
DuckDB-Wasm: Fast Analytical Processing for the Web
André Kohn

andre.kohn@tum.de
Technische Universität München

Dominik Moritz
domoritz@cmu.edu

Carnegie Mellon University

Mark Raasveldt
m.raasveldt@cwi.nl

Centrum Wiskunde & Informatica

Hannes Mühleisen
hannes.muehleisen@cwi.nl

Centrum Wiskunde & Informatica

Thomas Neumann
thomas.neumann@tum.de

Technische Universität München

ABSTRACT
We introduce DuckDB-Wasm, a WebAssembly version of the data-
base system DuckDB, to provide fast analytical processing for the
Web. DuckDB-Wasm evaluates SQL queries asynchronously in
web workers, supports efficient user-defined functions written in
JavaScript, and features a browser-agnostic filesystem that reads
local and remote data in pages. DuckDB-Wasm outperforms previ-
ous data processing libraries for the Web in the TPC-H benchmark
at multiple scale factors. We demonstrate the capabilities of an
analytical database in the browser using an interactive SQL shell.

PVLDB Reference Format:
André Kohn, Dominik Moritz, Mark Raasveldt, Hannes Mühleisen,
and Thomas Neumann. DuckDB-Wasm: Fast Analytical Processing for the
Web. PVLDB, 15(12): 3574 - 3577, 2022.
doi:10.14778/3554821.3554847

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/duckdb/duckdb-wasm.

1 INTRODUCTION
The web browser has evolved to a universal computation platform.
Its rise has been accompanied by increasing requirements for the
browser programming language JavaScript. JavaScript was designed
to be flexible which comes at the cost of a reduced processing effi-
ciency. This is pronounced when considering the execution times
of complex data analysis tasks that often fall behind the native
execution by orders of magnitude. In the past, analysis tasks have
therefore been pushed to servers that tie any client-side process-
ing to additional round-trips over the internet. These round-trips
introduce network latencies that negatively affect interactive data
exploration [4].

The processing capabilities of browsers were boosted signifi-
cantly in 2017 with the release of WebAssembly [1]. WebAssembly
is a collaborative effort to design a portable low-level binary instruc-
tion format for a safe stack-based virtual machine. It is supported
by major browser engines today and serves as efficient compilation
target for programming languages like C++. WebAssembly aims

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 12 ISSN 2150-8097.
doi:10.14778/3554821.3554847

Server

Browser

La
te

nc
y

Efficiency

Analytics

Figure 1: Browser-based analytics tools process data either
locally with a low efficiency or on servers with a high la-
tency. DuckDB-Wasm pushes the boundaries with fast an-
alytical processing for the Web.

to execute programs at native speed and supersedes JavaScript for
performance-critical applications in browsers.

The rise of WebAssembly presents an opportunity for the data-
base DuckDB to bring fast analytical data processing to the Web.
DuckDB is a purpose-built embeddable database for interactive
analytics [5, 6]. Embeddable databases are linked to programs
as libraries and run in their processes. This design distinguishes
DuckDB from stand-alone data management systems and allows
for tight integrations into different environments. We identified one
such environment to be the browser and introduce DuckDB-Wasm,
a comprehensive data analysis library for the Web.

Figure 1 presents a difficult trade-off that motivates a more effi-
cient analytical processing in the browser. Web-based analysis tools
can either process data locally or on more powerful remote servers.
Browsers are limited by the efficiency of the language JavaScript
but increase the interactivity by saving costly round-trips over the
internet. This contrast asks for a continuous assessment, if the
higher efficiency of remote servers justifies higher base latencies.
The decision is non-trivial and offers the popular escape-hatch to
always run the entire analysis remotely. DuckDB-Wasm acceler-
ates the data processing in browsers and sheds new light on local
processing as driver for interactive analytics.

This paper demonstrates the concept of WebAssembly-driven
analytics. We give an overview about the design of DuckDB-Wasm
in Section 2. Section 3 compares the performance with existing
libraries in the Web. Section 4 demonstrates the capabilities of
DuckDB-Wasm using an interactive SQL shell in the browser. We
close with a summary of the paper in Section 5.

https://doi.org/10.14778/3554821.3554847
https://github.com/duckdb/duckdb-wasm
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3554821.3554847

.duckdb .parquet .csv

Server Server

Client Client Client Client Client Client

1 2 3

Traditional DuckDB

CREATE VIEW recentdaily AS (
SELECT date_trunc('day ', ts) AS day ,

name , max(price) AS price

FROM 's3:// bucket/stocks.parquet '

WHERE ts > current_date - 30
GROUP BY day);

SELECT r.day ,p.name ,max(p.count*r.price)

FROM 'https :// remote/portfolio.csv ' p,

recentdaily r
WHERE p.name = r.name GROUP BY ALL;

Figure 2: A SQL script that downloads stock data from AWS S3 stored in a Parquet file and joins it with a portfolio stored in a
CSV file. The left side presents multiple ways to execute the script in a distributed setting. 1 shows the traditional separation
between client and server, 3 a fully local execution, 2 a hybrid mode in between.

2 DESIGN AND IMPLEMENTATION
In this section, we introduce four key design aspects of DuckDB-
Wasm. We describe the interaction with WebAssembly, a browser-
agnostic web filesystem, the role of web workers and the efficient
integration of user-defined functions.

2.1 Embedding WebAssembly
We translate DuckDB to WebAssembly using the compiler Em-
scripten that build on the LLVM framework [7]. DuckDB is writ-
ten in C++, a language that differs significantly from JavaScript
in areas such as function calls, data types and memory owner-
ship. WebAssembly does not conceal these language differences
but pronounces them further through the memory isolation to-
wards the JavaScript heap. DuckDB-Wasm therefore uses Arrow
for efficient data exchange between the two languages. Arrow is
a columnar format that is organized in chunks of column vectors,
called record batches, and supports zero-copy reads with a small
overhead. DuckDB-Wasm serializes results as Arrow IPC streams
in C++ and then reads them directly from the WebAssembly heap
using JavaScript.

2.2 Web Filesystem
DuckDB-Wasm integrates a filesystem that is agnostic to the
browser environment. DuckDB is built on top of a virtual filesystem
that decouples higher level tasks, such as reading a Parquet file,
from low-level filesystem APIs that are specific to the operating
system. We use this abstraction in DuckDB-Wasm to tailor filesys-
tem implementations to the different WebAssembly environments,
such as the browser and Node.js. In the browser, file operations
are mapped either to the web File API for local files or synchronous
XMLHttpRequests for remote data. We use the HTTP range header
to request parts of remote files and maintain exponentially growing
readahead buffers to reduce the total number of requests.

Figure 2 shows an example script with two SQL statements. The
script filters stock price data of the last 30 days, stored in a Parquet
file on AWS S3. Afterwards, it joins the data with a stock portfolio
in a CSV file that is specified as raw HTTP URL. The green color
hints at relevant stock prices in the Parquet file and indicates, that
DuckDB-Wasm can skip row groups based on the filter predicate.
The CSV file is colored in blue and is fetched completely.

The figure also displays different execution strategies for the
two statements. Traditionally, the capabilities of browsers have
been limited, favoring server-based analytics. With this model, a
rising number of clients increases the load on the infrastructure
and demands for elastic scaling. DuckDB-Wasm, in contrast, offers
a choice between the three options labeled with 1 to 3 . 1 adopts
the traditional approach where the entire computation would be
done by dedicated servers. 3 presents distributed computations
where every client runs the analysis locally. 2 combines both
approaches by aggregating and filtering stock data using a server
and joining the result with the portfolio on the local device.

2.3 Web Workers
The format Arrow also facilitates the offloading of DuckDB-Wasm
to dedicated web workers as we can pass Arrow buffers efficiently
through the browser’s message API. We use web workers for mul-
tiple reasons. First, they unblock the browser’s main event loop
and allow running complex analytical queries without pausing
user interface updates. Second, DuckDB-Wasm can select between
worker versions dynamically. Since the release of WebAssembly
back in 2017, which is now referred to as MVP, the standard has
been evolving. New features, such as WebAssembly Exceptions and
SIMD, find their way into the browsers at different speeds, creating
a fractured space of post-MVP functionality. These features can
bring flat performance improvements and are indispensable when
aiming for a maximum speed. We compile DuckDB-Wasm with
multiple feature profiles and select a worker based on dynamic
browser checks.

2.4 User-Defined Functions
DuckDB-Wasm further simplifies the interaction with JavaScript
through user-defined functions. DuckDB follows a vectorized ex-
ecution model and processes queries chunk-wise to amortize the
overhead of query interpretation and benefit from superscalar capa-
bilities of the CPU. We use this vectorization to implement efficient
user-defined functions in the browser. Users can register JavaScript
functions in DuckDB-Wasm and reference themwithin a SQL query.
During execution, the runtime system reads the current chunk data
directly from the WebAssembly heap and passes the tuples to the
user function in a compact loop.

Table 1: Execution times in seconds for TPC-H queries at the scale factors 0.01, 0.1 and 0.5.

SF = 0.01 SF = 0.1 SF = 0.5

DuckDB SQL.js Arquero Lovefield DuckDB SQL.js Arquero Lovefield DuckDB SQL.js Arquero Lovefield

1 0.005 0.054 0.063 0.046 0.047 0.584 0.823 0.805 0.235 3.412 9.080 4.979
2 0.002 0.002 0.003 − 0.005 0.019 0.122 − 0.015 0.101 3.314 −
3 0.002 0.014 0.047 0.020 0.008 0.150 0.570 0.281 0.048 0.791 5.923 1.626
4 0.001 0.003 0.028 0.014 0.008 0.033 0.361 0.234 0.048 0.181 2.060 1.573
5 0.003 0.013 0.020 0.008 0.008 0.153 0.539 0.178 0.049 0.875 9.498 1.415
6 0.001 0.010 0.009 0.007 0.005 0.100 0.107 0.121 0.026 0.532 0.622 0.793
7 0.003 0.017 0.049 0.016 0.016 0.202 0.491 0.498 0.086 1.174 2.574 12.391
8 0.004 0.020 0.016 0.008 0.010 0.288 0.157 0.189 0.070 1.831 0.894 1.399
9 0.006 0.027 0.716 0.211 0.057 0.481 − 3.243 0.483 3.317 − −
10 0.003 0.010 0.029 0.013 0.020 0.106 0.420 0.270 0.116 0.559 7.784 1.678
11 0.001 0.004 0.001 − 0.003 0.050 0.007 − 0.007 0.265 0.039 −
12 0.003 0.009 0.012 0.017 0.019 0.096 0.154 0.277 0.089 0.493 1.992 1.704
13 0.002 0.020 0.012 0.044 0.014 0.327 0.197 0.572 0.068 2.246 5.200 3.251
14 0.001 0.009 0.039 0.013 0.005 0.094 0.405 0.223 0.024 0.498 2.261 1.475

∅𝑔𝑒𝑜 0.003 0.012 0.023 0.019 0.013 0.142 0.268 0.338 0.073 0.809 2.822 2.049

3 TPC-H BENCHMARK
In this section, we experimentally evaluate analytical query pro-
cessing with DuckDB-Wasm using the TPC-H benchmark. Our
experiments were performed on a Ryzen 5800X CPU with Node.js
v17.6.0 that is powered by the V8 engine v9.6.

We compare execution times of TPC-H queries using DuckDB-
Wasm and the systems SQL.js, Arquero, and Lovefield. SQL.js is the
WebAssembly version of the database SQLite and supports all TPC-
H queries out of the box. Lovefield only supports a custom SQL-like
API but optimizes query plans internally. However, Lovefield does
not support arithmetic operations and nested subqueries within
the plan which makes it difficult to run more complex TPC-H
queries. Arquero only provides a DataFrame-like API without any
upfront optimization. We therefore constructed the TPC-H queries
manually for Arquero using the optimized plans produced by the
optimizer of a relational database.

We ran the benchmark at the scale factors 0.01, 0.1, and 0.5. A
scale factor of 0.1 refers to approximately 100 MB of combined data,
resulting in a range between 10 to 500 MB in the experiment. The
WebAssembly memory is currently capped at 4 GB in browsers,
leaving some room for higher scale factors. We omitted them in the
benchmark because of the already significant differences between
the systems at scale factor 0.5. Table 1 lists the execution times
of the first 14 TPC-H queries. The table also shows the geometric
means using a subset of all 22 queries, that are supported by every
system. DuckDB-Wasm outperforms the competition by a factor
of 10 to 100 across all scale factors. The two JavaScript libraries
Arquero and Lovefield scale worse with a growing amount of data
compared to the two WebAssembly systems.

The experiment confirms, that WebAssembly enables efficient
data processing in the browser. It also shows that DuckDB-Wasm
offers sub-second execution times for complex analytical queries on
data sizes that may be considered large for the Web. We want to em-
phasize that DuckDB-Wasm does not substitute existing database

systems when processing large amounts of data. Instead, DuckDB-
Wasm aims to complement database servers to increase the interac-
tivity for browser-manageable data subsets.

4 DEMONSTRATION SCENARIO
We demonstrate the capabilities of a WebAssembly database with
an interactive SQL shell that runs entirely in the user’s browser.
The SQL shell is accessible at shell.duckdb.org and provides a
command prompt for a local DuckDB-Wasm instance. The shell
processes SQL statements and the following utility commands:
• .help prints additional information about the shell.
• .features lists browser features and the selected bundle.
• .timer (on|off) measures end-to-end execution times.
• .output (on|off) controls the printing of the query results.
• .examples lists SQL queries that scan remote Parquet files of
the TPC-H benchmark at small scale factors and can be executed
without further preparation.

• .files add registers local files in the virtual filesystem of
DuckDB-Wasm. The registered files are not fully copied into
the WebAssembly memory but are read chunk-wise through
the web File API.

• .files (track|paging|reads) $FILE enables and visualizes
filesystem statistics, tracking file ranges that have been read,
prefetched and cached. This demonstrates the scanning of files
using chunked reads or HTTP range requests.
We invite the audience to explore the remote TPCH-H data

and their own local files ad-hoc in the browser using arbitrary
SQL queries. We further propose to reproduce the following three
observations: First, when scanning a Parquet file with a limit clause,
DuckDB-Wasm only reads the metadata in the back of the file and
the first bytes of required columns in the front. Second, aggregates
like the global tuple count can be evaluated entirely on the Parquet
metadata and finish quickly even on large remote files. Third, when

https://shell.duckdb.org

1 2

Figure 3: A shell that runs entirely in the browser and evaluates SQL queries using DuckDB-Wasm. The figure shows a query
joining two parquet files with the relations orders and customer of the TPC-H benchmark at scale factor 0.1. 1 lists the query
results and page accesses, 2 shows the query plan.

fully scanning a file, DuckDB-Wasm reads ranges of exponentially
increasing sizes to reduce the overhead of individual reads.

Figure 3 shows the WebAssembly shell in action. The figure
presents the execution of a query that joins data from two local
Parquet files. The files store the relations orders and customers from
the TPC-H benchmark at scale factor 0.1. orders.parquet contains
150’000 tuples and measures 11.8 MB. customer.parquet contains
15’000 tuples and accounts for 2.6 MB. 2 shows the query plan
that consists of two Parquet scans, a hash join on the customer key
and a topmost projection. DuckDB-Wasm executes the query in 40
milliseconds with cold caches and in 6 milliseconds afterwards. 1
also prints paging information of the customer data after running
the query twice. It shows that DuckDB-Wasm reads 475 KB in total
for the metadata in the back of the file and the required attributes
in the front.

5 SUMMARY
In this paper, we introduced DuckDB-Wasm, a WebAssembly ver-
sion of the database system DuckDB that provides fast analytical
processing for the web. We outlined implementation details and
showed that DuckDB-Wasm outperforms existing systems by a
large margin in the TPC-H benchmark. The demonstration sce-
nario presents an interactive shell that allows executing analytical
SQL statements in the local browser. Nevertheless, we identify two
major opportunities for future improvements.

First, we believe that WebAssembly unveils hitherto dormant
potential for shared query processing between clients and servers.
Pushing computation closer to the client eliminates costly round-
trips over the internet and thus increases interactivity and scala-
bility of in-browser analytics. However, client-sided analytics also
stresses the importance of data locality and asks for a thorough opti-
mization of distributed query plans. Distributed query plans should
take into account where data is located, how computation and
bandwidth resources can be scaled, and how query latencies evolve
during interactive and repeated executions. We see the tandem of
DuckDB and DuckDB-Wasm as a first step towards a universal data
plane spanning across traditional database servers, clients, CDN
workers, and computational storage.

Second, DuckDB-Wasm barely scratches the surface of efficient
browser-agnostic data processing. The browser landscape is evolv-
ing with new APIs andWebAssembly capabilities at the horizon. Ex-
tensive filesystem support, for example, will evolve DuckDB-Wasm
from an in-memory analytical query engine to a persistent database
system that can bypass browser memory limitations completely
through out-of-core operators. WebAssembly Module Linking will
further facilitate the dynamic loading of DuckDB extensions for
ICU timezones and full-text search. Additionally, multithreading
in browsers has been hampered by the repercussions of the Spec-
tre and Meltdown vulnerabilities [2, 3]. DuckDB scales seamlessly
to a large number of cores outside of WebAssembly which could
accelerate in-browser analytics even further in the future.

ACKNOWLEDGMENTS
We would like to thank all past, current and future contributors
to DuckDB and DuckDB-Wasm. This project has received funding
from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant
agreement No 725286).

REFERENCES
[1] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman,

Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. 2017. Bringing the Web
up to Speed with WebAssembly. SIGPLAN Not. 52, 6 (2017), 185–200.

[2] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execution. In S&P.
1–19.

[3] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Jann
Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, Mike Hamburg,
and Raoul Strackx. 2020. Meltdown: reading kernel memory from user space.
Commun. ACM 63, 6 (2020), 46–56.

[4] Zhicheng Liu and Jeffrey Heer. 2014. The Effects of Interactive Latency on Ex-
ploratory Visual Analysis. IEEE Transactions on Visualization and Computer Graph-
ics 20, 12 (2014), 2122–2131.

[5] Mark Raasveldt and Hannes Mühleisen. 2019. DuckDB: an Embeddable Analytical
Database. In SIGMOD, Peter A. Boncz, Stefan Manegold, Anastasia Ailamaki, Amol
Deshpande, and Tim Kraska (Eds.). 1981–1984.

[6] Mark Raasveldt and Hannes Mühleisen. 2020. Data Management for Data Science
- Towards Embedded Analytics. In CIDR.

[7] Alon Zakai. 2011. Emscripten: an LLVM-to-JavaScript compiler. In SIGPLAN.
301–312.

	Abstract
	1 Introduction
	2 Design and Implementation
	2.1 Embedding WebAssembly
	2.2 Web Filesystem
	2.3 Web Workers
	2.4 User-Defined Functions

	3 TPC-H Benchmark
	4 Demonstration Scenario
	5 Summary
	Acknowledgments
	References

