
TardisDB: Extending SQL to Support Versioning
Maximilian E. Schüle

maximilian.schuele@tum.de
Technical University of Munich

Josef Schmeißer
josef.schmeisser@tum.de

Technical University of Munich

Thomas Blum
thomas.blum@tum.de

Technical University of Munich

Alfons Kemper
kemper@in.tum.de

Technical University of Munich

Thomas Neumann
neumann@in.tum.de

Technical University of Munich

ABSTRACT
Online encyclopaedias such as Wikipedia implement their own ver-
sion control above database systems to manage multiple revisions
of the same page. In contrast to temporal databases that restrict
each tuple’s validity to a time range, a version affects multiple tu-
ples. To overcome the need for a separate version layer, we have
created TardisDB, the first database system with incorporated data
versioning across multiple relations.

This paper presents the interface for TardisDB with an extended
SQL tomanage and query data from different branches.We first give
an overview of TardisDB’s architecture that includes an extended
table scan operator: a branch bitmap indicates a tuple’s affiliation
to a branch and a chain of tuples tracks the different versions. This
is the first database system that combines chains for multiversion
concurrency control with a bitmap for each branch to enable ver-
sioning. Afterwards, we describe our proposed SQL extension to
create, query and modify tables across different, named branches.
In our demonstration setup, we allow users to interactively create
and edit branches and display the lineage of each branch.

CCS CONCEPTS
• Information systems → Main memory engines; • Applied
computing → Version control.

KEYWORDS
Version Control, SQL
ACM Reference Format:
Maximilian E. Schüle, Josef Schmeißer, Thomas Blum, Alfons Kemper,
and Thomas Neumann. 2021. TardisDB: Extending SQL to Support Ver-
sioning. In Proceedings of the 2021 International Conference on Management
of Data (SIGMOD ’21), June 18–27, 2021, Virtual Event, China. ACM, New
York, NY, USA, 4 pages. https://doi.org/10.1145/3448016.3452767

1 INTRODUCTION
Online encyclopaedias such as Wikipedia rely on database systems
to store the article’s content but require dataset versioning to track

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD ’21, June 18–27, 2021, Virtual Event, China
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8343-1/21/06. . . $15.00
https://doi.org/10.1145/3448016.3452767

P-S

P-D

Git

LiT

H-S

H-D

T-S

P-S

P-DGit

H-S

H-D

T-S

P-S

P-D

Git

LiT

H-S

H-D

T-S

P-S

P-DGit

H-S

H-D

T-S

P-S

P-D

Git

LiT

H-S

H-D

T-S

P-S

P-DGit

H-S

H-D

T-S

retFirst retLatest insert

3
.7

 G
B

7
6

.9
 G

B

1e-02 1e+00 1e+02 0.001 0.010 0.100 300 1000 3000 10000

0

30

60

90

0

25

50

75

Duration [s]

S
iz

e
 [
%

]

Git

HyPer-Diff

HyPer-Snapshot

LiteTree

Postgres-Diff

Postgres-Snapshot

TardisDB-Snapshot

Figure 1: Performance when handling Wikipedia articles.

the article’s history. For this reason,MediaWiki, the software behind
Wikipedia, implements its own version control to restore older
versions on demand: one database table manages the pages’ meta-
information, another one contains their content with one entry
per version and page [12]. Besides the increased complexity when
querying the data, this approach wastes space by storing redundant
information as each revision changes an article only marginally.

Another use-case for dataset versioning arises from the repro-
ducibility needed to validate scientific experiments: To reproduce
the same results, the dataset used should remain unchanged. How-
ever, a production database system must allow updates and inser-
tions. Therefore, for reproduction, any published experiment must
provide the corresponding data as a separate snapshot when the
underlying data store does not support dataset versioning.

In summary, a dataset versioning tool should serve the purpose
of a simple data storage system with version-based access as well
as the needs for transactional data processing on multiple relations.
So it has to fulfil reference key constraints across multiple tables
within each version.

In previous studies [7, 13], we identified the following require-
ments for dataset versioning tools: They should reduce the space

https://doi.org/10.1145/3448016.3452767
https://doi.org/10.1145/3448016.3452767

consumption of the stored data, allow constant complexity when
restoring a version, guarantee the ACID properties and provide a
declarative query language such as SQL. We have benchmarked Git,
HyPer, PostgreSQL, LiteTree and TardisDB using 3.7 GB and 76.9 GB
of Wikipedia articles. The full page edit history1 from August 1,
2018 (pages 10 to 2,087) was inserted either as a snapshot or com-
pressed (diff), storing the changes as differences to the latest version
only (backward deltas). We compared the duration for insertion
(insert) and retrieval of the latest/first (retLatest/retFirst) version to
the memory consumption (see Figure 1). Although TardisDB does
not compress the data, it inserts and retrieves the articles faster
than the competitors without integrated versioning. But a complete
integration into a database system includes the extension of SQL.
An extension of this declarative language would not only increase
the acceptance of database systems for dataset versioning but also
facilitate software engineering projects: When the data layer takes
care of dataset versioning, other layers are not concerned in the
actual implementation.

So this study solves the following problem: How to integrate
constraint-preserving dataset versioning within SQL?

This paper demonstrates TardisDB, the first in-memory database
system with incorporated SQL commands for database versioning.
It is an open-source project2 for a code-generating in-memory data-
base system that produces LLVM code according to the producer-
consumer model [11, 14]. Its table scan operator has been modified
to produce only tuples for a selected branch. Therefore, each branch
maintains a bitmap for every table, which denotes each tuple’s visi-
bility. Also, multiversion concurrency control is used to track each
tuple’s history. TardisDB is the first project that combines multi-
version concurrency control with bitmaps for branching.

This study’s contribution is the SQL extension for versioning,
including an additional SQL statement for branch creation and an
optional keyword as part of the from-clause to determine the branch.
Named branches can be created using existing SQL keywords and
fit seamlessly into declarative statements. We applied our changes
to the Hyrise SQL parser [5], which allows our extension to be used
for other systems as well. For demonstration purposes, we offer a
web interface to interactively explore the proposed extension.

This demonstration paper is structured as follows: It first gives
an overview of related studies on dataset versioning and explains
the architecture of TardisDB. Then, we propose an extended SQL
grammar, that is downward compatible with SQL-92, but allows
branch creation and retrieving tables by version. Afterwards, we
explain the demonstration setup, with an interactive web interface
that allows users to create branches, examine lineages, query and
modify the data.

2 RELATEDWORK
For related work, we have to distinguish database versioning, which
affects whole tables, from temporal databases, which restrict each
tuple’s validity to a time range. The first example of a temporal
database system is TQuel [15]. The idea of time-restricted tuples
is now part of the SQL:2011 standard [8]. Time-restriction affects
each tuple individually, whereas a version comprises several.

1https://dumps.wikimedia.org/enwiki/20180801/
2https://github.com/tum-db/TardisDB

Table 1 lists tools for dataset versioning that are similar to data-
base systems. One example with its versioning language VQL is the
DataHub [1] platform whose flexible API allows applications such
as an SQL interface to be built on top. The core part was highlighted
as Decibel [10] with the language VQuel [4] to manage versions.
These systems have in common that they build the application layer
above the data storage rather than offering an extended relational
algebra that supports versioning.

Using a relational database system, OrpheusDB [6] and our ex-
tension to support multiple tables for reference key constraints,
MusaeusDB, provides a layer on top of database systems that projects
versions onto database relations with a list of contained tuples per
branch. As a fully integrated solution, LiteTree3 is an extension
to SQLite that allows access to and modification of any former
database state using a version number within pragma statements.
We also integrate versioning into a relational database system, but
with a code-generating engine as the target, we adapt the table scan
operator and multiversion concurrency control. For unstructured
data, Forkbase [9] is a tamper-proof data storage system that allows
named branches similar to Git and compresses data using similarity
graphs. R-Store [2] is another key-value store based on Apache
Cassandra, which also maintains bitmaps to indicate branches.

Table 1: Overview of data versioning tools.

System Versioning Querying Data Model Branching Constraints
DataHub [1] VQL Thrift API Relational Numbers No
Decibel [10] VQuel SQL Relational Numbers No
ForkBase [9] REST API None Key-Value Names No
LiteTree Using Pragma SQL Relational Numbers No

MusaeusDB [13] Bash Script SQL Relational Numbers Yes
OrpheusDB [6] Python API SQL Relational Numbers No

RStore [2] Java API CQL Key-Value Numbers No
TardisDB SQL SQL Relational Names Yes

3 VERSIONING IN CODE-GENERATING
DATABASE SYSTEMS

TardisDB follows the concept of a code-generating main-memory
database system: It produces LLVM code according to the producer-
consumer concept [11] where every operator demands the under-
lying ones recursively to generate code. Versioning now affects the
table scan operator at the bottom of each operator tree: During
compile-time, code for checking the bitmap as well as retrieving
the correct tuple out of a version chain has to be generated. For
every table and every branch, we maintain a bitmap, where a bit
indicates the tuple’s affiliation to a branch. On a table scan, a tuple
will be produced only if the corresponding bit is set. When a branch
is created, the parent bitmap is simply copied for every table. On an
insert statement, all bitmaps are enlarged but the new bit is set for
the affected branch only. On a delete statement, the corresponding
bit is reset.

The bitmap indicates included tuples only but to track different
versions of a tuple, we maintain version chains as used for multi-
version concurrency control. This is the first time that multiversion
concurrency is combined with branching to not only track a tu-
ple’s modification history but to provide access to a set of tuples
that form one version. This approach tends to densely populated
3https://github.com/aergoio/litetree

https://dumps.wikimedia.org/enwiki/20180801/
https://github.com/tum-db/TardisDB
https://github.com/aergoio/litetree

Tuple Update latestoldest
Tu

pl
e
In
se
rt

M
as
te
r

B
ra
nc
h
2

B
ra
nc
h
1

Bitmaps

A | 1 A | 6

B | 2

C | 3

D | 4

E | 12

Master

A | 10

B | 7

C | 8

B | 12

Branch 1

Branch 2

A | 1

B | 2

C | 3

D | 4

A | 6

E | 12

B | 7

C | 8

A | 10

B | 11

Time Master Branch 1 Branch 2
1 Insert A
2 Insert B
3 Insert C
4 Insert D
5 Branch 1
6 Update A
7 Update B
8 Update C
9 Branch 2
10 Update A
11 Update B
12 Insert E
13 Delete D

Figure 2: Left: Bitmaps for each branch (y-axis) mark contained tuples per table, whereas version chains track their history
(x-axis), tuples of themaster branch are stored in a column-orientedmanner. Middle: Descendance tree. Right: Corresponding
insert, update, delete and branching history.

bitmaps even on update-heavy workloads, which increases the total
scan performance.

We define one prioritised branch, the master branch, whose
tuples are stored in a regular column store and updated in-place.
Each tuple is given two pointers to form a double-linked list of
version entries and a timestamp, which is inherited from the branch
that created the version.

Each branch, in turn, is given a timestamp at its creation, which is
also used to retrieve the correct entry in the version chain: Formally,
we define a predicate 𝑎𝑐𝑡𝑖𝑣𝑒 (𝑡, 𝑏) for each entry 𝑡 and branch 𝑏 to
indicate visible entries:

𝑎𝑐𝑡𝑖𝑣𝑒 (𝑡, 𝑏) ⇔ 𝑐𝑟𝑡𝑑 (𝑏, 𝑡) ∨
∨

𝑝∈𝑝𝑎𝑟 (𝑏)
𝑎𝑐𝑡𝑖𝑣𝑒 (𝑡, 𝑝) ∧ 𝑡𝑠 (𝑡) < 𝑡𝑠 (𝑏).

An entry is visible for a branch when either the branch itself
(𝑐𝑟𝑡𝑑 (𝑏, 𝑡)) or a parent branch (𝑝𝑎𝑟 (𝑏)) before furcation (𝑡𝑠 (𝑡) <

𝑡𝑠 (𝑏)) has created the entry. The first active entry in the chain is
the latest visible one and is returned.

Figure 2 visualises the history for five tuples on one master and
two descending branches: Initially, four tuples were inserted before
Branch 1 is created with timestamp 5. The tuples for the master
branch are stored column-wise (dashed line) and each contains a
pointer to previous (left) and newer (right) versions. An update on
the master branch changes the value in-place (A|6) and creates an
entry for the previous version (A|1), an update on a descending
branch just creates an entry on the right (B|7). When Branch 1
requests tuple A, it receives A|1 as A|6 is only active within Master
and Branch 2. Whereas two versions for tuple B are active within
Branch 1, which is why it accesses the newer one (B|7). Instead of
deleting a tuple, the corresponding bit is reset (D on Branch 1).

4 SQL EXTENSION
We now extend SQL (see Listing 1) to address the extended table
scan operator. This requires a statement to create branches as well

as an extension to specify the version for each table that is part
of select, update, insert or delete statements. By default, regular
SQL-92 queries without any adaptations are applied to the master
branch to ensure downward compatibility.
CREATE TABLE users (id INT PRIMARY KEY , name TEXT);
CREATE TABLE things (id INT PRIMARY KEY , name TEXT , user INT

REFERENCES users(id));
INSERT INTO users VALUES (1, 'Alice ');
INSERT INTO things VALUES (21, 'printer ', 1);

Listing 1: Example of tables created and filled with SQL.

To create a new branch, we add a statement to fork branches
from existing ones (see Listing 2). This statement only expects the
name of the parent branch and the created one. It does not require
any further information as branches affect all tables to fulfil foreign
key constraints. Creating a new branch is necessary to maintain
access to a certain database state whenever this version should be
preserved.
CREATE BRANCH mybranch FROM master;

Listing 2: Statement to create the branchmybranch from the
parent master.

To query tables on the created branch, we propose the keyword
VERSION behind each table that is part of an insert, select, update
or delete query (see Listing 3).
INSERT INTO users VERSION mybranch VALUES (2, 'Bob');
UPDATE things VERSION mybranch SET user=2 WHERE id=21;
SELECT * FROM users VERSION mybranch;

Listing 3: Insert, update and select statements on tables of a
certain branch using the VERSION keyword.

Although branches affect all tables, explicitly specifying the
branch enables access to tables across different branches in one
statement. This allows merging tables of different branches using
ordinary SQL statements. For example, a full outer join allows

Figure 3: TardisDB web interface: An interface allows SQL
queries including branch creation to be formulated. The
chart in the middle displays the lineage of all available
branches; the result table is shown at the bottom.

conflicting tuples sharing the same primary key to be identified
(see Listing 4).
SELECT a.id, COALESCE(a.name , b.name)
FROM users VERSION master as a FULL OUTER JOIN

users VERSION mybranch as b ON a.id=b.id

Listing 4: Merging tables.

Finally, after changes in a branch have been merged or become
outdated, we propose a delete statement to free the allocated re-
sources (see Listing 5). We propose a garbage collection [3] to
remove versions that are not contained within a branch anymore.
DELETE BRANCH mybranch;

Listing 5: Branch deletion statement.

5 DEMONSTRATION SETUP
We have created an interactive web interface4 to demonstrate ex-
tended SQL on TardisDB (see Figure 3). Within the web interface,
we allow users to create tables, insert data and create branches. The
lineage of created branches is visualised graphically. Of course, the
SQL interface allows querying the data including joins over differ-
ent branches. The result together with the query time is displayed
afterwards. During the demonstration, we will start a TardisDB
instance on a remote server that creates a new database instance
for each client. This allows participants to try out the extended SQL
on their own device even without physical participation. We will
provide examples together with a selected CSV file as input data to
demonstrate the performance of the available operators.
4http://tardis.db.in.tum.de

6 CONCLUSION
In this paper, we have demonstrated an extension of SQL to support
versioning. Our extension supports named branches over multiple
tables, which comprises a statement for branch creation and an
auxiliary keyword after each table to determine the branch. We
compiled SQL statements to operator plans based on an open-source
parser, which allows integration into other software projects as
well. Our target engine, TardisDB, was equipped with a modified
table scan operator with bitmaps to indicate the affiliation of tuples
to branches and a version chain to track their modification history.
The extension did not slow down the read throughput on the master
branch and retrieved other versions faster than comparable sys-
tems. With the developed web interface, we aimed to demonstrate
the simplicity of extending SQL for versioning, which should also
increase the acceptance of SQL for further tasks such as version
control.

REFERENCES
[1] Anant P. Bhardwaj, Amol Deshpande, Aaron J. Elmore, David R. Karger, Sam

Madden, Aditya G. Parameswaran, Harihar Subramanyam, Eugene Wu, and
Rebecca Zhang. 2015. Collaborative Data Analytics with DataHub. PVLDB 8, 12
(2015), 1916–1919. http://www.vldb.org/pvldb/vol8/p1916-bhardwaj.pdf

[2] Souvik Bhattacherjee and Amol Deshpande. 2018. RStore: A Distributed Multi-
Version Document Store. In ICDE. 389–400. https://doi.org/10.1109/ICDE.2018.
00043

[3] Jan Böttcher, Viktor Leis, Thomas Neumann, and Alfons Kemper. 2019. Scalable
Garbage Collection for In-Memory MVCC Systems. Proc. VLDB Endow. 13, 2
(2019), 128–141. https://doi.org/10.14778/3364324.3364328

[4] Amit Chavan, Silu Huang, Amol Deshpande, Aaron J. Elmore, Samuel Madden,
and Aditya G. Parameswaran. 2015. Towards a Unified Query Language for
Provenance and Versioning. In TaPP. USENIX Association. https://www.usenix.
org/conference/tapp15/workshop-program/presentation/chavan

[5] Markus Dreseler, Jan Kossmann,Martin Boissier, Stefan Klauck,Matthias Uflacker,
and Hasso Plattner. 2019. Hyrise Re-engineered: An Extensible Database System
for Research in Relational In-Memory Data Management. In EDBT. 313–324.
https://doi.org/10.5441/002/edbt.2019.28

[6] Silu Huang, Liqi Xu, Jialin Liu, Aaron J. Elmore, and Aditya G. Parameswaran.
2017. OrpheusDB: Bolt-on Versioning for Relational Databases. PVLDB 10, 10
(2017), 1130–1141. http://www.vldb.org/pvldb/vol10/p1130-huang.pdf

[7] Lukas Karnowski, Maximilian E. Schüle, Alfons Kemper, and Thomas Neumann.
2021. Umbra as a Time Machine: Adding a Versioning Type to SQL. In BTW
(LNI). Gesellschaft für Informatik, Bonn.

[8] Krishna G. Kulkarni and Jan-Eike Michels. 2012. Temporal features in SQL: 2011.
SIGMOD Record 41, 3 (2012), 34–43. https://doi.org/10.1145/2380776.2380786

[9] Qian Lin, Kaiyuan Yang, Tien Tuan Anh Dinh, Qingchao Cai, Gang Chen,
Beng Chin Ooi, Pingcheng Ruan, Sheng Wang, Zhongle Xie, Meihui Zhang,
and Olafs Vandans. 2020. ForkBase: Immutable, Tamper-evident Storage Sub-
strate for Branchable Applications. In ICDE. IEEE, 1718–1721. https://doi.org/10.
1109/ICDE48307.2020.00153

[10] Michael Maddox, David Goehring, Aaron J. Elmore, Samuel Madden, Aditya G.
Parameswaran, and Amol Deshpande. 2016. Decibel: The Relational Dataset
Branching System. PVLDB 9, 9 (2016), 624–635. http://www.vldb.org/pvldb/vol9/
p624-maddox.pdf

[11] Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans for Modern
Hardware. PVLDB 4, 9 (2011), 539–550. https://doi.org/10.14778/2002938.2002940

[12] Maximilian Schüle, Pascal Schliski, Thomas Hutzelmann, Tobias Rosenberger,
Viktor Leis, Dimitri Vorona, Alfons Kemper, and Thomas Neumann. 2017. Mono-
pedia: Staying Single is Good Enough - The HyPer Way for Web Scale Applica-
tions. PVLDB 10, 12 (2017), 1921–1924. https://doi.org/10.14778/3137765.3137809

[13] Maximilian E. Schüle, Lukas Karnowski, Josef Schmeißer, Benedikt Kleiner, Alfons
Kemper, and Thomas Neumann. 2019. Versioning in Main-Memory Database
Systems: From MusaeusDB to TardisDB. In SSDBM. ACM, 169–180. https:
//doi.org/10.1145/3335783.3335792

[14] Maximilian E. Schüle, Dimitri Vorona, Linnea Passing, Harald Lang, Alfons
Kemper, Stephan Günnemann, and Thomas Neumann. 2019. The Power of SQL
Lambda Functions. In EDBT. 534–537. https://doi.org/10.5441/002/edbt.2019.49

[15] Richard T. Snodgrass. 1987. The Temporal Query Language TQuel. ACM Trans.
Database Syst. 12, 2 (1987), 247–298. https://doi.org/10.1145/22952.22956

http://tardis.db.in.tum.de
http://www.vldb.org/pvldb/vol8/p1916-bhardwaj.pdf
https://doi.org/10.1109/ICDE.2018.00043
https://doi.org/10.1109/ICDE.2018.00043
https://doi.org/10.14778/3364324.3364328
https://www.usenix.org/conference/tapp15/workshop-program/presentation/chavan
https://www.usenix.org/conference/tapp15/workshop-program/presentation/chavan
https://doi.org/10.5441/002/edbt.2019.28
http://www.vldb.org/pvldb/vol10/p1130-huang.pdf
https://doi.org/10.1145/2380776.2380786
https://doi.org/10.1109/ICDE48307.2020.00153
https://doi.org/10.1109/ICDE48307.2020.00153
http://www.vldb.org/pvldb/vol9/p624-maddox.pdf
http://www.vldb.org/pvldb/vol9/p624-maddox.pdf
https://doi.org/10.14778/2002938.2002940
https://doi.org/10.14778/3137765.3137809
https://doi.org/10.1145/3335783.3335792
https://doi.org/10.1145/3335783.3335792
https://doi.org/10.5441/002/edbt.2019.49
https://doi.org/10.1145/22952.22956

	Abstract
	1 Introduction
	2 Related Work
	3 Versioning in Code-Generating Database Systems
	4 SQL Extension
	5 Demonstration Setup
	6 Conclusion
	References

