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ABSTRACT

Data preprocessing, the step of transforming data into a suitable
format for training a model, rarely happens within database
systems but rather in external Python libraries and thus requires
extraction from the database systems first. However, database
systems are tuned for efficient data access and offer aggregate
functions to calculate the distribution frequencies necessary to
detect the under- or overrepresentation of a certain value within
the data (bias).

We argue that database systems with SQL are capable of exe-
cuting machine learning pipelines as well as discovering technical
biases—introduced by data preprocessing—efficiently. Therefore,
we present a set of SQL queries to cover data preprocessing
and data inspection: During preprocessing, we annotate the tu-
ples with an identifier to compute the distribution frequency of
columns. To inspect distribution changes, we join the prepro-
cessed dataset with the original one on the tuple identifier and
use aggregate functions to count the number of occurrences per
sensitive column. This allows us to detect operations which filter
out tuples and thus introduce a technical bias even for columns
preprocessing has removed. To automatically generate such
queries, our implementation extends the mlinspect project to
transpile existing data preprocessing pipelines written in Python
to SQL queries, while maintaining detailed inspection results
using views or common table expressions (CTEs). The evaluation
proves that a modern beyond main-memory database system, i.e.
Umbra, accelerates the runtime for preprocessing and inspection.
Even PostgreSQL as a disk-based database system shows similar
performance for inspection to Umbra when materialising views.

1 INTRODUCTION

A preprocessing pipeline is the connective link between the vali-
dated input data and the training of a model [12]. While a ma-
chine learning pipeline covers the entire life cycle of a model
(see Figure 1), a data-preprocessing pipeline only refers to the
part, which puts the available data into a form for training a ma-
chine learning model. Preprocessing consists of loading, joining,
and filtering the data (step 1) and transforming existing columns
or replacing missing values (step 2). Finally, the processed data
is then fed into the model for training (step 3).

Data preprocessing alters the original data semantically, which

can lead to the “over- or under-representation of a certain group” [8].

This is called a technical bias, when caused by data preprocess-
ing, in contrast to a pre-existing bias already contained in the
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Figure 1: Dataflow of mlinspect’s healthcare pipeline [8].

data. Technical biases that a static analysis of the pipeline cannot
find are particularly critical. They occur after preprocessing has
modified the data, for example, when a trained model frequently
misclassifies some classes but works fine for others. Manually
repeating and inspecting each step in a pipeline would be time-
consuming for large datasets. Even if a technical bias is found,
it has to be traced back to the bias-introducing operation to fix
this data bug. Finding data bugs automatically would not only
be interesting from a debugging perspective but also proactively
ensure correctness and trustworthiness.

Programmatically inspecting intermediate results during exe-
cution reduces the effort to find technical biases. This includes
counting the number of entries per group after each operation
is performed to compute the ratio. The ratio is the relative dis-
tribution frequency of how often each sensitive group occurs
within the data and should remain as constant as possible during
preprocessing.

As the focus in machine learning lies on creating effective mod-
els and not on efficient data processing, the traditional wisdom
is to use Python library functions not only for training a model



but also for data preprocessing. However, database systems are
tuned for efficient data access and manipulation [25, 31, 32]. Ina
relational database, a table out of columns (attributes) and tuples,
which each is a set of attribute values, represents a dataset. A
synthetic tuple identifier tid identifies a tuple and can be used to
trace tuples throughout all operations. Database systems offer
a declarative language, SQL, allowing the user to specify what
to do rather than caring about optimisation details [43]. SQL
provides aggregate functions that allow grouping by a column to
count the number of occurrences per value that forms a sensitive
group. Common table expressions (CTEs) allow us to modularise
and to structure the SQL code [39]. Modularising the code causes
no additional overhead since the database system’s query opti-
miser unnests nested subqueries before execution [21]. Moreover,
modern database systems generate code for pipelined data pro-
cessing [19, 38, 40, 44, 45]. This enables in-memory performance
and eliminates the overhead of function calls and the need to
materialise subresults. Thus, instead of delegating calls to library
functions such as pandas, a database system will increase the
overall performance of data preprocessing.

We argue that database systems with SQL are ideally suited
for data inspection within machine learning pipelines. In our
solution, one CTE/view represents one line of the original Python
source code. We, therefore, present a set of SQL queries that
covers the functionalities of certain Python libraries such as
pandas and scikit-learn (see Figure 2). Furthermore, aggregate
functions within CTEs/views will track the ratio for each group
of interest to detect biases: We equip each tuple with a synthetic
index (tid) to identify a tuple although the sensitive column is
not part of the result. After each operation that influences the
number of occurrences per tuple, e.g. joins or selections, the
index allows the restoration of the sensitive column if needed to
count the number of occurrences per group. This is the first study
that allows inspection in SQL of columns not even present in
the result by preserving the tid. To automatically generate these
SQL queries, we extend the mlinspect framework [7, 8] with an
SQL backend. This way we can rely on the user interface for bias
detection but just generate the SQL queries in the background.
Likewise, we are able to fall back on the original Python library
function calls when no SQL substitute has been implemented
so far. Generating SQL code from Python pipelines provides
further advantages. Firstly, existing pipelines can benefit from
the performance of database systems without alteration of the
original code. Secondly, it allows a less verbose specification of
pipelines, which is also accessible for those not too familiar with
SQL. This study’s specific contributions are:

e inspection of preprocessing pipelines in SQL,

o a set of SQL expressions that cover the functionalities of
the Python libraries pandas and scikit-learn,

e an SQL backend for the mlinspect framework to translate
Python into SQL supporting many pandas and scikit-learn
operations with a focus on inspection,

e an expandable transpilation framework! to facilitate the
addition of support for other libraries,

e executing the mlinspect inspection of pipelines while of-
floading all expensive computations to a database system,

o functionality to generate inspection-enabled SQL queries
from pipelines written in Python without execution,

e full support for running and inspecting end-to-end pipelines
including training and testing the models in Python.

Thttps://github.com/tum-db/mlinspect4sql
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Figure 2: Functional blocks with references to Figure 1.

e and an evaluation that compares the performance gain
when inspecting preprocessing pipelines within a disk-
based database system, i.e., PostgreSQL [37] (blue ele-
phant), and a beyond main-memory one, i.e., Umbra [16,
20, 35, 36], to Python library function calls.

This study comprises the following sections: Section 2 sum-
marises the related work on debugging pipelines and SQL support
for machine learning. Section 3 introduces the SQL expressions
needed for tuple tracking and the detection of introduced biases.
To generate these queries, Section 4 shows how to create an SQL
backend for the mlinspect framework using monkey patching.
This SQL backend further generates one CTE/view in SQL per
line of the original Python code (Section 5). The evaluation in
Section 6 presents the performance of selected pipelines within
PostgreSQL and Umbra. Section 7 concludes this study with an
outlook on further extensions.

2 RELATED WORK

This study combines research on integrating machine learning
pipelines into database systems [1, 2, 5, 14, 27, 30, 48, 49, 53] with
studies on debugging pipelines. Debugging machine learning
pipelines is necessary to ensure fairness [23, 24, 26, 50, 51], when
data transformations [29] introduce biases [13] or, more gener-
ally, to detect the cause of incorrect predictions. For example,
SliceLine [28] proposes algorithms to investigate the effective-
ness of training datasets. Breadcrumb [6] finds removed tuples
in Spark. Vizer [3] is a debugging tool with SQL and Python
integration that also uses Spark as backend. MLDebugger [17]
and BugDoc [18] are data debuggers for VisTrails [4].

mlinspect [8] provides an extendable framework that, on the
basis of declarative abstractions of popular data science libraries,
allows insightful inspections without the need for manual code in-
strumentation. For these inspections, mlinspect mostly relies on
the frameworks NumPy and pandas with mostly modest perfor-
mance. mlinspect’s functionality for pipeline inspection does not
require the alteration of any existing code. This work proposes
SQL queries to perform the inspections recommended by mlin-
spect. The mlinspect project will form the basis for implementing
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the proposed transpiling and offloading of data-intensive opera-
tions to a database system, including all inspection capabilities.
Grizzly [10, 11] aims to replace the pandas library by transpiling
Python code using pandas to SQL and offloading the operations
to a database system. It is capable of dealing with external data,
user-defined functions and reusing intermediate results. Grizzly
can emit the generated SQL code but requires a connection to a
database system to work in the first place, so we decided to gen-
erate the SQL queries independently. Furthermore, this work’s
SQL code-generation covers data inspection and other library
functions and stores each result in a view/CTE.

3 TUPLE-TRACKING AND INSPECTION

One contribution of this paper is the inspection of so-called data
distribution bugs [8], which are based on pre-existing and intro-
duced (technical) biases, when using SQL. A bias is a systematic
error leading to irrational preferences or aversions [52]. There is
no general recipe to avoid introducing a technical bias in data
preprocessing prior to training a model but detection is possible.
For bias detection, it is necessary to monitor the ratios per sensi-
tive column, which is the distribution frequency of a value, and
the introduced ratio changes after each operation.

Biases can also be induced for columns not present in the
original data or such that preprocessing has removed. Track-
ing the tuples explicitly detects biases even when preprocessing
has removed a sensitive column. To track tuples throughout
the pipeline, it is necessary to cope with possible projections
when the sensitive column is not part of the result. The pro-
posed tuple tracking allows us to restore and monitor all columns
present in the original data independently of their removal inside
the pipeline. An example of a common projection is one-hot-
encoding, where an input is turned into a binary array. Assigning
aunique identifier to each entry allows ratio changes the pipeline
has introduced independently of the tuple’s current representa-
tion to be discovered.

The mlinspect framework provides two checks: NolllegalFea-
tures verifies that none of the used features in the provided dataset
are contained in a blacklist of illegal feature names. NoBiasIntro-
ducedFor targets pre-existing and technical biases.

The latter check is based on three inspections: Materialize-
FirstOutputRows materialises a set of rows from the input by
each operator, to easily examine the effects of the pipeline [8].
RowLineage provides lineage information for the resulting tuples.
HistogramForColumns calculates the ratios for specified columns
before and after each operation in the pipeline.

3.1 Tuple-Tracking and Inspection in SQL

To implement tuple tracking, an identifier for the tuples is needed.
Most database systems allow access to the physical table location,
which could be used as an identifier. For PostgreSQL, the ctid
is such an identifier, although it is not suitable as a long-term
identifier?. This is based on the possibility of garbage collection
routines changing the physical location. As we extract the ctid,
initially only once within a common table expression (Listing 1
lines 3-6), we ensure that we use consistent identifiers during the
checks.

To reproduce mlinspect’s bias inspections in SQL, we need
to compute and compare the ratios for each sensitive column
(HistogramForColumns). In order to compare the ratios (Listing 1
lines 11-19), it is necessary to group by each sensitive column to

https://www.postgresql.org/docs/12/ddl-system-columns.html
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CREATE TABLE data (a int, s int); -- sensitive column: "s"
INSERT INTO data (values (1,1),(1,2));
WITH orig AS ( -- the original data with exposed ctid
SELECT ctid, a, s FROM data),
curr AS ( -- current representation after preprocessing
SELECT ctid, s FROM orig WHERE s > 1),
orig_count AS ( -- original count per value of column "s"
SELECT s, count(x) AS cnt FROM orig GROUP BY s),
curr_count AS ( -- current count per value of column "s"
SELECT s, count(x) AS cnt FROM curr GROUP BY s),
orig_ratio AS ( -- original ratio per value of column "s"
SELECT s, (cnt*1.0 / (select count(*) FROM orig)) AS ratio
FROM orig_count),
curr_ratio AS ( -- current ratio per value of column "s"
SELECT s, (cnt*1.0/(select sum(cnt) FROM curr_count)) AS ratio
FROM curr_count)
-- join on the sensitive column to calculate the ratio change
SELECT o.s, o.ratio - COALESCE(c.ratio,@) AS bias_change
FROM curr_ratio ¢ RIGHT OUTER JOIN orig_ratio o ON o.s = c.s;

Listing 1: Ratio measurement (column present).

CREATE TABLE data (a int, s int); -- sensitive column: "s"

INSERT INTO data (values (1,1),(1,2));

WITH orig AS (...),

curr AS ( -- current representation after preprocessing without column "s"
SELECT ctid, a FROM orig WHERE s > 1),

orig_count AS (...),

curr_count AS ( -- current count per value of column "s"
SELECT s, count(x) AS cnt FROM curr c, orig o
WHERE c.ctid=o.ctid GROUP BY s),

orig_ratio AS (...),

curr_ratio AS (...)

needs join

Listing 2: Ratio measurement (column not present).

CREATE TABLE data (a int, s int); -- sensitive column: "s"
INSERT INTO data (values (1,1),(1,2));
WITH orig AS (...),
curr AS ( -- current representation (aggregated)
SELECT array_agg(ctid) AS ctid, s FROM orig GROUP BY s),
orig_count AS (...),
curr_count AS ( -- current count for column "s" needs unnest
SELECT s, count(x) AS cnt FROM (SELECT unnest(ctid) AS ctid, s
FROM curr) c, orig o GROUP BY s),
orig_ratio AS (...),
curr_ratio AS (...)

Listing 3: Ratio measurement of an aggregated value.

count the initial and current number of occurrences per value.
One common table expression retrieves the original number (List-
ing 1 lines 7f). When measuring the current number, there are
two cases. In the simple case, the result table already contains
the sensitive column. In this simple case, an aggregate function
counts the number of occurrences per column directly (Listing 1
lines 9f). In the event that the current table contains the tuple
identifier of the original table but no longer contains the sensitive
column, a join on the tuple identifier restores the requested col-
umn (Listing 2 lines 7-9). When an aggregation function is part
of the preprocessing pipeline, the tuple identifiers must also be
aggregated to form an array (Listing 3 line 5). Unnesting the array
allows the number of included tuples (line 8) to be computed and
the sensitive column to be restored if required.

3.2 Technical Bias Detection

Not all operations can introduce a bias, as not all operations add
or remove tuples from the dataset. This section shows how a
technical bias can be introduced but also how it can be detected.
We want to inspect the columns race and age_group for an
introduced bias. Lines 20 to 35 (Listing 4) contain operations
that introduce a bias, for example, line 35 (see Figure 3). The
projection in line 33 has removed the column age_group, so it is
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patients = pd.read_csv(os.path.join( str(get_project_root()),
"example_pipelines", "healthcare", "patients.csv"),
na_values='?")

histories = pd.read_csv(os.path.join( str(get_project_root()),
"example_pipelines", "healthcare", "histories.csv"),
na_values='?")

data = patients.merge(histories, on=['ssn'])

complications = data.groupby('age_group').agg(
mean_complications=('complications', 'mean'))

data = data.merge(complications, on=['age_group'])

datal['label'] =\
datal[ 'complications'] > 1.2 * datal[ 'mean_complications']

data = datal['smoker', 'last_name', 'county',
"num_children', 'race', 'income', 'label'] ]

data = dataldatal'county'].isin(COUNTIES_OF_INTEREST)]

Listing 4: healthcare pipeline [8] (lines 20-35).

county race age_group | Track_id_Patients | Track_id_Histories
county_1 race_3 age_group_2 1 1
county_2 race_2 age_group_2 2 22
county_3 race_1 age_group_1 3 33
county_3 race_2 age_group_1 4 44
county_2 race_2 age_group_2 5 55
county_1 race_1 age_group_1 6 66

[

{ data = data[data['county'l.isin(['county_1', ‘county_21)] }

<

county race age_group | Track_id_Patients | Track_id_Histories
county_1 race_3 age_group_2 1 1
county_2 race_2 age_group_2 2 22
county_2 race_2 age_group_2 5 55
county_1 race_1 age_group_1 6 66

Figure 3: Example of bias-introducing operation.

Ratio race Ratio age_group Ratio race Ratio age_group
race_1:0.333 age_group_1: 0.5 :> race_1: 0.25 (-0.083) age_group_1: 0.25 (-0.25)
race_2: 0.5 age_group_2: 0.5 race_2: 0.5 (-0.0) age_group_2: 0.75 (+0.25)
race_3: 0.166 race_3: 0.25 (+0.084)

Figure 4: Ratio change by the operation in line 35 for the
exemplary data.

not explicitly present in the table and shown in grey. Apart from
line 35, the joins in line 27 or 30 could introduce a bias as well
depending on a join partner. If many people of one race live in a
removed county, a racial bias will be introduced. Far less visible is
that line 35 could also introduce a bias regarding the age_group.
This seems contradictory, as the selection in line 33 has removed
the column age_group. But biases can be introduced for columns
not present in a dataset’s current representation.

Before calculating the ratio changes for each group, one has to
define the threshold for which a bias becomes unacceptable, for
example 25%. If the representation of a feature in the data alters
by more than or equal to 25%, it is assumed that the pipeline
introduced a bias. Figure 4 presents the original ratio on the left
and the new ratio on the right. The parentheses in the right ta-
ble show the precise changes. The ratios can be calculated as
described in Section 3.1 (Listing 1, 2). The ratios of the feature
race did not surpass the threshold of 25% and are assumed ac-
ceptable. For the feature age_group, the changes for both classes
changed by exactly 25%. In this case, age_group_2 is over- and
age_group_1 is underrepresented, which could lead to a model
discriminating against some groups if trained with this data.

20

CREATE TABLE patients_51_mlinid@ ( "id" INT, "first_name" text,
"last_name" text, "race" text, "county" text, "num_children
" INT, "income" FLOAT, "age_group" text, "ssn" text);
COPY patients_51_mlinide("id", "first_name", "last_name", "race"
"county", "num_children", "income", "age_group", "ssn")
FROM 'patients.csv' WITH (DELIMITER ',', NULL '', FORMAT
CSV, HEADER TRUE);
CREATE TABLE histories_52_mlinidl ( "smoker" text, "
complications" INT, "ssn" text);
COPY histories_52_mlinid1("smoker", "complications", "ssn") FROM
"histories.csv' WITH (DELIMITER ',', NULL '', FORMAT CSV,
HEADER TRUE);
WITH patients_51_mlinid@_ctid AS (
SELECT *, ctid AS patients_51_mlinid@_ctid
FROM patients_51_mlinid@
), histories_52_mlinidl_ctid AS (
SELECT *, ctid AS histories_52_mlinidl_ctid
FROM histories_52_mlinid1
), block_mlinid2_53 AS (
SELECT tb1."id", tb1."first_name", tb1."last_name", tbh1."race",
tb1."county", tb1."num_children", tb1."income", tb1."
age_group", tb1."ssn", tbl.patients_51_mlinid@_ctid, th2."
smoker", tb2."complications", tb2.
histories_52_mlinid1_ctid
FROM patients_51_mlinid@_ctid tb1 INNER JOIN
histories_52_mlinidl_ctid tb2 ON tb1."ssn" = tb2."ssn"

), block_mlinid3_54 AS (

SELECT array_agg(tbl.patients_51_mlinid@e_ctid) as
patients_51_mlinido_ctid, "age_group", AVG("complications"
) AS "mean_complications"

FROM block_mlinid2_53 GROUP BY "age_group"

), block_mlinid4_55 AS (

SELECT tb1."id", tb1."first_name", tbh1."last_name", tb1."race",
th1."county", tb1."num_children", tb1."income", tb1."
age_group", tb1."ssn", tb1."smoker", tb1."complications",
tb1.histories_52_mlinidl_ctid, tb1.
patients_51_mlinid@_ctid, tb2."mean_complications”

FROM block_mlinid2_53 tb1 INNER JOIN block_mlinid3_54 tb2 ON
tb1."age_group" = tb2."age_group"

), block_mlinid9_62 AS (
SELECT *, "complications"
FROM block_mlinid4_55

), block_mlinid10_63 AS (
SELECT "smoker", "last_name", "county", "num_children",

"income", "label", histories_52_mlinidl_ctid,
patients_51_mlinid@_ctid
FROM block_mlinid9_62
), block_mlinid13_66 AS (
SELECT * FROM block_mlinid10_63
WHERE "county" IN ('county2', 'county3'")

)

SELECT tb_orig."age_group", count (%)

FROM block_mlinid13_66 tb_curr JOIN patients_51_mlinid@_ctid
tb_orig ON tb_curr.patients_51_mlinid@_ctid=tb_orig.
patients_51_mlinid@_ctid

GROUP BY tb_orig."age_group";

> 1.2 % "mean_complications" AS label

"race",

Listing 5: Inspection of column age_group in SQL.

3.3 Automated Inspection in SQL

To inspect the biases each time, mlinspect measures the column
ratios, whereas our extension delegates the call instead to the
database system, returns the measured results and injects them
into the corresponding data class (SQLHistogramForColumns).
At this point, the default functionality of mlinspect performs
the comparison of the measured ratios to the user-given thresh-
old. When a pre-defined threshold is exceeded, a bias has been
introduced and the user is notified.

Listing 5 displays the translation of Listing 4 to SQL with
inspection of the column age_group. The first lines (lines 1-4)
import the tables from a CSV file. The first two CTEs expose
the ctid as a tuple identifier with a unique name (lines 6-11).
Afterwards, one CTE represents one line of the original code,
so either joins (lines 12-14, 18-20), an aggregation (lines 15-17),
projections (lines 21-23, 24-26) or a condition (lines 27-29). Finally,
lines 31-33 show the code to inspect the column age_group: First,
the preserved ctid allows the reconstruction of this column as
it was not part of the last projection. Then an aggregate function
counts the number of occurrences per value, which is returned
to the mlinspect framework.




inspector_result = Pipelinelnspector \
.on_pipeline_from_file("Listing3.py") \
.add_custom_monkey_patching_module (custom_monkeypatching) \
.add_check (NoBiasIntroducedFor (["age_group", "race"]))

inspector_result = inspector_result.execute_in_sql(
dbms_connector=PostgresqlConnector (dbname="db" ,user="user"

,password="123" port=5432,host="1localhost"),

mode="VIEW", materialize=True)

Listing 6: Addressing the SQL target with inspection.

3.4 User Interface for the SQL Target

Code-generation to SQL is realised as an extension to the mlin-
spect [8] project. The users alone are able to choose the right fit
for the task at hand, so no functionality is forced on them. The
changes do not duplicate existing functionality or require any
later development on mlinspect to be altered. The goal is to trans-
late a productive pipeline written in Python to SQL statements
without requiring the user to rewrite any of them, as is required
for existing tools such as Grizzly or pandas-to-sql>. Listing 6
shows the code to inspect the attributes race and age_group
from an input pipeline stored as Listing3.py. The first part
(lines 1-4) originates from the mlinspect framework and prepares
the inspection steps. The second part (lines 5-7) executes the
pipeline including inspection within a database system.

3.4.1 Choice: View/CTE. The users are able to choose if the
whole pipeline is held in a CTE or views should be used (line 7:
mode="CTE"/"VIEW"). In PostgreSQL, CTEs represent an optimi-
sation barrier, which reduces the performance*. When choosing
CTE as the target, the previous SQL operations must be included
within the with clause for each query, for example, once for
each inspected attribute. Whereas when creating a view for each
query, less SQL code has to be generated. Nevertheless, each
non-materialised view runs each query on demand.

3.4.2 Materialising a View/CTE. To avoid rerunning every
query on demand, the user is also able to decide if intermedi-
ate views are materialised (line 7: materialize=True/False).
Materialisation is interesting for views/CTEs that are expensive
to calculate, contain few tuples and are used frequently. For ex-
ample, if a query accesses a view at least twice, the accessed
view is a candidate for materialisation. This applies to all fitting
parameters that are calculated for the application of scikit-learn
preprocessing functions (see Section 5.2). Materialising the num-
ber of occurrences per group also accelerates the runtime for
inspections when comparing the ratios before and after some op-
erations. Materialising a view or a CTE before the first operation
is generally faster, as subsequent operations depend on its result.
When the user chooses to materialise, all created views/CTEs,
for which recalculating can be avoided, as well as all fitting pa-
rameters are materialised. On the other hand, when the database
system provides main-memory capabilities, storing big interme-
diate tables might not be wanted as rerunning the query with
the additional step performs as well as materialisation.

The decision to materialise a view/CTE is made after trans-
lating the Python code. Our implementation allows choosing
between views and CTEs and whether to materialise them. The
class SQLQueryContainer holds all SQL queries in a list. This
also allows representing an SQL query as a CTE or as a view and
to materialise it when needed.

3https://github.com/AmirPupko/pandas-to-sql
“https://www.postgresql.org/docs/12/queries-with html

code = cleandoc ("""

import pandas as pd

patients = pd.read_csv(r"path/to/p.csv", na_values="?")
histories = pd.read_csv(r"path/to/h.csv", na_values="?")
data = patients.merge(histories, on=['ssn'])
datal["new_col"] = patients["children"] > 2

"

inspector_result = PipelineInspector \
.on_pipeline_from_string(code) \

.add_check (NoBiasIntroducedFor (["race"1)) \

.execute()

Listing 7: Simple pipeline with inspection call.

from mlinspect.instrumentation._pipeline_executor import \
set_code_reference_call, \
set_code_reference_subscript, \
monkey_patch, undo_monkey_patch
monkey_patch ()
import pandas as pd
patients = pd.read_csv(
'path/to/p.csv',
**set_code_reference_call(
3, 11, 3, 178, na_values='?7"))
histories = pd.read_csv(
'path/to/h.csv',
*xset_code_reference_call(
4, 12, 4, 180, na_values='?"))
data = patients.merge(histories,
*xset_code_reference_call(4, 7, 4,
datal
set_code_reference_subscript(5, @, 5, 42,
] =

44, on=["'ssn'1))
('new_col'))

patients[
set_code_reference_subscript (
5, 18, 5, 38, ('children')
)
1>2
undo_monkey_patch ()

Listing 8: Listing 7 prepared for monkey-patching.

4 TRANSPILING CODE

The mlinspect project is an extendable tool for lightweight in-
spection of data-preprocessing pipelines written in Python [8].
Support for additional Python libraries for data preprocessing
can be added through backends and monkey-patching modules.
Monkey-patching is a concept based on Python’s ability to extend
its functionality of objects and functions at runtime [15]. Instead
of modifying the user code, monkey-patching catches relevant
function calls by their type and delegates the call to an alternative
modified function. This approach considers functions only that
are needed to support the inspection functionality. Additionally,
nested calls are automatically executed in Python’s default exe-
cution order. Currently, only data pipelines created with pandas®
and scikit-learn [22] can be inspected. Scikit-learn and pandas
are popular and constantly evolving libraries, so support for new
functionality needs to be added over time.

Running mlinspect returns a dataflow directed acyclic graph
(DAG) representing the pipeline and two dictionaries. One dictio-
nary maps each check to its result and a second dictionary maps
each DAG node to the inspection results associated with it. The
dictionaries can be examined to see the checks that failed and
the ones that passed.

The class PipelineInspector (Listing 7) initialises the setup
in order to annotate the original source (code) for monkey-patch-
ing (Listing 8). Before execution, monkey-patching either adds
the checks and inspections or replaces the whole function call as
needed for an SQL backend. To deduce the table schema from
the original Python code, the SQL backend runs the pipeline with
a subset of the original data (e.g. ten rows) first. The main piece

Shttps://pandas.pydata.org/docs/index.html
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of the transpilation is the SQL mapping that maps each object the
original Python source code creates, called dummy object, to the
deduced information to create the corresponding representation
in SQL (table expression). The SQL mapping is a hash-table with
the Python dummy object as key and the deduced information
as the value. The dummy object is either of the pandas.Series
or DataFrame type. This is better suited as a key than a variable
name as multiple dummy objects share the same name in the
Python source code. To ensure that each name of a view or a
CTE is unique, we assign a sequential number to its name in
SQL. As each line of the source code might depend on previous
operations, each table expression might also depend on previous
ones. Each patched function is performed once on the Python
object to deduce the table expression in SQL. In this way, the next
operation working on the output knows which table expression
to access. Before execution, the SQLQueryContainer generates
all table expressions and the class SQLLogic embeds them in a
view/CTE. The SQL mapping contains, in addition, the following
information to allow combining queries and tracking tuples:

(1) The Python dummy object.

(2) List of tuple identifiers (index columns) currently associ-
ated with the Python dummy object.

(3) List of non-index columns.

(4) Execution tree of operations that lead to the current dummy
object (used to resolve joins on the same table).

The list of identifiers contains the tuple identifiers that are needed
to reconstruct a sensitive column during inspection. Each iden-
tifier has a unique name (<view/CTE-name> + _ctid), which is
propagated throughout all operations. In our implementation, a
dictionary in SQLHistogramForColumns maps the original col-
umn name in pandas to the table and the tuple identifier in SQL.
When the mlinspect framework needs to inspect a sensitive col-
umn, it delegates the call to our SQL backend. The backend looks
up the identifier in the dictionary to generate and execute the
table expression that calculates the ratios and restores the column
when needed.

Each patched function returns exactly what the original would
return. This guarantees that the inspection does not distort any
results. The modifications are entirely generic and, hence, are
independent of the already presented implementation of the
mlinspect’s backend and monkey-patching modules.

The query that is subsequently built is always in an executable
state, because by monkey-patching it is not known where the
pipeline ends. The ability to always return an executable and
correct query is also suitable for debugging and testing parts of
the pipeline. A class SQLQueryContainer collects all the opera-
tions in a list that can be translated into working queries for any
statements in the pipeline at any time.

5 TRANSLATION INTO SQL

In order to translate each call of a library function, this section
presents the supported set of SQL queries to run selected prepro-
cessing pipelines.

5.1 Supported Pandas Functions

5.1.1 Read from CSV. To load data from a CSV file to SQL,
the table first needs to be created. This is done by analysing
the CSV file and deriving the data types based on the content.
Besides integers and floats, other types—objects in pandas—are
considered as a string. Afterwards, the data is loaded using the
COPY command in SQL. For tuple-tracking, a column with an

identifier has to be added. In PostgreSQL, this is achieved by
exposing the ctid.

Some pandas operations rely on a row number, for example,
row-wise multiplications of two columns of different tables (see
Section 5.1.8). For these operations, it is necessary to add the
column to the original data structure. When working on a CSV
file, for example, a new column could be added to the file before
reading and storing the content in the database system. Actually,
in two of the three example datasets in mlinspect, such columns
are already present, so detection capability for such cases was
added as well. The new table with the added columns will be
used as the source in the SQL mapping.

5.1.2  Merge/Join. The Python counterpart to SQL joins in the
pandas library on pandas.DataFrames is called merge (Listing 4
line 27) and consists of the join partner (right), the join type
(how), e.g. inner (default) or cross, and the column containing
the join condition (on).

The translation consists of finding the table expression in the
SQL mapping and putting the tables together in a JOIN ... ON
block (Listing 5 line 14). The select clause explicitly lists the
columns to avoid duplicates within the same table. A difference
exists regarding the handling of null values as pandas treats
null as a value to join. If the attribute is nullable and null values
are not pruned, we can mimic this behaviour by adding to the
join condition whether both values are null: tb1.<c>=tb2.<c>
or (tb1.<c> is null and tb2.<c> is null).

The tuple identifiers from the two input tables are all added to
the result table. This is needed as a join influences the occurrence
of a tuple depending on a join partner, which affects the ratio
and might introduce a bias.

5.1.3 Selection and Projection. The selection and projection
are subsumed together, as in pandas they are both accessed
through the same function: __getitem__. Depending on the
arguments, this function performs either operation.

If the argument is a string or a list of strings, a projection is
meant where the strings name the columns.

With selections, the argument will frequently be a nested op-
eration representing the selection condition. The only restriction
is that the input evaluates to a pandas. Series of type bool, the
criterion for keeping or removing rows. The pandas. Series is
a single column of the pandas.DataFrame.

As the operations are translated line by line, it is not known
beforehand whether an operation is part of the result as a column
or used within a selection condition. Internally, the SQL mapping
maintains an execution tree. Each caught functions extends the
execution tree. After processing all operations, the complete ex-
ecution tree gets traversed to create the current table expression.

5.1.4  Arithmetic/Boolean Operations (e.g., +, *, >, & not).
Applying monkey-patching to Listing 9 results in multiple single
calls and cannot be translated into a single SQL query:

(1) The projection data[’b’ ] returns a new pandas object,
called pandas.Series(data_b)

(2) The projection datal[’c’] again leads to a new pandas
object: pandas.Series(data_c).

(3) Also the multiplication __rmul__ (*) with the arguments
1.2 and pandas. Series(data_c) returns the new object
pandas.Series(data_c_mul)

(4) The comparison __gt__ (>) operation with the arguments
pandas.Series(data_b),pandas.Series(data_c_mul)
returns pandas.Series(data_b_gt_data_c_mul)
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(5) Finally, the result is the assignment __setitem__ with the
arguments data (origin), ’a’ (new label), and as source
pandas.Series(data_b_gt_data_c).

Monkey-patching only delegates explicit function calls with
its parameters and does not provide any additional information
about the context of the function call. As a consequence, it is not
known when a caught operation is part of a bigger nested call or if
it stands alone. Of course, parsing the code or injecting additional
parameters into the call allows us to deduce the context, but the
following aspects avoid the need for additional modifications:
Monkey-patching obeys the default execution order from Python.
The optimiser of modern database systems eliminates subqueries
that are not required to calculate the result.

One possible approach is to translate each single function call
into one CTE/view, which uses the former one as input. This
requires a join on the index column for operations that add a
single column or depend on a modified one (Listing 10).

Our implementation reduces dependencies as it resolves joins
and includes the columns of former operations when the oper-
ations affect the same table. An SQL-mapping execution tree
contains all operations that lead to the current result. This way,
each time an operation on the same table is resolved, the previ-
ous SQL statement is copied and the new operation is added as a
column instead of using views/CTEs as input (Listing 11). If some
views/CTEs are not part of the result and therefore remain un-
used, the database system will not execute them as optimised out.
So it is not necessary to consider whether a pandas projection is
part of a result table.

datal['a']l = datal'b'] > 1.2 x datal['c']

Listing 9: Binary operation with additional assignment.

A lookup table helps to translate the aggregation functions,
which in pandas are named differently to those in SQL. It is
necessary to rename or reimplement some custom functions
from pandas before using them in SQL. For example, the pandas
function std results in stddev_pop for SQL, mean in avg.

To enable inspection of aggregated values, their correspond-
ing identifiers also have to be aggregated to an array using
array_agg as part of the SQL query.

5.1.6  Drop Null Values. pandas’ dropna function allows any
row containing null values to be dropped (see Figure 5). In SQL,
a simple selection suffices. The selection condition consists of
concatenated and negated is null blocks.

A B Cc Tracking A B Cc Tracking
null -5 "XX" 1 3 1 "NULL" 3
null null null 2

3 1 "NULL" 3

Figure 5: Example for table altered by the dropna function.

5.1.7 Replace. replace substitutes any value contained in
a pandas object with another. By default, only whole strings
are changed, but replacements by a regular expression are also
possible. The SQL function REGEXP_REPLACE fits as a general
solution, as alternatives like SQL’s REPLACE function replaces
each instance of a word in an entry with a new one. To force
the replacement of whole strings, the regular expression special
characters " and $ match the beginning of the string as well as
the end (Listing 12).

SELECT REGEXP_REPLACE("label",'*Medium$', 'Low') AS "label"
FROM origin

WITH data_b AS (
SELECT b, ctid FROM data
), data_c AS (
SELECT ¢, ctid FROM data
), data_c_mul AS (
SELECT (c * 1.2) AS c_mul, ctid FROM data_c
), data_b_ge_data_c AS (
SELECT (1.b > r.c_mul) AS b_ge_c_mul, 1l.ctid
FROM data_b 1, data_c_mul r
WHERE 1.ctid = r.ctid
), result AS (
SELECT 1l.data_f, 1.b, l.c, r.b_ge_c_mul AS "a",
FROM data 1, data_b_ge_data_c r
WHERE 1.ctid = r.ctid

1.ctid

Listing 10: Generated query with index columns.

WITH data_b AS (
SELECT "b" FROM data
), data_c AS (
SELECT "c" FROM data
), data_c_mul AS (
SELECT (1.2 % "c") FROM data
), data_b_ge_data_c_mul AS (
SELECT (("b" > (1.2 % "c"))) FROM data
), result AS (

SELECT *, ("b" > (1.2 = "c")) AS "a" FROM data

Listing 12: Replace in SQL.

5.1.8 Row-Wise Operations. The term row-wise refers to oper-
ations, where the n-th line of one table is combined with the n-th
line of another table. By default, any pandas table contains an
index column, but it is not semantically part of the table. Porting
tb1 and tb2 to SQL causes no problem (Listing 13), although row-
wise operations on columns of different source tables require
an index column. We support the combination of two tables by
the row number to mimic pandas functionality. The relational
model is set-oriented, whereas pandas implicitly joins two tables
with the same number of rows by the row number. The tuple
identifier cannot be used to indicate the row number. There-
fore, the function that creates a table, e.g. add_csv, also adds
an index column if required (add_mlinspect_serial=True). It
represents the row number needed for row-wise operations in
SQL (Listing 14).

th1 pandas.read_table("tb1.csv")
th2 pandas.read_table("tbh2.csv")
tb1['new_column'] = tb2['column']

Listing 11: Generated query (condensed).

5.1.5 Group-By and Aggregation. A group-by with an addi-
tional aggregation consists of two parts in pandas (Listing 4 lines
28f). First, the group-by function is called on the pandas table,
with the columns to group by as the argument. This function
returns a specific group-by object, which is only needed when an
additional aggregation is called. To translate the call, the columns
to group by are stored until the aggregation functions is called.

Listing 13: Example row-wise operation in Python.

CREATE TABLE tb1 (index_ serial, "column" text);
CREATE TABLE tb2 (index_ serial, "column" text);

COPY tb1 ("column") FROM 'tbl.csv' WITH (DELIMITER ',', NULL ''
FORMAT CSV, HEADER TRUE);
COPY tbh2 ("column") FROM 'tb2.csv' WITH (DELIMITER ',', NULL '',

FORMAT CSV, HEADER TRUE);
SELECT tb1.index_, tb2."column" AS "new_column"
FROM tb1 INNER JOIN tb2 ON tb1.index_ = tb2.index_

Listing 14: Example row-wise operation in SQL.




5.2 Supported Scikit-Learn Functions

For many transformations in a preprocessing pipeline, specific
parameters are calculated before the first use. For example, the
SimpleImputer from scikit-learn (numbers 16 and 21 in Figure 1)
calculates the replacement for null values before substitution [9].
The fitting step of a pipeline calculates these prerequisites for
certain steps. The fitting needs to occur before transforming the
passed data (see Figure 6). Furthermore, calculating the fitting
parameters can be performed independently of transforming
the data. If fitting was performed each time a transformation is
applied, the results would not be consistent. For example, the
substitution for null values could be different for the training and
the test set. This means that certain values need to be calculated
exactly once and be accessible in the query from then on. These
values should be materialised or cached, so that they do not need
to be recalculated in each step.

Train-Data Test- and Validation-Data

1 Operation X (requires
fitting param.)

Operation X (requires

fitting param.) g N

/ Calculation of fitting |
parameters

2 2

fitting param. / )

are stored for > Ca:ulanotr; sf

the entire transformed data
pipeline

lifetime

Calulation of
transformed data

Figure 6: Relation between fitting and transforming.

5.2.1 Simple Imputer. The Simple imputer—as implemented
in scikit-learn—replaces all null values in a table based on some
metric, for example, most_frequent, constant, mean and median.
The SQL query to realise an impute consists of a nested subquery
that aggregates the values according to a metric for the substitute
and returns a single value to replace null values (Listing 15). For
the case most_frequent, the value that appears the most frequently
is the substitute. The SQL function COALESCE assigns the first
non-null value. As the values for substitution are calculated in
the fitting step and are reused in each transformation step, their
table expression is a candidate for materialisation.

WITH counts_help AS (

SELECT "label", COUNT(*) AS count FROM origin GROUP BY
), substitute AS (

SELECT "label" AS most_frequent FROM counts_help

WHERE counts_help.count = (SELECT MAX(count) FROM counts_help)
LIMIT 1

"label"

)
SELECT COALESCE("label",
FROM origin

(SELECT * FROM substitute)) AS "label"

Listing 15: Simple imputer in SQL.

5.2.2  One-Hot-Encoder. One-hot-encoding transforms cate-
gorical data into a binary vector. The idea is to create an array
with its size equal to the number of categories out of zero values
besides a single one at the position of the current category.

The function array_fill creates an array filled with a con-
stant value of a length passed through a second parameter. So
one-hot-encoding can be implemented by taking the number n,

which represents the number of categories (e.g., by counting
distinct entries or with RANK), and creating an array with n — 1
zeroes followed by a one and #categories — n zeroes once again.
After creating such a representation for each sensitive column, a
join brings all the values together to the final table (Listing 16).

WITH original_label_onehot AS (

SELECT "label", array_fill(®@, ARRAY['rank"-11) || 1 |
array_fill(@, ARRAY[cast((select count(distinct("label"))
from original) AS int) - "rank"]) AS "one_hot"

FROM (

SELECT "label", CAST(ROW_NUMBER() OVER() AS int) AS "rank"

FROM (select distinct("label") from original) oh
) one_hot_help
)
SELECT "one_hot" AS "label"
FROM original, original_label_onehot
WHERE original."label" = original_label_onehot."label"

Listing 16: One-hot-encoding in SQL.

5.2.3 Standard Scaler. The standard score® z of a sample | € X

—27;;5:&5 ))(()). The mean and standard

deviation is calculated in the fitting step (Listing 17) and reused
for any other transformation.

is calculated as z(I) =

SELECT (("label" - (SELECT AVG("label") FROM origin)))
/ (SELECT STDDEV_POP("label") FROM origin) AS "label"
FROM origin

Listing 17: Standard scaler in SQL.

5.24 KBins Discretizer. The KBins discretizer from scikit-
learn creates k intervals or bins based on the training data in the
fitting step. It then assigns each input value to a specific bin and

returns an encoding representing the assigned bin. The first step
max(x€X)-min(x€X)

is to calculate the step_size = T
All values smaller than min(x € X) + step_size are assigned
to the first bin, which usually is 0. All values [ where

min(x € X) + step_size < 1 < min(x € X) + 2 - step_size

holds belong to the second bin and similarly for greater values.
So the bin is calculated as

— min(x € X)

bin(l) = | .

step_size

Values smaller than min(x € X) and bigger than max(x € X)
are possible, because the training data does not necessarily pro-
vide values smaller and bigger than the testing set, hence the
edge cases are handled with the help of LEAST and GREATEST
(Listing 18). Different strategies for calculating the bins exist, cur-
rently only the explained strategy called uniform is implemented.

SELECT LEAST(3, GREATEST(9,
FLOOR(("label" - (SELECT MIN("label") AS min_val from origin))
/ (((SELECT MAX("label") FROM origin) - (SELECT MIN("label")
FROM origin)) / 4 AS step))))
AS "label" FROM origin

Listing 18: KBins discretizer in SQL (4 bins).

5.2.5 Binarize. Binarize decodes a value as one when surpass-
ing a threshold or as zero otherwise, which is translated into a
case statement in SQL (Listing 19).

SELECT (CASE WHEN ("label"
FROM origin

>= 50) THEN 1 ELSE @ END) AS "label"

Listing 19: Binarize in SQL (threshold 50).

Chttps://scikit-learn.org/stable/modules/classes html#module-sklearn.
preprocessing
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miscellaneous operations
isin
Simplelmputer
StandardScaler

Simplelmputer
OneHotEncoder
KBinsDiscretizer

healthcare compas adult simple adult complex
read_csv read_csv read_csv read_csv
merge miscellaneous operations dropna label_binarize
groupby replace label_binarize Simplelmputer
agg label_binarize StandardScaler | OneHotEncoder

StandardScaler

Table 1: Pipelines with pandas and scikit-learn operations.

pandas + scikit-learn + inspection

VIEW | CTE | VIEW | CTE | VIEW | CTE
healthcare 0.058s | 0.050s | 0.072s | 0.074s | 0.134s | 0.079s
compas 0.076s | 0.080s | 0.114s | 0.113s | 0.114s | 0.120s
adult simple | 0.017s | 0.018s | 0.037s | 0.035s | 0.036s | 0.035s
adult complex | 0.029s | 0.031s | 0.049s | 0.047s | 0.062s | 0.050s

Table 3: Transpilation time to SQL.

healthcare compas adult
#Tuples 889 2167 9771
Generated size 102 to 10° 107 to 10° 102 to 10°

Files

histories.csv,
patients.csv

compas_test.csv, compas_train.csv

adult_test.csv,
aduld_train.csv

num_children,)
income,

r_charge_desc,

vr_charge_degree,

r_jail_in,
lent_recid, is_violent_recid, vr_case_number,

r_jail_out, vio-

vr_offense_date,

Schema (key, | histories: {L id, name, first, last, com- | {[row-number,

censitive  col- | {[smoker, pas_screening_date,  sex,  dob,  age, | age work-

) complica- age_cat, race, juv_fel_count, decile_score, | class,  flwgt,
. juv_misd_count,  juv_other_count, pri- | education,
tions, ssn]} . s .

> 350 ors_count, days_b_screening_arrest, c_jail_in, | education-num,

patients: _jail_out, c_case_number, c_offense_date, | marital-status,
{[id, C_arrest_date, c_days_from_compas, | occupation, re-
first_name, c_charge_degree, c_charge_desc, is_recid, | lationship, race,
last_name, r_case_number, r_charge_degree, sex, capital-gain,
race, county, r_days_from_arrest, r_offense_date, capital-loss,

hours-per-week,
native-country,
income-per-

age_group, vr_charge_desc, type_of_assessment, | year]}
ssn]} decile_score.1, score_text, ~screening_date,

V_type_of_assessment,

v_decile_score,

to big subresults for just replicated data. The first column of the
compas and adult dataset each contains the pandas row numbers
without a header. The mlinspect authors considered this case
intentionally, as pandas recognises and handles missing headers.
In the following subsections, the performance differences are
presented for all example pipelines in the mlinspect project repos-
itory. This is possible as transpilation to SQL including inspection
is available without requiring any changes to the target pipeline.
System: Ubuntu 20.04.2 LTS, four cores of Intel i7-7700HQ CPU,
running at 2.80 GHz clock frequency each, and 16 GiB RAM.
Software: PostgreSQL 12.7, Umbra, Python 3.8.10, Pandas 1.3.0

v_score_text, v_screening_date, in_custody,
out_custody, priors_count.1, start, end, event,
two_year_recid]}

Table 2: Datasets used.

6 EVALUATION

By extending the mlinspect framework by code-generation to
SQL, we provide full support for existing pipelines within mlin-
spect while off-loading compute-intensive tasks to the database
system. To measure the performance increase through the use
of a database system, we compare the performance of selected
pipelines using existing library functions to either common table
expressions (CTEs) or materialised views.

The pipelines are taken from the mlinspect repository’ and
their names were not changed. The healthcare and compas pipeline
work on the healthcare and compas dataset respectively. The
pipelines called adult simple and adult complex both work on the
adult dataset. Table 1 shows all the considered pipelines with the
operations from pandas and the one from scikit-learn marked in
grey. The benchmarks in Section 6.1 evaluate only the pandas
operations and their SQL counterparts, whereas Section 6.2 also
includes the scikit-learn operations and their translations into
SQL. Section 6.3 presents the additional overhead when enabling
inspection to detect technical biases. Finally, Section 6.4 shows
the runtime of the original pipeline including training a neural
network in Keras but with data preprocessing and inspection
outsourced to a database system. Section 6.5 breaks down the
runtime by the performed operations. Section 6.6 measures the
impact of the number of sensitive columns on the runtime using
the New York Taxi dataset. The depicted runtimes enclose a call
to the psycopg2 adapter to run the query, so they include opti-
misation, compilation and execution time within the database
systems. Transpilation to SQL took about 100ms for each pipeline
(see Table 3), which we added to the measurements.

The original datasets were either extended with generated
mocking data or by replicating the original one until the desired
size is reached (see Table 2). The used approach depends on the
pipeline that is inspected, as some operations (e.g. join) will lead

"https://github.com/stefan-grafberger/mlinspect

6.1 Pandas-to-SQL Performance

We first compare the performance of the operations in pandas
only to the SQL translations. For each pipeline, all code up to
the last line containing pandas code was translated to SQL and
benchmarked against the original pipeline code up to the same
line (see Figure 7a). For the comparison with pandas code, no
view/CTE in SQL needs to be materialised, as all parts of the
query are only executed once. The pipelines adult simple and
adult complex have a negligibly small pandas part, which loads
the data only.

We first discuss the performance of the pandas operations
and their SQL translations for the healthcare pipeline. Umbra
outperforms the operations in pandas by up to a factor of ten
using CTEs and unmaterialised views (VIEW). PostgreSQL under-
performed pandas with CTEs, but is able to outperform pandas
with larger datasets using views by about a factor of two. It is
interesting that the performance using CTEs differs from that
using views within PostgreSQL. The reason is that the query for
CTE did not contain any NOT MATERIALIZED statements to avoid
materialising the intermediate CTEs. All CTEs—materialised or
not—are accessed only once resulting in the inefficiency of mate-
rialising unnecessary data. If NOT MATERIALIZED was added to
all CTEs, the performance would be closer to the VIEW one.

The second benchmark is based on the compas pipeline. This
pipeline differs from the first one, which splits one dataset into
train and test sets, as it uses two different datasets for training
and testing. The way the SQL translation is implemented, only
the parts contributing to the result of the pipeline are executed,
or alternatively the most recent call. Code not contributing to the
pipeline, like prints or operations on unused tables, are skipped.
For a fair comparison, we only execute the part of the compas
pipeline handling the training data. The excluded lines would
load the unused test set and apply a simple projection. Umbra
outperformed pandas by up to a factor of five. PostgreSQL out-
performs pandas as well but by a lesser margin than Umbra.

These results show that a modern database systems as Umbra
performs data preprocessing faster than using dataframes in
pandas. With unmaterialised views, PostgreSQL preprocess data
faster than pandas dataframes.


https://github.com/stefan-grafberger/mlinspect
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Figure 7: Runtime results for a) the operations in pandas, b) plus the operations in scikit-learn and c) plus inspection.



6.2 Pandas/Scikit-Learn-to-SQL Performance

In practise, it will be highly unlikely to find a pipeline just made
of pandas operations [54]. This subsection evaluates the perfor-
mance of the entire preprocessing pipeline but without training
or inspection. This additionally includes operations from the
scikit-learn library. Scikit-learn calculates the fitting parameters,
which subsequent steps in the pipeline access afterwards. As
monkey-patching rewrites each individual function call, this gen-
erates one table expression for each fitting parameter although
each parameter is based on the same tuples. So materialising
the table expressions needed for the fitting parameters acceler-
ates the PostgreSQL runs with VIEW as this avoids redundant
executions.

PostgreSQL outperforms pandas in most of the runs (see Fig-
ure 7b). For the healthcare pipeline, Umbra outperformed the
original one by up to a factor of 150 and even the run in Post-
greSQL with materialised views by up to a factor of 10. The
performance gain with Umbra for 10° tuples varied between a
factor of 40 (adult simple) and 5 - 10 (adult complex). Since the
measurements include the transpilation time to generate the SQL
queries, the plots indicate that the additional overhead is amor-
tised from at least 10* tuples. To conclude, database systems
show their full potential when preprocessing large datasets. Next,
we will show how inspection influences the runtime.

6.3 Inspection Performance

This subsection discusses the performance when data inspection
for the pipelines is enabled. Here, the materialisation of inter-
mediate results becomes even more important as the inspection
is applied after each operation. n inspection steps lead to n ex-
ecutions of the first operation, n — 1 executions of the second
operation and so on.

With an increasing number of tuples, all database systems
execute the additional inspection steps faster (see Figure 7c). For
10 tuples, PostgreSQL outperformed the original inspection run
with pandas/scikit-learn by between a factor of five (compas) and
almost 100 (adult complex). Umbra accelerated inspection on the
same datasets by a factor of 7 (compas) and 200 (adult complex)
compared to the original run. To summarise, our approach with
SQL queries accelerates inspection of pipelines out of pandas and
scikit-learn operations on datasets of size 10* onwards.

6.4 End-to-End Performance Comparison

To show that this approach can substitute whole end-to-end pre-
processing pipelines and integrates well with training, this sub-
section benchmarks the whole pipeline with the original datasets
of mlinspect (9771 tuples for the adult, 889 tuples for the health-
care and 2167 tuples for the compas dataset). This will show the
advanced state of the implementation and its potential when
transferring and transforming data as investigated in the next
subsection in more detail. Both pipelines on the adult dataset pre-
dict the income (less or greater than/equal to $50k), the healthcare
pipeline computes a score as the probability of complications and
the compas pipeline uses logistic regression to predict a score
(high/low). The correctness is verified by comparing the equality
of the intermediate results (see Figure 9, Table 4). The accuracies
of the trained model for the healthcare and the adult complex
pipeline differ slightly because of the stochastic nature of the
train/test split and the training (see Table 5).

For the presented end-to-end runs, the adult and the compas
datasets are large enough that the corresponding pipelines benefit

. Original
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Figure 8: End-to-end performance comparison.
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Figure 9: Ratio changes during preprocessing (healthcare).

Attribute Before After
Female 0.192117 0.191105
Male 0.807883 0.808895
African-American | 0.512577 0.516099
Asian 0.00455536 | 0.00509613
Caucasian 0.338087 0.338661
Hispanic 0.0895227 0.0826963
Native American 0.00277283 | 0.00185314
Other 0.0524856 0.0555942
(a) compas.
Attribute Before After
Amer-Indian-Eskimo | 0.00956476 | 0.00936392
Asian-Pac-Islander 0.0323359 0.0301253
Black 0.0945068 0.0925514
Other 0.00864338 | 0.00794514
White 0.854949 0.860014

(b) adult simple.

Table 4: Ratios before/after preprocessing.

avg | median | min max
adult simple 0.8779 | 0.8779 | 0.8779 | 0.8779
adult complex | 0.7624 | 0.7622 | 0.7620 | 0.7632
healthcare 0.9068 | 0.9041 0.8767 | 0.9589
compas 0.8079 | 0.8079 | 0.8079 | 0.8079

Table 5: Model accuracy measurements (5 runs).
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Figure 10: Operation level performance (compas pipeline).

from accelerated preprocessing (see Figure 8). For the healthcare
pipeline, PostgreSQL and the default pipeline seem to perform
about the same. The reason is that the training time for the model
is significantly higher here, which results in a smaller impact from
the accelerated preprocessing. Processing within the database
systems requires extraction, the transforming and loading of data
for subsequent model training. The transformation consists of
a cast into a matrix representation (NumPy array) to feed the
model. This step will be skipped if the data already lies with
the database system and the training happens there as well, as
proposed for Umbra and HyPer [33, 34, 41, 42, 46, 47].

6.5 Operation Level Performance

System (this experiment only): Ubuntu 20.04.2 LTS, AMD Ryzen
7 4800H, 8 cores (16 threads), 2.9 GHz, 32 GB of DDR4 RAM (3200
MHz), 512 GB of SSD (1x M.2 2280 SSD via PCI Express 3.0 x4).

To investigate how and where the speedups come from, Fig-
ure 10 shows the compas pipeline broken down into each oper-
ation. The two plots show the pipeline with replicated data for
two different input sizes (10%/10° tuples).

When inspecting the runtimes for the different pipelines, most
operations are performed faster in PostgreSQL than in Python.
The binarize operations took about 10 ms for PostgreSQL (a sim-
ple case statement in SQL) and therefore are hardly visible within
the plots. The scoring step to calculate the accuracy accesses all
tuples and is therefore time-consuming within a disk-based data-
base system. The time PostgreSQL loses due to additional data
loading and extraction could be eliminated when all computa-
tions happen inside database systems.

Overall, a significant increase in performance was achieved
throughout all pipelines. This is especially promising as the ex-
amples were not artificially constructed or simplified. Instead,
realistic pipelines were tested. The price for data loading and
transformation is a worthwhile one compared to the other per-
formance gains. The performance of Umbra paired with the ad-
ditional benefits of training the models in the database system
appears to be a promising approach worth pursuing.

~®— Original PostgreSQL VIEW
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Figure 11: Runtime depending on the number of columns.

6.6 Varying the Number of Columns

To measure the impact of the number of inspected columns on
the runtime, we vary the number of sensitive columns. We use
one month—January 2019 (7,667,793 tuples) and January 2021
(cleaned: 1,271,414 tuples)—of the New York Taxi dataset®, where
we perform one operation (selection: passenger_count > 1)
only. We initially inspect the column passenger_count only and ex-
pand the inspection stepwise to encompass the following columns:
trip_distance, PULocationID, DOLocationID and payment_type.
Figure 11 shows the runtime depending on the number of in-
spected columns. All database systems execute the inspections
faster than pandas. In PostgreSQL, the runtime of the CTE ver-
sion increases linearly with the number of inspected columns,
which is expected as the whole query runs once for each column.
Nevertheless, the view version performs better as views are part
of the holistic query optimisation in PostgreSQL. In Umbra, both
versions show similar performance.

7 CONCLUSION

This paper has presented SQL queries for bias detection caused by
data preprocessing. By exposing the tuple identifier throughout
all operations, we were able to track the distribution frequency
within columns that were even removed during preprocessing.
In order to automatically generate these queries, we extended the
mlinspect framework with a backend that replaces calls to Python
library functions with SQL queries using monkey-patching. Our
backend translated each line of the original Python source code
into one CTE/view. One CTE or view per sensitive column calcu-
lated the ratios needed to detect introduced biases. Our evaluation
revealed that materialised views in PostgreSQL could improve
the overall preprocessing and inspection performance for larger
datasets. The performance could be further improved using Um-
bra with in-memory performance even without the need to ma-
terialise intermediate results. An extension to support further
library functions such as for training a model would eliminate the
remaining need for final data transfer and thus further improve
the performance.

Shttps://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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