses to the
original array are replaced by respective method calls to the wrapper array.

This works well for operations on the entries of the array: read or write the nth entry. A
problem occurs when the array itself is read or written to, e.g. by assigning it to a variable,
calling a function with it or returning it. The original implementation of Korat did not
handle many of these cases well, as they rarely arise in single data-structure scenarios.
We will first show two representative examples for places where this causes problems and
then outline our solution to the issue.

2.3.5.1 Assignment to Local Variables

Consider the following code snippet:

1 public void test () {
2 int[] local = member;

43

2 Korat

3 int l = local.length;
4 }

Assume that member is a non-static field of the class of the shown method. Its type is
int[] and its value is generated by Korat. Within the shown method, it is assigned to the
local variable local and then the length of local is acquired.

In the initial Korat release this code raises an exception, saying:

“java.lang.VerifyError: Bad type on operand stack in arraylength”

The problem is that the JVM tries to get the length of an array in line 3, while local
references a KoratArray in actuality. Therefore, an object lies on the top of the stack, while
the instruction for getting the length of an array (ARRAYLENGTH) expects a reference to an
array. This type miss match is detected by the JVM and the program is aborted.

For arrays in member variables Korat replaces the calls to their length field by a method
call to the respective KoratArray method. This technique could also be used for local vari-
ables. The problem is that Korat can not know if the local variable contains a KoratArray:
The local variable could have also been assigned from a static array or it could have been
returned from another method.

2.3.5.2 As a Return Value

A similar problem arises when using the following code:

1 public int[] test() {
2 return member;
3 }

As in the previous code snippet, assume that the variable member is an int[] array and
its value is generated by Korat. The encapsulating class of member offers a public getter
function for accessing it: test. Within the function the array is simply returned. When
executing the code, the JVM detects a type error: “java.lang.VerifyError: Bad return type”.
The method is expected to return an array of type int[]. But instead, a KoratArray is
returned. If Korat would change the return type of the method, all code which uses the
method and is not instrumented by Korat would break.

2.3.5.3 Solution: Wrapping and Unwrapping

Next to the two described problems, the replacement of plain arrays by KoratArrays also
causes other similar problems in a number of places. Therefore, when testing code with
arrays and one of these problems occurs, the developer has to change his code or create
the test input manually without the help of Korat.

To solve this bug, there are many possible solutions. The one we chose is intentionally
rather simple: Whenever the KoratArray is read, its internal array is returned and all en-
tries are marked as read. This keeps the scope of the KoratArray objects as little as possible

44

2 Korat

and thereby prevents the described problems from occurring. In addition, this solution has
the advantage of being similar to the original one. Furthermore, it is rather easy to test that
this implementation works for all possible usages11 of an array. By immediately unwrap-
ping the KoratArray, the remaining code remains unchanged and only operates on plain
Java arrays.

The disadvantage of this approach is that it introduces false reads: As an example, as-
sume that Korat generates an array with two entries. If the repOK method only accesses
the first entry and then returns false, Korat knows that the result is independent of the
second entry. Using the pruning filter, as introduced in section 2.2.3, this portion of the
search space does not need to be explored. A false read occurs, when the repOK method
first stores the array in a local variable. In this case our new implementation marks all
entries of the array as read and thereby prevents Korat from pruning the search space.

Note that the false reads do not change the correctness of Korats state space exploration.
They only slow it down, as larger portions of the search space can no longer be pruned.
While this is certainly not a perfect solution, it is preferable to crashing.

To implement this approach, two functions are added to the KoratArray class:

• unwrap
The unwrap method is called whenever an array field is read. This happens when
the array is assigned to a local variable, to a static variable or to another field. Also,
passing an array as an argument to a method or returning it from a method also
requires reading the array field.

Whenever a read on the KoratArray is required, the new solution calls the unwrap
method on the KoratArray. It notifies the Korat that each entry of the array was
accessed and then returns the internal array.

On a byte code level, the normal read operation is performed by a GETFIELD in-
struction. In order to invoke the unwrapmethod, we simply add a INVOKEVIRTUAL
instruction. This instruction calls a method on the object on top of the stack. After
the GETFIELD instruction, this object is the KoratArray. The array is popped from
the stack and by setting the method descriptor of the INVOKEVIRTUAL instruction
appropriately (i.e. to unwrap), the unwrap method is called. When the unwrap
method returns, it adds the internal array to the top of stack.

When executed, the new byte code (with the additional INVOKEVIRTUAL instruc-
tion), replaces the KoratArray on top of the stack with its internal array. Hence, all
following code can simply use the plain array.

• wrap
This method is used whenever a KoratArray is written to. It takes a plain array as an
input parameter and assigns it to the internal array of the KoratArray. In addition, it
sets a flag which indicates that the internal array was overwritten. If the flag is set,

11The Korat regression test suite contains all cases where arrays are read and written two.

45

2 Korat

Original Code Stack

PUTFIELD 〈objRef ; array〉

〈〉

Modified Code Stack

SWAP 〈objRef ; array〉

GETFIELD 〈array; objRef〉

SWAP 〈array; kArrayRef〉

INVOKEVIRTUAL 〈kArrayRef ; array〉

〈〉

Figure 2.11: Instrumentation for calling wrap method.

no more reads to the array’s entries are reported to Korat, because these new entries
are not the original ones which were generated by Korat.

Instrumenting the Java byte code to call the wrap method is a bit more complicated
than in case of the unwrap method. Figure 2.11 shows the original code and the
modified code. Each line of both tables shows the byte code instructions on the
left and the stack before the execution of the instruction on the right. The stack is
visualized as an ordered sequence, where the top of the stack is shown on the right
side12.

On the left hand side of fig. 2.11 the original byte code for setting an array field
is shown: The PUTFIELD instruction takes two arguments from the stack. It as-
signs array to the field described by its field descriptor in the object referenced by
objRef. When the instruction has been executed, the stack is empty. Therefore the
instrumentation also needs to produce code, which ends with an empty stack.

On the right hand side of fig. 2.11 the modified code with the call to the wrapmethod
is shown. Recall that this code calls the wrap function on the KoratArray field of the
object referenced by objRef instead of directly assigning a field in objRef. The
wrap function then handles the assignment internally as described above. In order
to call a function on the KoratArray, we first need to get a reference to the KoratAr-
ray onto the top of the stack. The GETFIELD instruction can be used to accomplish
this. But it requires a reference to the object which contains the KoratArray: objRef.
Therefore, we first have to use the SWAP instruction to swap the two top most ele-
ments on the stack. Now (line 2) the top of the stack contains the objRef and we
can use the GETFIELD instruction to retrieve the KoratArray reference: kArrayRef.
Next, we need to use the INVOKEVIRTUAL instruction in order to call the wrap
method on the KoratArray. This method call, naturally, requires its arguments to
be ordered. Hence we need to swap the two top most arguments of the stack again
before we can call the INVOKEVIRTUAL instruction. The wrap function then han-
dles the assignment and after it returns, the stack is clear, just like in the original byte
code. Thus, the changes won’t affect the following code.

12We only show the top most portion of the stack, which is relevant for the instrumentation.

46

2 Korat

These two functions handle the read and write to KoratArrays. It limits the scope in
which the KoratArrays are used and thereby limits the required changes to the byte code.
This makes it easier to test the instrumentation: The new test suite for Korat contains tests
for each possible usage of a Korat array. This shows that KoratArrays can be used in more
contexts now, which allows for a broader use of Korat.

2.3.6 Issue 5 - Finitization Rewrite

The finitization describes the search space by telling Korat which objects to use and how
they are connected (see section 2.1.1). The implementation by the original authors has one
shortcoming: There can only be one class domain for each class. The consequence is that
two fields referencing the same class are always forced to use the same class domain.

Section 2.3.6.1 describes the original implementation in more detail and shows an exam-
ple for potential problems. In the following section, section 2.3.6.2, we explain our solution
to the problem.

2.3.6.1 Finitization as Bipartite Graph

For each field which is added to the finitization, a field domain is created. This field do-
main can contain any number of class domains and a class domain contains a set of objects
of the associated class. As already mentioned, the initial implementation only allowed one
class domain for each class. Therefore, there can only be one set of objects for each class.
This restriction causes a problem when the same class is used in two different contexts.

As an example consider a class graph with two classes: Person and City. A Person
has a name and a residence field. The first one contains a String object and the second
one a City object. The City class also has a name, which is also modeled as a String.
Using the finitization in fig. 2.12 we can create various persons using Korat.

The code first creates a finitization for the Person class, making it the root of our ob-
ject graph. Then the cityFD is created with one City object. In order to do this, the
createObjSet method creates a class domain with one City object and wraps it in a
field domain. This field domain is then associated with the city field in the Person ob-
ject in line 5. The following code block creates a String class domain, adds two sample
names, wraps it in a field domain and associates this field domain with the two String
fields: Person.name and City.name.

The described graph is shown in fig. 2.12. Rectangular boxes represent fields, while
ellipse boxes show class domains. The problem is that we can only use one class domain
for the String field13. Hence, it is not possible to have different sets of Strings for the
city names and the person names. Both fields reference the same class domain.

This issue occurs whenever one class is used in two different contexts. This is often the
case with library classes like String. In addition, classes with generics, like collections,

13Korat’s createClassDomain method uses a lookup table to check if the requested class domain already
exists.

47

2 Korat

1 public static IFinitization finPerson(int unused) {
2 IFinitization f = FinitizationFactory.create(Person.class);
3

4 IObjSet cityFD = f.createObjSet(City.class, 1);
5 f.set("city", cityFD);
6

7 IClassDomain nameCD = f.createClassDomain(String.class);
8 nameCD.includeInIsomorphismCheck(false);
9 nameCD.addObject(new String[]{"Scott", "Tiger"});

10 IFieldDomain objSet = f.createObjSet(nameCD);
11 f.set("name", objSet);
12 f.set("City.name", objSet);
13

14 return f;
15 }

Person.city

Person.name

City.name

City

String

Figure 2.12: Old way of creating a tree like finitization.

48

2 Korat

can also not be distinguished.

2.3.6.2 Finitization as Tree

We solve this problem by rewriting the finitization and allowing the user to use more than
one class domain per class. Doing so requires some changes in the finitization API. While
refactoring the code we also made the interface more object oriented: Instead of calling
all functions on the finitization object, it is now possible to call the function to assign a
class domain to a field directly on the class domain object. This rewrite also lead to some
modifications in the state space creation process14, but as there are no semantic changes,
they are not discussed here.

The new way of specifying a finitization is still pretty similar to the old way, making it
easy for the user to adopt to the changes. The important changes are in the underlying
structure. The code snippet in fig. 2.13 shows the code for creating a finitization for the
previously introduced object graph with Person and City.

In the new code, it is possible to create two class domains for the String class. This
allows us to specify two different set of objects for the two name fields. In addition, there
are some extensions to the API, like the possibility to chain calls to class domains and the
removal of the global FinitizationFactory. Notice the different ways of assigning a
field domain to a field: It is no longer possible to assign a field domain to a field using the
class name of the class in which the field is contained (line 11 in the old finitization code).
The class domains are no longer unique per class, therefore the user has to explicitly specify
the class domain in which the field should be set (line 10 and 15).

The resulting structure is also shown in fig. 2.13. Now there are two class domains for
the String class. This allows the user to use a different set of names for the Persons and
the Citys. The new finitization also allows to create two class domains for objects with a
generic type. Therefore, it is now possible to have two collections of the same type with
different contents.

14The algorithm now has to traverse the finitization tree instead of looping over the flat representation of the
old implementation

49

2 Korat

1 public static IClassDomain finBinaryTree(IFinitizationContext fc) {
2 IClassDomain personCD = fc.createClassDomain(BinaryTree.class, 1);
3

4 IClassDomain cityCD = fc.createClassDomain(City.class, 1);
5 personCD.set("residence", cityCD);
6

7 IClassDomain pNameCD = fc.createClassDomain(String.class, 0);
8 pNameCD.addObject("Tiger").addObject("Scott");
9 pNameCD.includeInIsomorphismCheck(false);

10 personCD.set("name", pNameCD);
11

12 IClassDomain cNameCD = fc.createClassDomain(String.class, 0);
13 pNameCD.addObject("Munich").addObject("Augsburg");
14 pNameCD.includeInIsomorphismCheck(false);
15 cityCD.set("name", cNameCD);
16

17 return personCD;
18 }

Person.city

Person.name

City.name

City

String {Tiger, Scott}

String {Munich, Augsburg}

Figure 2.13: New way of creating a tree like finitization.

50

3 TestEra

TestEra [28, 35] is a specification based testing framework for Java code. More specifically,
it is a tool for automated test case generation: Given a formal specification, TestEra is able
to generate all non-isomorphic instances1 of a given data-structure or object graph up to
a specified size. These generated objects can then be used as inputs for user written test
cases.

This chapter is laid out as follows: First, section 3.1 introduces TestEra from a user’s
perspective using the same binary tree as an illustrative example as in chapter 2. Next,
section 3.2 takes a look at the inner workings of TestEra. The required algorithms are ex-
plained and the internal representation of the test structure is outlined. Lastly, an overview
of TestEra’s limitations is given in section 3.3.

3.1 Description

TestEra is based on Alloy [25] and the Alloy Analyzer [22, 24]. Alloy is a first-order rela-
tional language which is used to write the specification itself. The Alloy Analyzer is then
used to create valid instances using this specification. TestEra connects these tools with
Java by providing transformations between the Alloy and Java language.

We will first give a general overview of TestEra in section 3.1.1. After that, the workflow
when using TestEra is explained in section 3.1.2. Lastly, section 3.1.3 gives an example,
which shows how TestEra can be used to generate binary tree instances.

3.1.1 Overview

Figure 3.1 shows a high level overview of the process used within TestEra: The TestEra
Specification is written by the user and describes the structure which should be generated:
How many objects of which types are involved and what are the constraints for their con-
nections and their primitive fields. The specification is written inside of Java annotations.
It is expressed in the Alloy language with minor TestEra specific extensions.

TestEra extracts these annotations and combines them into a readable format for the Alloy
Analyzer. Two Alloy files are extracted: First, an Alloy Output Specification and second, an
Alloy Input Specification. The latter one consists in a so called Alloy Model, which defines
several Alloy Signatures, which can be thought of as the counterpart of a Java class: a

1The authors claim that TestEra only produces non-isomorphic structures. But our experiments revealed a
bug regarding this claim. For more details see section 3.3.2.

51

3 TestEra

TestEra
Specification

TestEra
Alloy Output
Specification

Output Instance
(Alloy)

Abstraction

Output Instance
(Java)

Alloy Analyser

Test Method

Alloy Input
Specification

Alloy Analyser

Instance (Alloy)

Concretization

Instance (Java)

Figure 3.1: Overview of control flow in TestEra.

52

3 TestEra

building plan for instances in the respective language. Unlike in plain Java, an Alloy Model
also contains constraints on its instances. These are expressed as Alloy Facts and used
by TestEra to encode the constraints specified by the user in the TestEra Specification. All
together, the Alloy Input Specification describes the structure to be generated.

Given a bound on the number of instances (also contained in the TestEra Specification)
for each Alloy Signature, the Alloy Analyzer is able to generate all valid non-isomorphic in-
stances. TestEra automatically creates a Concretization to transform these instances (called
“Input Instance (Alloy)” in the diagram) into Java instances. These can now be passed to
the users Test Function.

In order to validate the results, TestEra offers the option to specify postconditions for
the method under test. These are contained in the Alloy Output Specification, which is, as
previously stated, extracted from the user’s specification by TestEra. For the Alloy Analyzer
to be able to verify these, an automatically generated Abstraction is used to transform the
Output Instance (Java) back into an Output Instance (Alloy). These are then verified using
the Alloy Output Specification and the results are reported to the developer.

While this process involves quite a few entities, only the TestEra Specification needs to be
created explicitly by the user. Everything else is automatically derived from it. Note that
according to TestEra’s authors, there are some cases where TestEra is unable to automati-
cally derive the transformations. In these cases the user has to write them by hand. In our
experiments we have not encountered one of these instances.

3.1.2 Workflow

TestEra provides a plug-in for the Eclipse IDE [2]. This makes it easy to use TestEra from a
graphical user interface. This process is explained in section 3.1.1 and is divided into three
steps which need to be performed by the user:

• Step 1: Generating the Alloy Model
After writing the specification for the structure to be generated, the user has to press
a button, which causes TestEra to create two Alloy files for the input and output
specification.

• Step 2: Generating JUnit Tests
Next, the test cases have to be generated. For this, the user presses another button
which triggers the generation process. The Alloy Analyzer creates all valid instances
within the specified bounds. For each instance a JUnit test case is created. Within the
test case, the Java instance is created, the test method is executed and the instance is
passed to the TestEra library in order to verify the postconditions. After this step, the
user ends up with one JUnit test case for every instance of the specified structure.

• Step 3: Running the Tests
Lastly, the user has to run the generated test cases. This can be done manually or the
test cases can be added to a test suite and be run as part of a regression testing test
suite.

53

3 TestEra

1 class Node {
2

3 public Node left;
4 public Node right;
5 }

Figure 3.2: Node.java: Code for Node class.

1 @TestEra(invariant = {"all n: Node | n !in n.^(left + right)",
2 "all n: Node | no n.left & n.right",
3 "all n: Node | lone n.~(left + right)"})
4 public class BinaryTree {
5

6 public Node root;
7

8 @TestEra(preCondition = {"all n: Node
9 | n in this.root.*(left + right)" },

10 postCondition = {"true"},
11 runCommand = "1 BinaryTree, 4 Node")
12 public boolean testMethod() {
13 // ...
14 }
15 }

Figure 3.3: BinaryTree.java: TestEra Specification for BinaryTree class.

3.1.3 Usage Example

This section illustrates how TestEra can be used for test case input generation. In the
interest of keeping the example simple, we will work with binary trees again. The trees are
neither ordered nor do their nodes have any payload. Both features and other constraints
on the tree could be easily added, but would unnecessarily complicate the example.

Figure 3.3 shows the Java source code for the BinaryTree class and fig. 3.2 the code
for its Node class2. The Node class has two children: left (line 3) and right (line 4). The
BinaryTree class has a reference (line 6) for the root of the tree. In addition, there is the
testMethod method (line 12) in the BinaryTree class, which serves as an entry point
for our tests.

To specify the structure to be generated, there are two annotations: For the BinaryTree
in line 1 and for the testMethod in line 8. The first one describes the general structure
for valid instances. The second one specifies a precondition and a postcondition, which is
validated by TestEra after the method has been executed. Using the precondition, one can
add additional constraints on the input for a single method. In addition, the runCommand
keyword in line 11 adds bounds for the input.

The structure of the BinaryTree is described with three conditions within the annota-

2Both classes need to be in separate files, as TestEra does not support inner classes.

54

3 TestEra

tion for the class:

• The first condition (line 1) tells TestEra that no Node is allowed to be its own (tran-
sitive) child. More programmatically: Descending the tree starting at any node may
never lead to the same node again. Hence, this constraint prevents the tree from
having cycles. The “^” operator denotes the transitive closure.

• The next condition (line 2) ensures (together with line 1) the uniqueness of nodes
inside the tree. It tells TestEra that the left and right child of a node may not be
the same.

• Lastly, the condition in line 3 constricts each node to have at most one parent. The
lone keyword means: “zero or one” and the “~” operator denotes the transpose (or
inverse in case of a binary relation).

In addition, there is a precondition for the testMethod method in line 8 and 9. It
ensures that all used nodes are reachable from the root field in the BinaryTree class.
The “*” operator denotes the reflexive-transitive closure. More details on the semantic of
Alloy can be found in its specification [23].

Using the two files in fig. 3.2 and fig. 3.3 the Alloy Analyzer can generate all valid in-
stances of the BinaryTree.

3.2 Transformations

As described in section 3.1, TestEra includes algorithms to transform instances between a
Java representation and an Alloy one. The so-called concretization transforms an Alloy
instance into a Java object. The abstraction can then be used to reverse this transformation.
In addition, the specification written inside the Java annotations by the user has to be trans-
formed into an Alloy model. TestEra also supplies an algorithm which can automatically
achieve hat.

3.2.1 Specification Transformation

The first thing TestEra needs to do is to combine and translate the specification written by
the user inside the Java annotations. Therefore, each annotated Java class gets translated
into an Alloy signature. For every field a ternary relation is created within the Alloy model.
Each tuple (o, n, s) of this relation assigns a value n to the field in an object o in a particular
state s. TestEra uses two distinct states to model mutation on the object graph. One state is
used to represent the state before the test method is executed and one for afterwards. This
way the developer can access the pre-state in the postcondition and validate the changes
made to the structure.

As an example consider the BinaryTree class in fig. 3.3. Its translation into Alloy code
is shown here:

55

3 TestEra

1 sig BinaryTree {
2 root : Node lone-> State
3 }

For this class, one signature is created. The root field, which is a reference to a Node
object, is modeled as a ternary relation called root. As an example, assume it contains the
following entries: (b1, n1,PRE), (b1, n2,POST). This means that the root field was refer-
encing the first node n1 and is now (after the test method has been executed) referencing
the second node n2. The b1 entry refers to the object which owns the field. In this case there
is only one BinaryTree object as it is the root of the structure.

The constraints on the structure, specified by the user within Java annotations, are rep-
resented as a fact in Alloy. Alloy facts express constraints on existing types. They are
simply copied by TestEra with some syntactical modifications.

In the BinaryTree example the three conditions are gathered in one fact:

1 fact BinaryTree_fact {
2 all s:State {
3 all n: Node | n !in n.^((left.s) + (right.s))
4 all n: Node | no n.(left.s) & n.(right.s)
5 all n: Node | lone n.~((left.s) + (right.s))
6 }
7 }

TestEra also models the method’s parameters and its return value in order to allow the
user to access them in the pre- and postconditions. To do this, TestEra simply introduces
another ternary relation for each parameter and the return value. Obviously no return
value exists in the pre-state (before method execution).

Continuing with the binary tree example, the parameters and return value is modeled
like this:

1 static sig Pre extends State {
2 This: BinaryTree,
3 exampleParameter: Int
4 }
5

6 static sig Post extends State {
7 Result: Boolean
8 }

Line 1-4 define the parameters. For demonstration purposes we added another param-
eter, next to the implicit this reference. The second signature (sig) in line 6-8 models the
return value.

3.2.2 Concretization

Once the Alloy Analyzer has created instances conforming to the given specification,
TestEra needs to translate these instances into Java objects for the test case. Algorithm 6

56

3 TestEra

shows how this transformation is achieved in pseudo code3:

Input: alloyModel
Output: The root of the java object graph.

1 map←− ∅
2 foreach signature in alloyModel.signatures do
3 foreach atom in signature.atoms do
4 map←− (atom.name, new signature.type)
5 end
6 end
7 foreach relation in alloyModel.relations do
8 foreach (from,to) in relation do
9 map [from][relation.field]←map[to]

10 end
11 end
12 return map [“input”]

Algorithm 5: Alloy to Java

The algorithm works in two stages: First, it iterates over every atom4 of all signatures.
For each atom, a new map entry is created. The atom serves as a key and maps to a newly
created Java object of the corresponding type.

After creating all objects needed for the test case, the second stage sets the references
between these objects. Therefore, the algorithm loops over all relations in the alloyModel.
Note that a relation defines all values for a specific field: A tuple “(from, to)” of the relation
expresses that the field of the relation in the “from” object references the “to” object. This
relationship is translated into Java in line 9: First the “from” object is obtained from the
previously created map. Next, the field specified by the relation is assigned to the “to”
object, which is also retrieved from the map.

3.2.3 Abstraction

The last transformation TestEra needs is the abstraction. It is the inverse operation to the
concretization: the algorithm transforms a Java object back into Alloy. This way TestEra is
able to verify the postcondition using the Alloy Analyzer.

The algorithm basically has to walk the entire reachable structure and add every object
as a signature to the Alloy model and every reference to the corresponding relation withing
the Alloy model.

3Both, the concretization as well as the abstraction are implemented in Java in TestEra.
4Atoms in Alloy correspond to Java objects and Signatures to classes.

57

3 TestEra

Input: map, alloyModel, output
Output: The new alloyModel representing the modified object graph.

1 visited←− ∅
2 workSet←− allMethodInputs()

3 if output == null then
4 alloyModel.setSig(“Output”, null)
5 else
6 alloyModel.setSig(“Output”, getAtom(map, output))
7 workSet←− {getAtom(output)}
8 end

9 while workSet not empty do
10 obj←− workSet.pop
11 visited←− field.value
12 foreach field in obj do
13 target =getAtom(map, field.value)
14 alloyModel.getRelation(field.name).add(obj, target)
15 if field.value is a reference and not contained in visited then
16 workSet←− getAtom(field.value)
17 end
18 end
19 return alloyModel

Algorithm 6: Java to Alloy

Therefore, the algorithm first constructs a workSet in line 1-8. The set contains all ob-
jects which could have any effect on the rest of the system, except static variables5: The
input arguments including the implicit this reference (line 2) and the return value of the
method (line 3-8).

Next, the algorithm walks through all parts of the object graph, which are reachable
starting from the elements in the working set (line 9-18). This is done by simply extracting
an element from the working set and looping over all of its fields. Each field value is
recorded in the Alloy model using the previously explained relations. If the field is of
a reference type, the referenced object is added to the working set, if it was not already
visited.

The getAtom method tries to retrieves an Alloy atom from the map, which was created
in the concretization. If it is not found in the map, it was created by the user’s test method.
In this case, a new Alloy atom is created and automatically added to the Alloy model as a
new signature.

5Alloy ignores these, as they are discouraged in object oriented design.

58

3 TestEra

3.3 Limitations

While working with TestEra, we encountered a few shortcomings. This is, as with Korat,
to be expected when working with a research prototype. In the case of TestEra, the issues
were not investigated a lot and this section only seves to document them.

3.3.1 Missing Language Support

There are a few Java language features which are not supported in TestEra. Without dig-
ging into the TestEra code base we can not give a reason why these features are not sup-
ported or if they could be supported at all.

• Inheritance
Using inheritance to abstract common behavior and to decouple parts of the system
is one of the core concepts of object oriented software design. The TestEra prototype
does not support it, but tolerates it. An example shows what that means: Consider an
inheritance structure, where Derived extends Base. It is possible to create instances
of Derived using TestEra, as long as the specification does not refer to fields in
Base6.

With inheritance being a given in a real world project, we propose a way of working
around this limitation. If there are no fields in the super class which values need
to be generated, TestEra can be used directly. Otherwise, the developer can extend
the class to be tested and define each field of all super classes in this newly created
class. The fields can then be generated by TestEra. In addition, the developer creates
a wrapper method in the new class which first copies the values from the fake fields
into the real fields of the super classes, then calls the method which actually should
be tested and lastly copies the values back into the fake fields.

This way, one could use TestEra for testing structures with inheritance. However, it
involves additional manual labor and requires the fields of the super classes to not be
private. In addition, this approach pollutes the project with a somewhat unnecessary
class. But, on the plus side, this approach does not require the developer to write the
TestEra specification inside a production class. Thus, keeping it clean of testing code.

• Primitive Types
TestEra only supports positive integers and boolean values. The reason is that op-
erations, such as mathematical and logical ones, have to be modeled within Alloy.
Hence, this is not a conceptional problem but only a feature not yet implemented.

A small experiment was conducted to get a rough idea of how important other prim-
itive types are. Using a simple Linux bash script such as:

6According to the original authors of TestEra, the lack of inheritance support is not a conceptional issue, but
was just not implemented for the prototype, see [28, p. 100].

59

3 TestEra

in
t

boolea
n

float
long

byte

double
ch

ar
sh

ort

500

1,000

1,500

2,000

2,500

#O
cc

ur
re

nc
es

Chelone

Korat

JUnit 4.13

Figure 3.4: Primitive variable occurrences.

1 for f in {boolean,char,byte,short,int,long,float,double}; do
2 echo $f: `find . -name "*.java" -exec cat {} \;
3 | grep "\W$f\W"
4 | wc -l`;
5 done

one can easily obtain a fairly good estimate. The script simply iterates over all prim-
itive types of Java and counts the number of lines in which they are contained. Note
that this is not an exact measurement, but a fairly good estimate should be sufficient
for this purpose.

The result is shown in fig. 3.4. The y axis shows the number of occurrences for the
variable types in Java. Three different tools are shown: Chelone, Korat and JUnit[37].
For the first two we simply used the current build, as we are actively working on
them. For the latter one, version 4.13 was used.

It is easy to see that integers and booleans are the most commonly used variable
type. In Chelone there are also quite some floating point variables used. This is
mostly due to the graphics code. In addition to graphics code, we expect floating
pints primarily being used in scientific or statistical simulation code. But, as there is
no good workaround7 to this missing feature, we expect this to be very limiting in
many places.

• Nested Classes
In our experiments, TestEra was not able to deal with inner or static nested classes.

7In some places, the variable type could be changed into an integer.

60

3 TestEra

Figure 3.5: All binary trees with up to 4 nodes.

This issue was not mentioned by the original authors. Therefore, we do not know
whether it is possible to implement this feature in TestEra or not, but it seems prob-
able.

A possible workaround for static nested classes, which was used in the BinaryTree
example in fig. 3.3, is to simply move the nested class to an upper level. In the case
of inner classes, this refactoring becomes more difficult, as one needs to manually
manage the reference to the outer class.

Refactoring only works for code which is able to change. Library code or code which
has been shipped to customers can often not be changed. In these cases, the devel-
oper could – similar to the solution for the inheritance problem – create a wrapper
class, which then initializes the actual class, including the inner classes.

These workarounds require quite a lot of refactoring or new code to be created, mak-
ing it less attractive to use TestEra, if there are many nested classes in the project.

3.3.2 Isomorphism Problems

During our experiments, we encountered an issue where isomorphic instances were being
generated. Note hat this is not a problem with TestEra itself, as it is the responsibility of
the Alloy Analyzer to generate test cases and therefore also to filter isomorphic ones.

The issue occurs in the binary tree example we introduced in fig. 3.3. When generating
trees with 4 nodes, TestEra generates 26 trees8. The formula for the number of binary trees
with up to n nodes f(n), which was derived in section 2.2.1.1, states that there are only 23
trees. Hence, TestEra generates three isomorphic trees.

8This issue also occurs for larger trees.

61

3 TestEra

Figure 3.5 shows all binary trees with up to 4 nodes. There are 22, as we did not visu-
alize the empty tree with zero nodes. TestEra allows the user to visualize the instances it
generates using Alloy’s visualization capabilities. Using this feature and fig. 3.5, one can
easily find the isomorphic ones: They are drawn with filled black nodes.

3.3.3 Encapsulation Violations

Inside the generated test cases, the required objects are simple created and their references
are directly assigned:

1 BinaryTree BinaryTree_0 = new BinaryTree();
2 Node Node_0 = new Node();
3 BinaryTree_0.root = Node_0;

This is a very fast process to create a test structure, but it also implies a problem: The
root field of the BinaryTree needs to be accessible from withing the test function.
Therefore, it needs to have public visibility or, assuming the test function is in the same
package as the BinaryTree, have protected or default visibility. In any case, this
would usually force the developer to escalate the visibility of the classe’s fields.

While this violates a core principle of object oriented software design, the problem is not
specific to TestEra: When performing the unit testing manually, one would also need to
create the BinaryTree object. There are two ways of doing this: Either access the fields
directly, which leads to exactly the same problem, or constructing the object via method
calls. This leads to a unit test, which depends on several methods and no longer tests
one method in isolation. In addition, the developer no longer has precise control over the
details of the created structure.

Note that this problem can not be fixed by using reflection to assign values to private
fields. Doing so would allow the developer to keep the private visibility officially. But,
in actuality it creates an even worse problem: There is an invisible dependency on the field
now. Hence, no developer looking at the class at hand would ever assume that this field
is accessed by anyone else but the class itself. It just obscures a dependency and therefore
makes it easier to break.

In general, it would be impossible to make TestEra use a sequence of method calls to
create an object graph. Therefore, the approach taken (assigning fields directly), seems
like a valid tradeoff.

62

4 JCute

JCute [39] is a Concolic Unit Testing Engine for Java programs. It was developed around
2006 at the Open Systems Laboratory of the University of Illinois. Before creating JCute,
they developed a similar concolic testing tool for C programs: Cute [40]. It provides the
same functionality as JCute, but does not allow to test multi threaded code. With this thesis
being focused on testing Java programs, only JCute is considered here.

This chapter is laid out as follows: First, an overview of JCute from a user’s perspective
is given in section 4.1. After a short introduction, a simple example is used to explain how
JCute works. To make it better comparable to Korat and TestEra, the section also includes
a second example with a binary tree. Lastly, in section 4.2 the inner workings of JCute are
explained.

4.1 Description

As described in chapter 1, JCute is a concolic testing tool for Java. It builds on the work
of [29], who first introduced concolic testing. The general idea is to start off with random
input. During the concrete execution of the method under test, symbolic constraints are
gathered and used to derive new test inputs. The goal is to provide a high coverage with
very few test cases by only generating ones with different control flows through the code
under test.

This section first introduces JCute from a high level perspective in section 4.1.1. Next, a
simple example method is used to illustrate how one can use JCute and how JCute derives
the test cases in section 4.1.2. In order to make JCute better comparable to Korat (chapter 2)
and TestEra (chapter 3), section 4.1.3 shows how to generate binary trees with JCute.

4.1.1 Overview

In order for JCute to track the input symbolically, the code under test first has to be in-
strumented. JCute uses the SOOT compiler framework [44] to achieve that: First, the code
is compiled into byte code using a standard Java compiler. Then, the SOOT compiler
framework is used to instrument the code. For each instruction, calls to the JCute runtime
environment are added. These calls provide the necessary hooks for JCute to record the
imposed constraints on the input variables during runtime.

Once the code has been compiled and instrumented, it is ready to be tested by JCute.
Figure 4.1 shows the main loop of JCute: First, random values are generated for all input

63

4 JCute

Generate
Random Input Input

Run Method
under Test

Derive
new Input

Constraints

Figure 4.1: Overview of JCute.

variables. JCute has not gained any knowledge on the code to be tested yet, therefore ran-
dom is the best it can do in the beginning. Next, the method under test is executed with
these values and the symbolic constraints are tracked during the execution. The gathered
constraints describe one specific path through the method. By negating some of the predi-
cates, a formula describing the properties for an input for a different path can be obtained.

This formula is solved using a custom constraint solver, which provides several
problem-specific optimizations (see section 4.2.3). It also has some limitations: For exam-
ple only linear equation systems can be solved. Therefore, whenever a non-linear symbolic
expression is encountered, it is replaced with the concrete value from the current execu-
tion. This makes the found solutions less precise, but allows for a more efficient constraint
solver.

Using the newly obtained input, the method is run again. This process is repeated as
long as JCute is able to find new modifications on the formula.

Each method can be visualized as a control flow graph. Each node in the graph repre-
sents a decision (conditional jump), which is based on the input. Note that a condition
could also be constant (like “a == a”) or the decision could be based on static variables.
The latter case is ignored by JCute. In all other cases the decision is based on the method’s
input or the implicit this argument. Therefore, every decision represented by the nodes
of control flow graph is dependent on the input and the outcome can be changed by alter-
nating the input1. JCute basically uses backtracking on these nodes by negating some of
the constraints to explore all possible paths of the control flow graph2.

4.1.2 Simple Example

Listing 4.1 shows an example Java program, which is used to illustrate how JCute works.
For simplicity, all functionality is gathered within one class in one file. In a real world

1There may also be decision outcomes which can never be reached.
2As there can be a very large number of paths for methods with loops or jumps, a maximum search depth is

used.

64

4 JCute

1 public class SimpleExample {
2

3 static void testMe(int a, int b) {
4 if(a != 0) {
5 if(b != 0) {
6 int x = 3 * b;
7 if(x == a) {
8 Cute.Assert(false); // -> error
9 }

10 }
11 }
12 }
13

14 public static void main(String[] args) {
15 int a = Cute.input.Integer();
16 int b = Cute.input.Integer();
17

18 testMe(a, b);
19 }
20 }

Listing 4.1: Simple test example for JCute.

setup, the test code can be contained in a different file, thus separating production and test
code.

The mainmethod in line 14 serves as an entry point. First, the JCute API is used to create
two integer values (line 15 and 16). These two variables serve as an input for the testMe
method and they are tracked symbolically by JCute. As previously stated, JCute will use
random values in the first iteration. Unlike Cute, JCute initializes the primitive values with
0 instead of using a random number generator. Thus making the process less random, but
still independent from the code under test. JCute is also able to generate objects. These
reference values are always initialized with null, just like with pointer values in Cute.

In line 18 the test method (testMe) is called using the two generated variables a and
b. This function is mainly written for demonstration purposes. First, it checks that both, a
and b, are not equal to zero. Then it checks if a is equal to three times b, if so the program
is terminated by an assertion. Otherwise, the method simply returns.

Note that there are four distinct paths through the method. In this case all paths are
possible and therefore, JCute is able to explore all of them. Figure 4.2 shows the chosen
values for each iteration:

• 1. Iteration
As already stated, JCute chooses zero for all primitive values in the first iteration.
Calling the testMe method with a=0 and b=0 will cause the execution to take the
else-branch of the first if statement (line 4) and immediately return. Let a0 and b0
denote the symbolic variables representing the respective concrete variables. JCute
gathers the constraints for the path taken through the control flow graph in a for-

65

4 JCute

1. Iteration 2. Iteration 3. Iteration 4. Iteration

a 0 1 1 3

b 0 0 1 1

path constraint a0 = 0 a0 6= 0 ∧ b0 = 0
a0 6= 0 ∧ b0 6=

0 ∧ x0 =
3 · b0 ∧ x0 6= a0

a0 6= 0 ∧ b0 6=
0 ∧ x0 =

3 · b0 ∧ x0 = a0

Figure 4.2: Symbolically tacked variables.

mula, which is called path constraint. It defines the characteristics of all inputs lead-
ing to the same execution path3. In this case, only one constraint is gathered for the
jump to the else-branch in line 4. Hence, the following path constraint: 〈a = 0〉.

• 2. Iteration
In order to generate the input values for the second iteration, JCute modifies the
path constraint by negating the last predicate. This leads to the new path constraint:
〈a0 6= 0〉, which will cause the program to take the other branch for the if statement,
which was executed last.

Using a constraint solver JCute is able to find concrete values for the symbolic con-
straints. As shown in fig. 4.2, only the value for the variable a has changed, as there
are no constraints for b. Executing the testMe method with these new values causes
the execution to take the then-branch for the first if statement (line 4). The next if
statement (line 5), which checks that b is positive, fails and the method returns, lead-
ing to the new path constraint: 〈a0 6= 0 ∧ b0 = 0〉.

• 3. Iteration
For the next iteration JCute negates the last predicate of the path constraint again,
leading to: 〈a0 6= 0 ∧ b0 6= 0〉. A possible solution for the equation is a0 = 1 and
b0 = 1. Using these values for the concrete variables leads to an alternated execution
path where the then-branch of the first two if statements are taken.

In the following two lines (line 6-7), the testMe method checks if a is equal to three
times b by using a local variable x. For the input a0 = 1 and b0 = 1, this is not the
case and the method simply returns.

The if statement in line 7 depends on a and x, which depends on b. JCute is able to
track this transitive dependency of the if statement on b and to derive the following
path constraint: 〈a0 6= 0 ∧ b0 6= 0 ∧ x0 = 3 · b0 ∧ x0 6= a0〉.

• 4. Iteration
For the last iteration, JCute inverts the last predicate of the path constraint again,
leading to: a0 6= 0 ∧ b0 6= 0 ∧ x0 = 3 · b0 ∧ x0 = a0. This formula is solved by the

3Assuming a deterministic program.

66

4 JCute

constraint solver, which leads to the concrete values: a=3 and b=1, as a needs to be
equal to three times b to reach the assertion.

When executing the testMemethod again, another distinct path through the control
flow graph is taken, which takes the then-branch of the inner most if statement
and triggers the assertion. JCute reports this error and provides the developer with
a concrete set of input values, which trigger the program fault. This makes it easy
for the developer to reproduce the problem and debug it. Note that this error, as all
errors found by JCute, is a real error. It was found during the concrete execution and
not by some symbolic evaluation.

After this iteration JCute is done with its exploration. Negating the last predicate
again would lead to a path constraint, which was already explored in iteration 3.
Therefore, JCute has now explored all four possible paths through the method lead-
ing to a path coverage of 100%.

4.1.3 Binary Tree Example

JCute can also be used to generate complex data-structures. Unlike with specification-
based testing tools, like Korat (chapter 2) or TestEra (chapter 3), the structure is not spec-
ified explicitly. In order to generate a data-structure, successive calls to its methods are
used. For example, to create a binary tree with four nodes, one would simply insert four
nodes into an empty binary tree. As shown in section 4.1.2, JCute tries to explore all pos-
sible different paths through a method. Therefore, JCute explores all paths through the
insert method of the data-structure and thereby creates different instances.

Unlike with the specification-based testing tools, this approach does not guarantee to
find all possible instances. Instead, it tries to find instances which take different paths
through the creation methods. Assuming the method under test is called right after the
data-structure has been created, the execution still runs within the JCute runtime and
therefore JCute also tries to find different paths through this method.

Listing 4.2 shows how one can test a binary tree using JCute. Unlike in specification-
based testing, we need to use a more realistic tree, where the Node objects hold a payload.
Hence, we are using a binary search tree. The reason for this is that JCute uses the API of
the BinaryTree class to generate the trees. In order to write an insert method, we need to
have some value associated with a node to be able to insert it at the right place. Otherwise,
there would be no reasonable way to construct the tree.

The binary search tree maintains one simple invariant: All payloads in the left sub-tree
of a node are smaller than its payload and vise versa for the right sub-tree. In addition,
each payload is unique. Hence, there can not be two nodes holding the same number.

In the example in listing 4.2, line 3-8 declares the Node object with its associated value
and a reference to the left and right child. In addition, there is a constructor to initialize
the Node object. The BinaryTree class has a reference to the root of the tree and offers
an insert method. We do not show the implementation for this method to keep the

67

4 JCute

1 public class BinaryTree {
2

3 public static class Node {
4 Node(int value) {this.value = value;}
5 int value;
6 Node left;
7 Node right;
8 }
9

10 private Node root;
11

12 void insert(Node node) { /* ... */ }
13

14 public static void main(String[] args) {
15 BinaryTree tree = new BinaryTree();
16 for(int i=0; i<3; i++) {
17 tree.insert(new Node(Cute.input.Integer()));
18 }
19

20 Test.testBinaryTree(tree).
21 }
22 }

Listing 4.2: Simple test example for JCute.

example clear. When inserting a node n, the method simply walks down the tree until it
finds a valid position to insert n. At each node c there are three options: (1) If the two
nodes’ payloads are equal, the search is completed and n can be discarded, as it is already
contained in the tree. (2 & 3) If the payload of c is smaller (larger) than the payload of n,
the search continues at the left (right) child of c. If there is no left (right) child n, becomes
the left (right) child of c.

Just like in the simple example in section 4.1.2, the execution starts at the main function
(line 14). First, a BinaryTree object is created (line 15) and 3 nodes are added (line 16-18).
After that, the user can call any method to perform various tests on the tree (line 20).

When running the code with JCute, all structurally different binary trees with 1, 2 and
3 nodes are created. For this example, JCute creates 13 trees. Due to the payload, there
are 5 trees which are structurally equal to the other ones and therefore redundant for our
purpose. This leaves 8 created trees, which are structurally different. This number can be
verified using the formula in section 2.2.1.1: f(3) = 9. Note that the code in listing 4.2
does not generate the empty tree with zero nodes, therefore there are only 8 trees instead
of 9 trees.

We also experimentally verified that JCute creates all structurally different binary trees
for up to 4 nodes. In this case, JCute creates a total of 75 trees and only 22 are structurally
different. As we have to filter out the redundant trees manually, we did not do the verifi-
cation for 5 nodes, which yields 541 structures.

68

4 JCute

4.2 Algorithm

In this section we lay out the interesting parts of the algorithm and the techniques used
in JCute. Next to the concrete execution, the program under test is executed symbolically.
Therefore, the code is instrumented and each instruction is monitored by JCute. In order to
build constraints on the input variables and derive new inputs, the program state is kept
in a symbolic state as well. This state is updated each time the concrete state changes. At
the end of the execution the constraint solver uses it to derive a new test input.

First, the entities of the symbolic state are described in section 4.2.1. After that, sec-
tion 4.2.2 explains how the code is instrumented and describes how the changes to the
concrete state are transfered into the symbolic state. Section 4.2.3 then outlines the main
properties of the constraint solver used by JCute. Lastly, section 4.2.4 explains how JCute
offers support for multi-threaded code in Java.

Note that this description is mainly based on Cute [40], as the paper on JCute [39] does
not provide a detailed description of JCute. But with JCute being based on Cute, the con-
cepts are very similar. All details about Cute can be found in [41].

4.2.1 State Representation

JCute uses several data-structures to symbolically monitor the execution of the program at
runtime. The following structures are used:

• Logical Input Map I
The logical input map I is a symbolic representation of the current object graph in
the program. It stores all primitive values and references between objects. Instead of
storing the physical addresses of the involved objects, logical addresses (represented
by numbers in N) are used. This indirection has the advantage that the logical ad-
dress of an object does not change between two executions. The physical address,
however, could change each time the object gets allocated. In addition, the usage of
logical addresses allows JCute to make consecutive inputs similar [40].

I is a partial function: I : N 7→ N ∪ V. Where N are logical addresses and V is
the set of all values of all primitive data types. This structure is updated each time
the object graph of the actual program is updated. It can be used to represent any
data-structure.

To give an idea of how such a map looks like, consider fig. 4.3 as an example. It
shows a binary tree (as described in listing 4.2) and its logical input map I. The first
row of the table shows the logical address and the second row the associated value
or logical address. The first column (logical address 0) represents the root field of
the binary tree. It is a reference to a Node object at the logical address 1. Starting at
logical address 1, the logical input map consecutively contains the fields of the root
of the tree: value, left and right. The other two Node objects reside at logical
address 4 and 7.

69

4 JCute

28

26 496

0 1 2 3 4 5 6 7 8 9

1 28 4 6 26 0 0 496 0 0I =

Figure 4.3: Representation of a binary tree as a logical input map I.

• Memory MapM
This map is used to bridge the gap between symbolic variables and concrete ones. It
maps each logical address to a physical variable. Therefore, JCute is able to find the
concrete variable for any symbolic variable in I.

• Predicates P
This structure maps variables to arithmetic constraints on primitive and reference
values. These are gathered at each statement which changes the concrete state. They
are linear constraints, i.e. of the form: a1x1 + a2x2 + · · · + anxn + c ./ 0, where
./ ∈ {<,≤,=, 6=, >,≥}. Non-linear expressions in the program are not tracked as
symbolical constraints, instead their concrete value is used directly. Note that JCute
does not track constraints with n = 0, as these are constants, which can also be
obtained from the concrete state.

For reference values the tracked constraints are simpler, as there is no pointer arith-
metic in Java. They are of the form x ∼= y or x ∼= null, where ∼= ∈ {=, 6=}.

4.2.2 Instrumentation & Execution

The instrumentation inserts calls to the JCute runtime into the program. This allows
JCute to track the variables symbolically. First, the Java code is compiled into byte code
with a standard Java compiler. After that, the SOOT compiler framework [44] is used
to first simplify statements by introducing temporary local variables and thereby split-
ting complex calculations into several smaller steps. This makes the second step, the in-
strumentation, easier, as only very basic statements have to be instrumented by adding
calls to the JCute API. Three functions are needed for the instrumentation: initInput,
executeSymbolic and executePredicate. Basically, initIput initializes a new
variable, executeSymbolic does an assignment and executePredicate evaluates the
condition for a branch. These three methods are explained in the following sections.

There is no description of any of the algorithm for JCute by the original authors. There-
fore, the following explanation only shows how we think that the algorithm described for
Cute would look like for JCute. Even though it might be implemented slightly differently,
the general idea should be the same.

70

4 JCute

4.2.2.1 Method: initInput

The initInput method is used every time the user requests a value for a variable from
JCute. In the previous examples (listing 4.1 and listing 4.2) this was done via a call to the
cute.input.Integer() method. It is also possible to request variables of different data
types or reference values. In all cases, JCute initializes the variable using the logical input
map. The details are shown in alg. 7.

Input: variable // to be initialized
Input: logicalAddress // of the variable

1 if logicalAddress /∈ I then
2 variable←− 0
3 I ←− I[logicalAddress 7→ 0]

4 else
5 v←− I(logicalAddress)
6 if typeOf(v) is primitive value or v == 0 then
7 variable←− v
8 else
9 if v ∈M then

10 variable←−M(v)
11 else
12 h’←− h
13 variable←− allocate(typeOf(v))

14 I ←− I[logicalAddress 7→ h’]
15 M←−M[h’ 7→ variable]

16 foreach field in variable do
17 initInput(field, h’++)
18 end
19 end
20 end
21 end
22 P ←− P[variable 7→ xl]

Algorithm 7: initInput Method in pseudo code.

The algorithm gets the logical address and the variable as an input. For simplicity we
do not consider Java reflection techniques for maintaining a reference to the variable and
setting it. We simply assume that we have some kind of handle to the variable, which
allows us to assign values to it and obtain its type information.

At the beginning (line 1), the algorithm checks whether the logicalAddress is defined in
the logical input map I. If it is not defined, JCute has never seen the variable before and

71

4 JCute

therefore initializes it to zero (line 2). This update is also kept in the logical input map I
(line 3).

Otherwise (line 5), if the logicalAddress is defined in I, JCute has already decided on a
value for the variable. This value is read from the logical input map I in line 5. If it is a
primitive type or if it is a null reference, JCute does not need to allocate any objects and
can directly assign the value to the variable (line 7).

Otherwise (line 9), the algorithm now knows that the variable should be initialized and
pointed to an object (not null). The next question (line 9) is whether this referenced object
was already created in the current execution. This can happen, if two variables point to
the same object and the other one has already been initialized. If the object was already
created (line 10), it can be obtained using M, which maps logical addresses to concrete
objects.

Otherwise (line 12), if the object does not exist already, a new object needs to be allocated
and initialized. The global variable h holds the next free logical address, which is the
place where the algorithm puts the object to be created in the logical address space. The
allocate function creates an object and increases h by the object’s size (number of its
fields). The algorithm keeps the initial value of h in h’ in order to be able to address the
fields of the object later. Next, the new object is added to I andM. After that, each field
of the newly created object is initialized by recursively invoking the initInput method.

Using this method, JCute is able to create concrete values and objects using the logical
representation I of the object graph, which is created by the constraint solver.

4.2.2.2 Method: executeSymbolic

A call to this method is inserted by the instrumentation framework whenever a value is
assigned to a variable. Its purpose is to transfer these changes from the concrete state
into the symbolic state. It is used for primitive variables as well as for reference variables.
Algorithm 8 shows the pseudo code for the algorithm.

As an input, the algorithm gets a x and an expression e. In the concrete code, the expres-
sion e is assigned to the x. The algorithm needs to do the same for the symbolic state. The
algorithm uses a switch-statement to treat the different types of expressions. Note that
there are only unary or binary expressions, due to the simplifications made by the SOOT
compiler:

• Unary Expressions
In this case, another variable v2 is assigned to the x. Hence, JCute needs to add a
predicate to the set of predicates P , which expresses that x has the same value as v2.
Therefore, JCute first does a lookup to check if v2 is contained in P . If this is the case,
a predicate is added to P (line 3), which reflects the equality.

Otherwise, there are no constraints on v2 in the current symbolic state. Therefore,
the value for v2 can only be obtained from the concrete state. JCute could add a
constraint that expresses that x is equal to this concrete value. But as previously

72

4 JCute

Input: x // which is getting assigned
Input: e // which is assigned to x

1 switch e do
2 case ”v1 “:
3 if v1 ∈ P then P ←− P[x 7→ P(v1)]
4 else P ←− P − x
5 end
6 case ”v1 ± v2“:
7 if v1 ∈ P and v2 ∈ P then P ←− P[x 7→ P(v1)± P(v2)]
8 else if v1 ∈ P then P ←− P[x 7→ P(v1)± v2]
9 else if v2 ∈ P then P ←− P[x 7→ v1 ± P(v2)]

10 else P ←− P − x
11 end
12 case ”v1 · v2“:
13 if v1 ∈ P then P ←− P[x 7→ P(v1) · v2]
14 else if v2 ∈ P then P ←− P[x 7→ v1 · P(v2)]
15 else P ←− P − x
16 end
17 otherwise
18 P ←− P − x
19 end
20 endsw

Algorithm 8: executeSymbolic Method in pseudo code.

mentioned, JCute does not keep constant expressions in P , as these can always be
obtained from the concrete state. To reflect this in the symbolic state, the variable x is
removed from P in order to delete predicates which were gathered earlier.

• Linear Binary Expressions
These expressions are treated in a similar fashion: If both operands are contained in
the symbolic state, a new predicate is added, which uses these symbolic variables. If
one of the two operands is not contained in the symbolic state, its concrete value is
used. Otherwise, if neither of the operands has any predicates in P , the variable x is
removed from the symbolic state.

• Multiplication Expressions
The constraint solver used in JCute is not able to handle non-linear equation systems.
Therefore, JCute can not add a predicate containing a multiplication of two symbolic
variables. Hence, JCute replaces at least one of the symbolic variables by its concrete
value. If neither of the operands is contained in the symbolic state, the variable x is

73

4 JCute

removed again.

• Other Non-linear Binary Expressions
For other expressions, like division or modulo, JCute can not add any constraints to
the symbolic state. Therefore, the variable x is removed from the symbolic state in
order to clear any previously added constraints.

4.2.2.3 Method: executePredicate

The last method needed by JCute does not propagate changes from the concrete state into
the symbolic state. Instead, it is used to keep track of the outcome of all branches in the
program under test. A branch is an if statement4, which depends on a condition. This
condition is transformed into a symbolic predicate and stored in the path constraints. Al-
gorithm 9 shows the pseudo code.

Input: v1 ./ v2 // which is getting assigned
Input: concreteResult // which is assigned to

1 condition←− true
2 if v1 ∈ P and v2 ∈ P then condition←− P(v1) ./ P(v2)
3 else if v1 ∈ P then condition←− P(v1) ./ v2
4 else if v2 ∈ P then condition←− v1 ./ P(v2)
5 else condition←− concreteResult

6 if neg(concreteResult) then condition←− neg(condition)
7 pathConstraint [i]←− condition

Algorithm 9: executePredicate Method in pseudo code.

The algorithm receives the predicate expression and the result of the predicate in the con-
crete execution as an input. Similar to the executeSymbolic, the expression is extracted
into the symbolic state depending on the availability of its operands: If both operands are
contained in the symbolic stateP , they are used directly. If one of them is available, its con-
crete value is used instead. Otherwise, if none of the operands is available, JCute simple
uses the result value of the predicate in the concrete execution. The resulting symbolical
constraint is stored in the condition variable.

Next, in line 6 and 7 the algorithm stores the extracted symbolic predicate (contained
in the condition variable) in the path constraint. As the path constraint describes the path
which was taken in the concrete execution, JCute needs to negate the constraint in case
the condition evaluated to false. As an example, consider an if statement which checks

4If statements are the only branches, because switch statements are simplified into a chain of if statements
by the SOOT compiler framework.

74

4 JCute

for “x == 0”. If x is not equal to 0, the else-branch is taken and therefore the constraint
describing the path which was taken is the negation of the condition: “x!=0”.

4.2.3 Constraint Solver Tweaks

After each run of the program, the path constraint contains all predicates gathered at each
branching point during the execution. The last predicate in the path constraint is negated5

to create a new path constraint which leads (likely) to an alternative path through the
method.

The resulting formula needs to be solved. To achieve this in an efficient manner, JCute
uses the lp_solve [7] tool as a basis. It is a library for solving linear integer equation sys-
tems. Just like all other libraries for a broad spectrum of problems, it is reasonably fast for
many different cases, but it can be extremely optimized for one specific kind of problem.
JCute introduces three tweaks to improve the efficiency for the problem at hand:

• Fast Unsatisfiability Check
Before lp_solve is invoked, JCute first does a quick check, if the equation system is
satisfiable. This is performed on a syntactical level: JCute checks, if the last predi-
cate in the path constraint, which was negated, is the negation of any of the other
predicates. If this is the case, the equation system is not satisfiable. According to the
authors, this filter reduces the number of following checks and semantic evaluations
by 60-95%.

• Common Sub-Constraints Elimination
JCute analyses the formula and tries to remove common sub-constraints. Doing so
reduces the size of the equation system, which allows for more efficient solving. This
optimization and the next one together reduce the number of sub-constraints in the
equation system by 64-90%.

• Incremental Solving
Next to increasing the performance, this last optimization also helps to keep the sub-
sequently found solutions more similar, which is helpful for the developer looking
at the generated test cases. The idea is to identify the parts of the formula which
have changed during two executions and reuse the parts which are independent of
the changes. For details on this optimization see [40].

4.2.4 Concurrency

JCute allows for testing concurrent programs. Similar to the concept for single threaded
programs, where JCute tries to explore all different paths through the control flow graph,
in multi threaded programs, JCute tries to find all different scheduling orders, thus explor-
ing possible data-races and deadlocks.

5More predicates are negated using backtracking, if the resulting path constraint was already explored.

75

4 JCute

To achieve this, a second structure, similar to the path constraint structure, which keeps
track of all decisions in the program, is introduced. This schedule orders all events, like
shared data reads and writes, between threads in the program. At the end of each ex-
ecution, either the schedule or the path constraint is changed. This leads to a different
scheduling between the threads or an alternative execution path through the program.

The scheduling between the threads is controlled by further instrumenting the code dur-
ing compilation: Before each statement which accesses shared data, a function call to the
JCute runtime is added. This gives JCute the chance to stop the thread. JCute can now
pause the execution until the thread is allowed to run again according to the previously
created schedule.

This feature has proven itself extremely useful when testing concurrent data structures.
It has the advantage that it explores all possible schedules, which is unlikely to happen
in manually written tests. By making the schedule deterministic, it is likely to find bugs
which occur only very rarely in a real execution, where the scheduling between threads is
done by the operating system. [39] shows, how JCute was able to find a large number of
bugs in several of the collection classes of the JDK 1.4. For instance, testing the HashSet
implementation revealed 19 data races and 9 deadlocks.

76

5 Experiments and Evaluation

This chapter contains the most interesting of the experiments for automated test input
generation which were conducted throughout this thesis. It showcases how the introduced
tools can be used to generate test inputs and thereby demonstrates their strengths and
weaknesses. The experiments where all conducted in the context of the hobby game project
Chelone. Therefore, this chapter gives an overview of how automated test input generation
can be used in a real world project. Most of the described test cases with Korat are now
part of Chelone’s regression test suite and have already proven themselves useful.

With Korat being the main focus of this thesis, most experiments are conducted using
Korat. Finding places to use the other tools has proven itself to be a difficult task: TestEra’s
incompatibility with inheritance is a major issue here. Rewriting the original code is often
not an option in a real world project, as it would destroy or worsen the project’s architec-
ture. The other workarounds described in section 3.3 generate a lot of duplicated, highly
coupled code, which is also not desirable. While JCute is more compatible with the Chelone
code base, it is often more difficult to write the specification, as shown in section 5.4.

The following two sections describe the test environment (section 5.1) and the hobby
game project Chelone (section 5.2) briefly. After that, each section describes one of the
experiments.

5.1 Environment

All experiments where conducted on a MacBook Pro (late 2013)1. It has a 2.8 GHz dual-
core Intel Core i7 processor and offers 16 GB DDR3 RAM. As an operating system, the
machine runs OS X 10.10.4 (Yosemite).

For the experiments, which compare the performance of the testing frameworks, a vir-
tual machine is used, as it makes the installation of TestEra much simpler. In addition,
we are only interested in comparing the testing frameworks. Therefore, only their relative
performances matter. The virtual machine is hosted inside an Oracle VirtualBox. It runs a
Linux Mint 17.1 and has version 1.7 of the OpenJDK installed.

As we couldn’t afford an expensive high-end server, we used a commodity class desktop
computer to show that the performance inside the virtual machine is comparable to that
of an average server. The desktop computer runs Windows 10 on a Intel Core i5 2005k
@3.3GHz with 16 GB of DDR3 RAM. The machine has an Oracle JDK version 1.7 installed.

1Details about the machine can be found here: https://support.apple.com/kb/SP691.

77

https://support.apple.com/kb/SP691

5 Experiments and Evaluation

5.2 Sample Project: Chelone

The following experiments were conducted within the context of a hobby game project:
Chelone is a classic 2d orthogonal role playing game for mobile phones. As common in
these games, the player has to control a group of heroes and save the world from an evil
power. The player can walk through various regions of the game world, talk to characters
in the game and fight monsters.

Chelone tries to set itself apart from other games by having a large, interactive and con-
sistent game world. This is achieved by a powerful editor, which can be used to create all
components of the game world: regions, dialogs, monsters, quest, items and so on. This
approach allows the actual game engine to be mostly independent of the actual game.
Therefore, it can be used for creating follow-ups or other similar games.

In order to create an interactive world, the editor includes a custom scripting language
which lets the level designer control most aspects of the game: move characters around,
play animations or start dialogs. In addition, it includes commands for conditional jumps
and function calls. With this powerful scripting language, the game world itself can be
seen as a program which is interpreted by the game engine.

The complexity of the game world results in a very large number of possible inputs for
the game engine. In this thesis, we try using the introduced tools for automatic test input
generation to create various parts of the game world and use them to test the interpreter:
i.e. the game engine.

Both the game itself and the editor are written in Java. Together, they make up roughly
60.000 lines of source code. The database, which is used by the editor to store the game
world, contains about 150 tables. The game world currently requires approximately
25.000 database entries and offers a player around 1 to 2 hours of play time.

For each of the individual experiments, we give a more detailed explanation of the re-
spective part of the game.

5.3 Experiment: Expression Tree Serialization

As already mentioned, Chelone incorporates a powerful scripting language. It is needed
to program all kinds of events in the game world. The script also includes mathematical
expressions, which can be used to assign values to variables or for predicates in conditions.
As an example, assume the game character gets a quest to collect a number of flowers in
order to brew some kind of potion. This could be implemented by using a variable to
count how many flowers the player has already collected. To do so, the developer can set
up a trigger which starts the execution of a script each time a flower is picked up. The
script then increments the flower variable and checks whether its value is large enough.
Once a certain number of flowers has been collected, a dialog could be started to tell the
player that he has collected enough flowers.

To implement these mathematical expressions, a so-called expression tree is used. This

78

5 Experiments and Evaluation

∧

>

blue_flowers 5

>

red_flowers 3

Figure 5.1: Expression tree for a condition.

tree can currently contain binary expression (like arithmetic operations or comparisons),
unary expressions (like negations) or nullary expressions (like variable accesses, constants
or random values). It could also be extended in the future to have other special purpose
expressions. As an example, consider the tree shown in fig. 5.1. It the syntax tree for a
condition which evaluates to true if and only if the blue_flowers variable is larger
than 5 and the red_flowers variable is larger than 3.

The evaluation of the expression trees is implemented using the interpreter pattern [18]:
There is an abstract expression class from which every concrete expression class inherits.
The children of a concrete expression are references to the abstract expression class. This
makes it easy to add more expression types. In addition, the representation as an abstract
syntax tree does not require complex parsing and makes evaluation easy.

As these trees are part of the game world, they need to be serialized and de-serialized in
order to write and read them from disc. To cover a large number of structurally different
trees, Korat, TestEra and JCute are used to generate them. Each of these generated trees
is serialized, de-serialized again and then compared to the original tree. This way we can
test the serialization algorithm for a large number of different trees.

In this experiment, we compare the performance for generating these trees (the time
for the serialization is not measured) for all three testing frameworks: Korat, TestEra and
JCute. As TestEra does not support inheritance, we only use trees made of additions. In
the JCute section, a binary search tree is generated, because JCute needs to create the tree
via its API and therefore requires an insert method as explained in section 4.1.3.

5.3.1 Korat

Korat uses a finitization and a repOK method as a specification to generated non isomor-
phic test cases. Figure 5.2 shows several performance measurements of Korat for generat-
ing addition trees. The logarithmic y axis shows the required time in seconds. As before
we used trees of different sizes: The number of used nodes are shown on the x axis. The
different plots are explained throughout the following paragraphs.

When executing Korat, one can distinguish two phases: In the first phase, all classes
are loaded and instrumented during the execution of the finitization method. For any
given data-structure, the instrumentation takes a constant amount of time. The reason
for this is that the number of classes to be instrumented does not change. In fig. 5.2 the

79

5 Experiments and Evaluation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0.001

0.01

0.1

1

10

100
Ti

m
e

in
se

co
nd

s
Read from disk

Generation Time

Generation with Write

Figure 5.2: Analysis of Korat’s runtime.

instrumentation phase is shown for the addition tree example as a horizontal black line
at about 300 ms. Many projects aim at having a very fast running unit test suite, which
can be executed in a matter of seconds before each commit. This makes it difficult to use
Korat for these kinds of tests. Korat is better suited for long running tests, like regression
or smoke tests on a server’s setup.

During the second phase, Korat iterates over all elements of the search space, checks
their validity using the repOK method and invokes the user’s test function for valid el-
ements. With a growing number of nodes, the number of possible structures grows as
well and therefore iterating through the state space becomes more time-consuming. In the
digram, the plot is named “Generation Time” and depicted by bars with diagonal lines.
Observe how for small trees the instrumentation during the first phase is much slower
than the generation itself. At the break-even point, at about 9 nodes, Korat already gener-
ates 6918 trees in about 600 ms. As the number of binary trees is growing very fast, the time
required for the instrumentation becomes negligible in comparison to the overall time.

Korat offers utility functions to read and write candidate vectors from and to disk. Using
these, it is easy to extend Korat to be able to write all valid candidate vectors during a nor-
mal execution to disk. By adding a special execution method, where the vectors are read
from disk instead of being generated, one can significantly improve the performance of
the state space exploration. The bars with the horizontal lines in fig. 5.2 show the required
time for a normal state space exploration including the serialization of all valid candidate
vectors to disk. One can see that, while it is slower, it does not worsen the performance
much. The introduced overhead is repaid when reading the candidate vectors back.

The bars with grid pattern show the required time for reading candidate vectors from
disc and passing them to the user’s test function. It is clear to see that this method is a lot
faster. There are a few reasons for that: First, Korat does not need to perform any compu-

80

5 Experiments and Evaluation

0 1 2 3 4 5 6 7 8
0.001

0.01

0.1

1

10

100
Ti

m
e

in
se

co
nd

s

Generation Time
Runtime including
Post-Condition

Figure 5.3: Analysis of TestEra’s runtime.

tation for the iteration algorithm, the pruning filter or isomorphism filter. In addition, the
file on disk contains only valid candidate vectors and thus Korat does not need to call the
repOK method and automatically skips over all invalid candidates. As shown in fig. 2.6,
most of the explored instances of a state space are invalid. Using the normal state space
exploration algorithm, each candidate vector needs to be transformed into an object graph
using Java’s reflection API and checked by the repOK method.

5.3.2 TestEra

When using TestEra, the developer writes a specification for the structure to be generated.
As described in section 3.1, there are several steps required to generated test input using
this specification, but only two are interesting from a performance perspective: First, the
generation of valid instances by the Alloy Analyzer and second, the execution of the test
cases including the evaluation of the post-condition by the Alloy Analyzer. The other steps
are only rather simple transformations between instances in Alloy and in Java.

Figure 5.3 shows a plot of the two interesting phases. As in the previous diagram, the
y axis shows the time in seconds and the x axis the number of nodes. The bars with the
grid pattern, labeled “Generation Time” show the time required for the Alloy Analyzer to
generate the test cases from the specification2. The other bars, which are displayed with
diagonal lines, show the time required to actually execute all JUnit tests. This includes the
validation of the post-condition.

There are a few things to observe. First, the generation time (grid pattern bars) is higher
than in Korat and it only scales to 8 nodes, within reasonable time constraints. Second,

2This also includes the time for the transformation from an Alloy instance into a Java object and also the time
serializing them as JUnit test cases.

81

5 Experiments and Evaluation

0 1 2 3 4 5
0.001

0.01

0.1

1

10

100
Ti

m
e

in
se

co
nd

s
Korat

TestEra

JCute
x

Figure 5.4: JCute’s performance in comparison with Korat and TestEra.

the execution takes about the some amount of time for a larger number of nodes as the
generation. This is due to the evaluation of the post-condition. To do this, TestEra abstracts
the state before and after the execution of the method under test into an Alloy model. This
model is required for checking the post condition. Even though the post condition was
simply true, the abstraction process dominated the execution time.

With the post-condition not being used in this experiment, the abstraction of the pre-
and post-state is also not required. When disabling it3, the execution time of the test cases
goes down to less than 1 ms and about 23 ms for 8 nodes. The resulting code does nothing
else but creating objects. It is noteworthy, that Korat’s second phase (the generation phase)
needs roughly the same amount of time for the execution when reading from disk. Korat
could skip the instrumentation when reading from disk or also generate code for creating
the objects to get rid of the instrumentation overhead. This would allow Korat to be as fast
as TestEra when running the tests multiple times.

5.3.3 JCute

JCute, as a concolic testing tool, is not specifically designed for generating data-structures.
Its strength lies in finding specific inputs for a method in order to explore all possible
paths through it. This feature can also be used for generating data-structures by repeatedly
inserting entries as explained in section 4.1. When doing so, JCute tries to find different
paths through the insert method and thereby creates structurally different data-structures.

The addition tree used in this experiment does not have an insert method. As there is
no ordering criteria on the nodes, there is also no senseful way of writing one. Therefore, a
binary search trees (as introduced in section 4.1.3) is used to analyze JCute and compare it

3TestEra does not provide an option to do that, but one can simple delete the code from the JUnit tests.

82

5 Experiments and Evaluation

Figure 5.5: The collision map of a region in Chelone.

to Korat and TestEra. Figure 5.4 shows the performance for all three tools when generating
a binary search tree. A logarithmic y axis is used to show the time in seconds and an x axis
is used for the number of nodes.

Even on the logarithmic scale of the diagram, there is a clear difference between Korat
and JCute: For 5 nodes, Korat is more than 30 times faster. TestEra does very well for tiny
trees, but as the trees get larger (3 and 4 nodes), it becomes slower than Korat. On our
system, TestEra is not able to generate binary search trees with up to 5 nodes. After a few
minutes, TestEra crashes as indicated by the x in the diagram.

5.4 Experiment: Collision Detection

Chelone’s game world, which can be explored by the player’s character, is made up of
regions. Each region is connected to a number of other regions. For example, consider a
building in the game: The first floor is a region. By going to the stairs, the character is
moved to the region for the second floor and when taking the exit door, the character is
put into the outside region.

In each region, there are several objects with which the player can collide. In a building,
these objects can be things like walls, cupboards, tables or computer controlled characters.
To model the collision, two algorithms are used: The first is used for movable objects (like
computer controlled characters or animals). As there are usually not too many of these in
one region, Chelone uses an n2 algorithm where each object is checked against all others.

83

5 Experiments and Evaluation

The second collision system is more complicated and the focus of this experiment: For
larger, immobile objects in the environment (like walls, cupboards or tables), Chelone uses
a bitmap. An abstract sample of such a bitmap for the environment collision of a region is
shown in fig. 5.5. Only the transparent fields can be accessed by the characters, while the
gray fields represent areas, which can not be passed through. Observe, how this leads to
rather sharp corners in the graphic. To solve this problem, Chelone uses a special algorithm
for the collision, which we call corner cutting algorithm. Doing so provides a smooth in-
game collision as shown by the black line.

The game world in Chelone is simulated using 30 small updates every second. In each
of these game ticks, the player’s character is moved by a small distance and the collision
algorithms are used to check if the move is valid. Therefore, the collision algorithm has
to be rather efficient. In addition, the correctness of the algorithm is essential, as a bug
could cause the player’s character to slip through a wall and be stuck behind it forever.
As Chelone’s corner cutting algorithm is rather complicated with about 100 lines of nested
if-then-else constructs, it needs to be tested well.

The position of the player’s character is modeled using two floating point numbers. This
means that a character can be positioned anywhere in the grid and not only at the center
of the fields. Therefore, there is an almost infinite number of possible inputs for the corner
cutting algorithm. This makes manual testing of the algorithm a time consuming task. To
solve this, we try to automatically generate inputs for the corner cutting algorithm. We first
look at the test code in Korat and JCute, after that we compare the results.

5.4.1 Korat

To test the corner cutting algorithm with Korat, we use one fixed collision bitmap and gen-
erate the position, movement direction and movement speed of the player’s character with
Korat. After that we let the game run until the character is unable to continue moving and
validate that the character never occupies a field which is not walkable. From a game’s
perspective, the character is dropped at a random position and walks into a random di-
rection until it hits a wall. The nice thing about this test is that it is easy to validate the
correctness: The algorithm runs correctly for the given input if the character is not able to
reach an invalid field and the moved distance is never greater than the movement speed.

The used collision bitmap is visualized in fig. 5.6, it is represented as a one-dimensional
boolean array in Java. Korat is instructed to generate all floating point values between
1.0f and 4.0f with a sample rate of 0.2f for the x and y component of the starting
position. For the direction, Korat generates all angles, which are a multiple of ten, between
0 and 360 degrees. The speed is measured in fields per tick and is either 0.1f, 0.2f or
0.3f in this experiment.

In order to not only test the corner cutting algorithm but also the game world, this test
could be extended to use the collision bitmaps of the in-game regions instead of an artificial
collision bitmap. This would have the advantage that it not only validates the corner cutting

84

5 Experiments and Evaluation

1 if (y <= 0 || y >= 5
2 || x <= 0 || x >= 5)
3 return false;
4 if (y == 2 && x == 2)
5 return false;
6 if (y == 2 && x == 3)
7 return false;
8 if (y == 3 && x == 3)
9 return false;

10 return true;

Figure 5.6: Control flow graph of a simple function.

algorithm, but also the collision bitmap used in the game4.

5.4.2 JCute

We also implemented a test for the corner cutting algorithm using JCute. The branch in-
tensive nature of the corner cutting algorithm appears like an ideal candidate for JCute.
Getting the test to run, however, took a lot more work than with Korat. When using JCute
to generate values for a test, one needs to play a few tricks:

• General Setup Modifications
As the performance experiments in section 5.3 have shown, JCute is slower than
Korat. Therefore, the sampling rate of the direction angle needs to be reduced. In
the setup for the JCute test, only three different angles are used: 0 deg, 45 deg and
90 deg. The position vector is generated using two float values obtained by the
Cute.input.Float() function. The movement speed is constant.

The test first generates the position and checks if it’s a valid one (i.e. the field is
walkable). After that, the direction is generated and one iteration of the movement
algorithm is executed. Unlike in Korat, it is not possible to execute multiple iterations
of the algorithm as the resulting symbolic state would be too large to handle it in a
timely matter. Even with only one iteration, JCute takes about a minute to generate
the test cases. Note that, after the test cases are generated, we remove this restriction
and also let the game iterate until the character hits a wall.

• Native Methods
When first running the test, JCute did not find many paths through the corner
cutting algorithm code. The reason for this is that the algorithm uses many of
Java’s math utility functions. Many of these functions are implemented in native

4There are a few structures which break the corner cutting algorithm. Therefore, the level designer should
never generate a collision bitmap with such a structure.

85

5 Experiments and Evaluation

code, making it impossible for JCute to track the values. To solve this, we imple-
mented our own math library in pure Java code.

Note that JCute is not able to track all variables symbolically, as there are many non-
linear arithmetic operations (like square root or length of a vector) involved for the
geometric calculations in the collision detection algorithm. But, as already claimed
by the ordinal authors, this restriction rarely has practical implications: As shown in
the result section, JCute is able to reach an optimal coverage.

• Collision Bitmap Representation
Another issue is the representation of the collision information as a bitmap: When
looking up a value in an array, there is an implicit branch based on the position of
the lookup: Different lookup positions give different outputs. JCute does not include
this branch in its symbolic tracking. This circumstance can be easily observed in the
following example:

1 public static void main(String[] args) {
2 int[] arr = new int[]{6, 8};
3 int a = Cute.input.Integer();
4 Cute.Assert(arr[a] == 6);
5 }

JCute only generates one test case, because it does not treat the array lookup as a
branch. This is a problem for testing the corner cutting algorithm, as there are several
lookups in the two-dimensional array representing the collision bitmap. To solve
this, we remove the array and use a series of if statements to encode the same in-
formation. This allows JCute to track the branches correctly. The trick is shown in
fig. 5.6: On the left hand side, the bitmap is shown and the corresponding code is
shown on the right. Observe how both represent the same information.

5.4.3 Results

When comparing the two implementations, Korat has a clear advantage: It does not re-
quire the developer to change large portions of the code under test in order to generate
the test cases. To make these required changes temporary, the developer could change the
code, use JCute to generate the unit test, undo the changes and then use the generated
JUnit tests on the original code. However, this process needs to be repeated every time the
algorithm changes in order to be able to rerun JCute.

Both tools provide the same coverage. In the described setup, they explore all branches
of the corner cutting algorithm, reaching a line coverage of 90%. The only lines missed are
unreachable branches, which throw instances of the UnreachableExceptoin class.

In terms of performance, JCute has a clear advantage over Korat. After creating the
17 JUnit test cases in about 1 minute, executing them takes about 10 ms. Running Korat,
however, takes about 590 ms in total. 90 ms are used to instrument the code and create
the finitization. The remaining 500 ms are needed for the generation and the execution of

86

5 Experiments and Evaluation

the test cases. These numbers can be optimized by using Korat’s feature to read candidate
vectors from file instead of generating them on the fly. This lowers the generation time
to about 380 ms. In addition, the sampling rate could be reduced to lower the generation
time further to about 50 ms, while maintaining the same coverage. When doing so, Korat
creates 45 JUnit test cases. Even when rewriting Korat to create JUnit test cases like JCute,
there is still a larger number of test cases which need to be run, because JCute only creates
the ones which lead to different execution paths.

This experiment shows that automated testing tools can generate good test suites for
algorithms, where the correctness can be easily validated. In addition, it shows that in this
scenario the precise exploration of different branches by the concolic testing framework is
able to achieve the same coverage with less test cases, which leads to a better performance.
However, assuming Korat could also generate JUnit test cases, the performance difference
would become fairly small.

5.5 Experiment: Item Bonus Calculation

This experiment shows one more example for how to use Korat for automated input gen-
eration. The key point of finding places to apply Korat is that there needs to be a semi-
complex structure to generate, an algorithm to use on this structure and a simple way to
validate the result. In the first two experiments, there was an algorithm to test, where the
result was easy to validate. This is not always the case. Assume, for example, the gen-
eration of an entire game world: What would be the validation criteria? To validate an
algorithm is often easier if it operates on a structure which has several invariants, as these
can be used as a success criteria.

In this experiment we test the bonus calculation engine of Chelone: Each character in the
game has several attributes like health, offensive and defensive abilities or magic skills.
These attributes can be enhanced by wearing special armors or weapons. A sword, for
instance, might increase the character’s offensive ability. In addition, each character has a
level which defines the base value for these attributes. Each attribute is represented as an
integer value to the player. There are two kinds of bonuses: One is simply added to the
base value and the other one multiplies the base value by a factor.

Calculating the value after all bonuses have been applied (i.e. the so-called effective
value) can be done using the simple formula:
effectiveValue = baseValue * multiplicativeBonus + additiveBonus;

It gets more complicated for attributes which have a maximum and current value, like
health for instance. Each character has a maximum health value and a current one. The
current health is decreased whenever a monster hits the character and it can be increased
by drinking potions or using healing spells. The issue is scaling it whenever the bonus
changes. For instance, assume a character which has 100 max health and also 100 current
health. Now this character equips an armor, which grants 20% additional health. Therefore
the maximum health goes up to 120 points.

87

5 Experiments and Evaluation

The issue is the current value: In Chelone, the current health value is also increased to
120, because otherwise the character would effectively be injured, as it would have only
83% health remaining. Now let’s assume the character gets hit a few times and the current
health drops to 5 points. What should happen if the player removes the armor again?
Obviously, the character shouldn’t die. Therefore, assume we reduce it down to 1 health
point. What should happen when the player equips the armor again. Should it be scaled
by the bonus factor, leading to a current health of 1.2, or should the absolute bonus be
added, leading to 25 health?

These implementation details are not solved yet. To figure them out, it is helpful to test
them with a lot of different equipment items. This is were Korat comes into play: We use
Korat’s ability to generate large amounts of items and use these to dress and undress a
character. Using the following simple rules we can validate the bonus calculation algo-
rithm:

• A character should not die when changing the equipment.

• Assuming a character without any equipment: Equipping and removing a piece of
equipment should not change the current or maximum value for any attribute.

• Assuming a character which has one equipment slot equipped with a certain item:
Removing this item and re-equipping it should not change the current or maximum
value for any attribute.

Having this testing system, powered by Korat, in place, it is easy to check if a new
algorithm still meets the specified criteria. Also if it turns out that these criteria can not be
fulfilled, they can easily be changed. This experiment shows an ideal use case for Korat:
There is a semi-complex structure to be generated (a set of items with bonuses), and there is
an algorithm, where it is easily possible to specify its post condition. Manually specifying
these items would take a lot of time. Korat is able to generate about 8.000 items in roughly
600 ms. This provides a large pool of testing equipment.

This experiment is also an example for a use case where the new finitization (see sec-
tion 2.3.6) is required: To implement the bonuses, Chelone uses an expression tree (as intro-
duced in section 5.3) for the additive and multiplicative bonus. Both fields have the same
class (i.e. Expression), but one needs integer values and the other floating points. The
new finitization concepts make it possible to use different class domains for both fields
and thereby have different values associated.

5.6 Experiment: Input Queue Synchronization

This experiment shows an example of how to use JCute’s feature to test multi-threaded
code and evaluate its results. Chelone uses two threads: One is the system’s thread, which
is used to draw the user interface and to handle user input events. The other one is the

88

5 Experiments and Evaluation

1 public class UserInputQueue {
2

3 private List<UserCommand> activeQueue = new ArrayList<>();
4 private List<UserCommand> passiveQueue = new ArrayList<>();
5

6 /// Called by GUI
7 public synchronized void addCommand(UserCommand command) {
8 if(!activeQueue.contains(command))
9 activeQueue.add(command);

10 }
11

12 /// Called by game
13 public void processInput() {
14 swapQueues();
15 for (UserCommand userCommand : passiveQueue)
16 userCommand.execute(); // Could potentially block
17 passiveQueue.clear();
18 }
19

20 private synchronized void swapQueues() { /* ... */ }
21 }

Listing 5.1: User input handling in Chelone.

game logic thread. It is responsible to update the game state 30 times per second. As
multi-threaded code is usually not easy to write and even harder to debug, Chelone tries to
bundle the synchronization code in a few classes. To achieve this, message passing is used
to send input events from the user interface thread to the game logic thread.

This mechanic is implemented via a queue. The code is shown in listing 5.1. There are
two important methods, which are called by the two threads:

• The addCommandmethod in line 7 is called by the interface thread whenever user in-
put needs to be passed to the game thread. This input event is recorded as a Command
object and added to the activeQueue.

• To process the Command objects on the game thread, the processInput method
is used. It first swaps the activeQueue and passiveQueue queue. This is done
in the synchronized swapQueues method. In Java, the execution of two methods
declared with the synchronized keyword is mutually exclusive within the context
of one object. Hence, the code of addCommand and swapQueues can not be executed
at the same time and is therefore serialized.

After the queues have been swapped, the game thread can process the events in
the passiveQueue without any need for synchronization, as the interface thread is
only adding Command objects to the activeQueue. By swapping the queues, the
processInput does not need to block the addCommand method while processing
the Command objects. This non-blocking processing is necessary, because some of

89

5 Experiments and Evaluation

the code encapsulated in the Command objects require waiting for the user interface
thread.

To test this code via JCute, two threads are used. The first thread, which represents the
user interface thread, produces two Command objects and passes them to the game logic
using the addCommand method. The second one simulates the game logic and calls the
processInput method once.

JCute is able to find all three schedules, where the access order to the shared data-
structure is different. In this case, the shared data-structures are the two queue objects.
JCute is able to find all three different execution orders:

1. Add both Command objects and then process them.

2. Add one Command object, process it and then add the other one.

3. Execute the processInput method with an empty queue and then add both
Command objects.

In order to explore these different scheduling orders, JCute instruments the code as ex-
plained in section 4.2.4 and adds additional mutexes to control the scheduling. Hence,
JCute is not able to generate JUnit tests for these concurrency tests, as the instrumentation
is required to make it work. Therefore it can only be run from within the JCute frame-
work. Doing so takes about 3 to 4 seconds. Hence, when willing to set up an environment
in which JCute can be run, this could be integrated into the build chain of a program. But
even if not, this concurrency testing feature of JCute is an easy way to find concurrency
issues in code.

90

6 Conclusions and Future Work

Software development projects can greatly benefit from automated test input generation.
It lowers the amount of manual work and can increase the test coverage: As shown by
the conducted experiments, it is possible to exhaustively explore all instances of a given
data-structure up to a specified size. This allows the developer to test an algorithm for
every small instance of the data-structure.

Throughout this thesis, two tools for specification-based testing and one for concolic
testing were evaluated. This chapter first sums up the features of each tool individually
and then provides a comparison between them in section 6.4. Each individual section
describes the tool’s limitations, possible extensions for future work and summarizes the
experimental results.

6.1 Korat

Korat is a very promising tool for automated test input generation. Using only a finitiza-
tion and a validation method (repOK), it is able to generate a huge number of inputs in
little time. When exploring large search spaces, Korat optimizes the search by skipping
over large portions of the search space. This is achieved by a pruning filter, which re-
moves invalid portions of the search space, and an isomorphism filter, which skips over
structurally equal object graphs.

The standard Java language is used to express the specifications. In addition, both parts
of this specification – the finitization and validation method (repOK) – are imperative pro-
gram snippets. For many developers, this offers a very natural way to specify an object
graph, as it does not differ much from usual programming.

6.1.1 Limitations

From the three tools tested in this thesis, Korat is definitely the one on which the most time
was spent. As described in section 2.3, we resolved several issues and bugs. This makes
it possible to use Korat for a wider range of projects. Still, there are some open issues re-
maining which limit the scope in which Korat can be used. First, the instrumentation fails
for inner classes and second, multidimensional arrays are not allowed in the finitization.
While the second issue should not be very important, the first one is troubling and should
be resolved to allow for a broader usage of Korat.

All resolved issues and remaining bugs in Korat show that it is very difficult to write a
correct instrumentation module. There are a lot of different code patterns which need to

91

6 Conclusions and Future Work

be instrumented and it is very difficult to test all of them during development.

6.1.2 Debugging with Korat

As described, Korat instruments the code to track accesses to the generated objects. While
this allows to trim the search space, it introduces additional code, like the KoratArrays
and getter methods at runtime. Using a debugger is therefore complicated, as the runtime
generated code does not show up.

When testing with Korat, a large number of test inputs are used and for each one the
user’s test function is called. When generating larger data-structures, these tests can re-
quire some time to run. Therefore, Korat offers an option to output the current candidate
vector. This feature allows the developer to re-run one specific candidate vector in case
of an error. To accomplish this, the developer can pass the candidate vector directly to
Korat’s API and thereby re-run just one test input.

6.1.3 Future Work

As mentioned above, there are still a few open bugs in Korat which need to be resolved
to make Korat usable for more projects. In addition, Korat needs some refactoring on its
interface. This includes cleaner API functions, a better documentation and meaningful
error messages. These features are required to help new users to get familiar with Korat.
There are also some interesting extensions, besides bug fixes and refactoring, for Korat:

Currently, Korat exhaustively explores all valid instances for a given specification. In
some cases it could be helpful to offer techniques like all-pairs testing to reduce the number
of generated instances. This would allow a developer to use Korat in setups with lots of
independent fields in the test structure.

As shown in the collision detection experiment in section 5.4, Korat is faster than JCute
when generating test inputs, but JCute is able to create JUnit test cases for each generated
test instance. Running these JUnit tests is a lot faster than generating the tests each time
with Korat. Adding a feature to create JUnit tests for each valid candidate vector would
allow Korat to compete with JCute in setups where the test input is generated once and
run multiple times.

Another possible feature for Korat is to combine it with a coverage tool. After generating
test cases and writing them to disk, either as candidate vectors or JUnit tests, these test
cases are executed over and over again. Many of these test cases are redundant, as they
take the same path through the test code. The idea is to track which lines or branches are
covered during generation for each candidate vector and only keep those which improve
the coverage. This feature would allow Korat to generate a similar number of test cases as
JCute, while still offering the easy to use specification-based way of specifying the input
structure.

92

6 Conclusions and Future Work

6.2 TestEra

TestEra provides a novel approach for testing programs: Using the Alloy language and the
Alloy Analyzer, one can automatically generate input for test cases and directly verify the
method under test using pre- and post-conditions. To achieve this, TestEra supplies the
framework, which connects the Alloy Analyzer with Java.

6.2.1 Limitations

When using TestEra in a real world project, one is likely to encounter several difficulties
as explained in section 3.3. These issues prevent the developer from testing structures
which use primitive data types other than boolean or integers. In addition, the lacking
support for inheritance and nested classes requires the developer to write additional code
to hide these features from TestEra. The newly written code has to be maintained and
potentially contains bugs which nullify the test cases. Hence, TestEra can only be directly
and efficiently used for small parts of the project.

6.2.2 The Alloy Language

The specifications in TestEra are written using Alloy, which is a first order relational lan-
guage. In order for TestEra to be used in a project, the developers that are responsible for
testing1 have to learn this new language. Note that this might be more difficult for many
programmers which only have a background in procedural programing languages and are
not trained in formal ones.

But, if this initial barrier is taken, Alloy offers a very expressive way to model a method’s
behavior. In addition, the specification can be directly written inside the class to be tested.
While this approach puts two languages in one file and also mixes testing code and pro-
duction code, it has the advantage that the formal specification of a method is also a very
precise way of documenting the method. Hence, one could skip the imprecise informal
documentation.

Specifying valid instances of a class using the Alloy language is not a trivial process.
To support the developer, TestEra offers a visualization of the generated structures via
the Alloy visualization API. With this feature, a developer can work iteratively on the
specification. Looking at the output, it is easy to find invalid instances and refine the
specification to prevent these from being generated.

6.2.3 Development Environment

TestEra is integrated into the Eclipse IDE2. This allows the developer to use a graphical
user interface to interact with it. There is no integration for other development environ-

1In modern, more agile, engineering teams, all developers are responsible for testing.
2The integration only works with the rather out of date version 3.6 Helios (2010) of Eclipse.

93

6 Conclusions and Future Work

ments, forcing the developer to use TestEra’s command line interface. However, integrat-
ing TestEra into other development environments should be rather easy, as there are only
a few simple commands which have to be invoked to trigger the test case generation. In
addition, the command line API also allows a developer team to integrate TestEra into
their build tool chain.

TestEra works in two stages: First, the developer uses TestEra to generate the Alloy
model and the test cases. Second, the generated test cases are run using JUnit. As shown
in section 5.3, the first phase is rather slow, as it has to use the constraint solver within the
Alloy Analyzer to generate the instances according to the specification. But in the second
stage, one only has to run the JUnit test cases. Within the test case there is only plain Java
code, which constructs the instances and therefore it can run pretty fast, assuming the post
conditions are not used. This system works very well for typical unit tests: The tests are
written (generated) once and executed within a regression test suite multiple times.

6.2.4 Future Work

As with most research projects, TestEra still has several shortcomings (as described in sec-
tion 3.3). Compared to the other tools it is the one with the fewest features. To make use
of TestEra in a real world project and to test not only data-structures, these issues would
need to be resolved. Especially primitive data types and inheritance are required in almost
every project.

TestEra was developed a few years before Korat at the same University. Judging from
our experiments and experience using these tools, Korat seams to be the successor of
TestEra. As both are specification based testing tools, they stand in direct competition
towards each other. When starting a new project and deciding which tool to use, Korat is
likely the better way to go: Due to the limitations of TestEra, Korat offers a wider range of
use cases.

6.3 JCute

JCute brings the well known concolic testing framework – Cute – to the world of Java.
When using JCute to test a method, it tries to explore all different execution paths through
the method. For each different path found, JCute can create a JUnit test case. This allows
an easy creation of test suites with a high coverage percentage.

6.3.1 Platform

JCute itself is written in Java and therefore can be used on any platform which offers a
JVM. But JCute also depends on the lp_solve library, which is openly available under the
GNU lesser general public license [6]. To make use of lp_solve, a custom wrapper library is
required, which needs to be compiled by the tester. In larger projects which span multiple
platforms, this could be an issue. One solution is offered in the form of a pre-compiled

94

6 Conclusions and Future Work

wrapper including lp_solve. However, this binary distribution of JCute depends on some
older 32 bit Linux libraries. Therefore it is only usable on older machines or inside virtual
machines.

Once JCute is installed, it is very easy to get started using it: Its graphical user interface
provides an easy way for running and evaluating the results of the created tests. In addi-
tion, JCute can also be used from the command line. This allows using it from within an
automated build system, like a continuous integration server.

6.3.2 Features

Unlike in TestEra, the developer does not have to write a specification in a formal language.
In JCute, the developer creates a data-structure simply by successively adding elements
to it. This makes it a very natural process which is easy to use. However, as shown in
section 5.4, it can be difficult to make JCute work with certain algorithms.

JCute explicitly supports concurrency. Using JCute, it is easy to explore various corner
cases in multi threaded code. This is an especially useful feature, as multi threaded code
is often difficult to test and understand. Therefore, having a tool for effectively testing it
should prove very beneficial for the development team.

6.3.3 Future Work

JCute is the most stable of the three tools. We only encountered one problem during our
experiments: JCute does not always create a JUnit test case for each of the explored paths.
For example, in the binary tree test in section 4.1.3, JCute explores all 8 structurally differ-
ent trees, but only creates test cases for 5 of them. This dramatically reduces the value of
the created JUnit test suite, as the coverage is much lower.

Another feature for JCute would be an optional, more powerful constraint solver for
non-linear expressions. While there were no problems in our experiments, it could be an
issue for algorithms with more complex calculations. Therefore, having another solver as
a fallback would be beneficial.

6.4 Overall

All three tools are written to test Java code and also are implemented in Java. JCute uses
the lp_solve library, which is not available in Java. The others, Korat and TestEra, only
have dependencies on Java libraries. This allows them to be used on any platform which
offers a JVM.

All of the used tools have several shortcomings, as they are only research prototypes.
While this is fine as a prove of concept, these issues have to be resolved to make them
usable in real world projects. For most companies, it is not feasible to use an unstable tool
for their testing or to fix bugs in the testing framework. Therefore, before any of the tools
can be used in an industry project, they would need to become more stable.

95

6 Conclusions and Future Work

Our development on Korat leads it into the right direction. By fixing bugs and extending
the test suite, Korat is now a lot more stable and usable for a wider range of projects. To
make it easier to get started, the tools would also need a better documentation and error
reporting at runtime.

Given the outlined limitations and features, Korat is probably the best choice for most
projects. As stability and reliability, especially for a testing framework, are a huge factor
for any real world project, TestEra is not a good candidate in its current state. Compared
to JCute, Korat offers an exhaustive exploration of the search space, no required external
libraries and also a better performance for test case generation.

96

Bibliography

[1] Catalan Numbers. https://oeis.org/A000108.

[2] Eclipse IDE. https://eclipse.org/.

[3] GNU General Public License, Version 2. http://www.gnu.org/licenses/
old-licenses/gpl-2.0.en.html.

[4] Java SE7 TreeMap Reference. https://docs.oracle.com/javase/7/docs/
api/java/util/TreeMap.html.

[5] Java SE7 TreeSet Reference. https://docs.oracle.com/javase/7/docs/api/
java/util/TreeSet.html.

[6] LGPL: GNU Lesser General Public License 2.1. http://lpsolve.sourceforge.
net/5.5/LGPL.htm.

[7] lp_solve. http://lpsolve.sourceforge.net.

[8] Thomas Ball. Abstraction-Guided Test Generation: A Case Study. Technical report,
Technical Report MSR-TR-2003-86, Microsoft Research, 2003.

[9] Rudolf Bayer. Symmetric binary B-Trees: Data structure and maintenance algorithms.
Acta Informatica, 1(4):290–306, 1972.

[10] Boris Beizer. Software Testing Techniques (2Nd Ed.). Van Nostrand Reinhold Co., New
York, NY, USA, 1990.

[11] Boris Beizer. Black-box Testing: Techniques for Functional Testing of Software and Systems.
John Wiley & Sons, Inc., New York, NY, USA, 1995.

[12] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. Korat: Automated
Testing Based on Java Predicates. SIGSOFT Softw. Eng. Notes, 27(4):123–133, July 2002.

[13] Patrice Chalin, Joseph R Kiniry, Gary T Leavens, and Erik Poll. Beyond Assertions:
Advanced Specification and Verification with JML and ESC/Java2. In Formal methods
for components and objects, pages 342–363. Springer, 2006.

[14] Shigeru Chiba. Javassist-a Reflection-based Programming Wizard for Java. In Pro-
ceedings of OOPSLA’98 Workshop on Reflective Programming in C++ and Java, page 174,
1998.

97

https://oeis.org/A000108
https://eclipse.org/
http://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
https://docs.oracle.com/javase/7/docs/api/java/util/TreeMap.html
https://docs.oracle.com/javase/7/docs/api/java/util/TreeMap.html
https://docs.oracle.com/javase/7/docs/api/java/util/TreeSet.html
https://docs.oracle.com/javase/7/docs/api/java/util/TreeSet.html
http://lpsolve.sourceforge.net/5.5/LGPL.htm
http://lpsolve.sourceforge.net/5.5/LGPL.htm
http://lpsolve.sourceforge.net

Bibliography

[15] Thomas H Cormen. Introduction to Algorithms. MIT press, 2009.

[16] Christoph Csallner and Yannis Smaragdakis. JCrasher: An Automatic Robustness
Tester for Java. Softw. Pract. Exper., 34(11):1025–1050, September 2004.

[17] Christoph Csallner and Yannis Smaragdakis. Check ’N’ Crash: Combining Static
Checking and Testing. In Proceedings of the 27th International Conference on Software
Engineering, ICSE ’05, pages 422–431, New York, NY, USA, 2005. ACM.

[18] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-oriented Software. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1995.

[19] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: Directed Automated Ran-
dom Testing. SIGPLAN Not., 40(6):213–223, June 2005.

[20] Leo J. Guibas and Robert Sedgewick. A Dichromatic Framework for Balanced Trees.
In Proceedings of the 19th Annual Symposium on Foundations of Computer Science, SFCS
’78, pages 8–21, Washington, DC, USA, 1978. IEEE Computer Society.

[21] Hans-Martin Hörcher. Improving Software Tests Using Z Specifications. In JonathanP.
Bowen and MichaelG. Hinchey, editors, ZUM ’95: The Z Formal Specification Notation,
volume 967 of Lecture Notes in Computer Science, pages 152–166. Springer Berlin Hei-
delberg, 1995.

[22] Daniel Jackson. Automating First-Order Relational Logic. In ACM SIGSOFT Software
Engineering Notes, volume 25, pages 130–139. ACM, 2000.

[23] Daniel Jackson. Alloy 3.0 Reference Manual. Software Design Group, 2004.

[24] Daniel Jackson, Ian Schechter, and Ilya Shlyakhter. Alcoa: The Alloy Constraint Ana-
lyzer. In Software Engineering, 2000. Proceedings of the 2000 International Conference on,
pages 730–733. IEEE, 2000.

[25] Daniel Jackson, Ilya Shlyakhter, and Manu Sridharan. A Micromodularity Mecha-
nism. ACM SIGSOFT Software Engineering Notes, 26(5):62–73, 2001.

[26] Gosling James, Joy Bill, Steele Guy, Bracha Gilad, and Buckley Alex. The Java Lan-
guage Specification, Java SE 8 Edition. https://docs.oracle.com/javase/7/
docs/api/java/util/TreeSet.html, February 2015.

[27] Jeff Carollo James A. Whittaker, Jason Arbon. How Google Tests Software. Addison
Wesley, 1 edition, 2012.

[28] Sarfraz Khurshid. Generating Structurally Complex Tests from Declarative Constraints.
PhD thesis, Massachusetts Institute of Technology, 2003.

98

https://docs.oracle.com/javase/7/docs/api/java/util/TreeSet.html
https://docs.oracle.com/javase/7/docs/api/java/util/TreeSet.html

Bibliography

[29] Eric Larson and Todd Austin. High coverage detection of input-related security fac-
ults. In Proceedings of the 12th Conference on USENIX Security Symposium - Volume 12,
SSYM’03, pages 9–9, Berkeley, CA, USA, 2003. USENIX Association.

[30] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary Design of JML: A
Behavioral Interface Specification Language for Java. SIGSOFT Softw. Eng. Notes,
31(3):1–38, May 2006.

[31] Gary T Leavens and Yoonsik Cheon. Design by Contract with JML, 2006.

[32] Donald M. Leslie. Using Javadoc and XML to Produce API Reference Documentation.
In Proceedings of the 20th Annual International Conference on Computer Documentation,
SIGDOC ’02, pages 104–109, New York, NY, USA, 2002. ACM.

[33] Darko Marinov. Automatic Testing of Software with Structurally Complex Inputs. PhD
thesis, Massachusetts Institute of Technology, 2005.

[34] Darko Marinov, Alexandr Andoni, Dumitru Daniliuc, Sarfraz Khurshid, and Martin
Rinard. An Evaluation of Exhaustive Testing for Data Structures. Technical report,
Technical Report MIT-LCS-TR-921, MIT CSAIL, Cambridge, MA, 2003.

[35] Darko Marinov and Sarfraz Khurshid. TestEra: A Novel Framework for Automated
Testing of Java Programs. In Automated Software Engineering, 2001.(ASE 2001). Proceed-
ings. 16th Annual International Conference on, pages 22–31. IEEE, 2001.

[36] Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 1 edition, 2008.

[37] Vincent Massol and Ted Husted. JUnit in Action. Manning Publications Co., Green-
wich, CT, USA, 2003.

[38] A. Jefferson Offutt and J. Huffman Hayes. A Semantic Model of Program Faults. In
Proceedings of the 1996 ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA ’96, pages 195–200, New York, NY, USA, 1996. ACM.

[39] Koushik Sen and Gul Agha. Cute and jcute: Concolic unit testing and explicit path
model-checking tools. In Thomas Ball and Robert B. Jones, editors, CAV, pages 419–
423, 2006.

[40] Koushik Sen, Darko Marinov, and Gul Agha. Cute: a concolic unit testing engine
for c. In Michel Wermelinger and Harald Gall, editors, ESEC/SIGSOFT FSE, pages
263–272, 2005.

[41] Koushik Sen, Darko Marinov, and Gul Agha. Cute: A concolic unit testing engine for
c. In Proceedings of the 10th European Software Engineering Conference Held Jointly with
13th ACM SIGSOFT International Symposium on Foundations of Software Engineering,
ESEC/FSE-13, pages 263–272, New York, NY, USA, 2005. ACM.

99

Bibliography

[42] J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1989.

[43] Alexis M Tourapis, Oscar CL Au, and Ming L Liou. Predictive Motion Vector Field
Adaptive Search Technique (PMVFAST): Enhancing Block-based Motion Estimation.
In Photonics West 2001-Electronic Imaging, pages 883–892. International Society for Op-
tics and Photonics, 2000.

[44] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay
Sundaresan. Soot - a java bytecode optimization framework. In Proceedings of the
1999 Conference of the Centre for Advanced Studies on Collaborative Research, CASCON
’99, pages 13–. IBM Press, 1999.

100

	Abstract
	Automated Testing in Software Development
	Manual Software Testing
	Specification Based Testing
	Concolic Testing

	Korat
	Description
	Algorithm
	Modifications

	TestEra
	Description
	Transformations
	Limitations

	JCute
	Description
	Algorithm

	Experiments and Evaluation
	Environment
	Sample Project: Chelone
	Experiment: Expression Tree Serialization
	Experiment: Collision Detection
	Experiment: Item Bonus Calculation
	Experiment: Input Queue Synchronization

	Conclusions and Future Work
	Korat
	TestEra
	JCute
	Overall

