Implementing Stencil Problems in Chapel:
An Experience Report

Per Fuchs
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands
per.fuchs@gmail.com

Pieter Hijma
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands
p-hijma@vu.nl

Clemens Grelck
Universiteit van Amsterdam
Amsterdam, The Netherlands
c.grelck@uva.nl

Universiteit van Amsterdam
Amsterdam, The Netherlands
p-hijma@uva.nl

Abstract

Stencil operations represent a fundamental class of algo-
rithms in high-performance computing. We are interested
in what level of performance can be expected from a high-
productivity language such as Chapel. To this effect we dis-
cuss four different implementations of a generic stencil oper-
ation with a convergence check after each iteration. We start
with a sequential implementation followed by a global-view
implementation that we experiment with both on a 16-core
multi-core system as well as on a cluster with up to 16 such
nodes using domain maps. We finish with a local-view im-
plementation that explicitly encodes all design decisions
with respect to parallel execution. This paper is set up as a
two stage experience report: We mainly report our findings
from the users’ perspective without any feedback from the
Chapel implementers. We then report additional analysis
performed under guidance of the Chapel team. Our experi-
mental findings show that Chapel performs as expected on
a single node. However, it does not achieve the expected lev-
els of performance on our multi-node system, neither with
the data-parallel global-view approach, nor with the task-
parallel local-view code. We discuss the root causes of our
reduced performance in detail and report possible solutions.

CCS Concepts - Software and its engineering — Par-
allel programming languages.

Keywords stencil operation, experience report, Chapel, per-
formance study, cluster computing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CHIUW ’19, June 22, 2019, Phoenix, AZ, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-6800-1/19/06...$15.00
https://doi.org/10.1145/3329722.3330146

16

ACM Reference Format:

Per Fuchs, Pieter Hijma, and Clemens Grelck. 2019. Implementing
Stencil Problems in Chapel: An Experience Report. In Proceedings
of the ACM SIGPLAN 6th Chapel Implementers and Users Workshop
(CHIUW °19), June 22, 2019, Phoenix, AZ, USA. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3329722.3330146

1 Introduction

Chapel [6, 7] is a high-productivity programming language
that promises multi-scale parallel programming from multi-
core systems to large-scale compute clusters. Support for
distributed memory architectures is based on the Partitioned
Global Address Space (PGAS) model. Chapel addresses par-
allel execution and the corresponding issues in an explicit
way, but offers programmers the choice between a rather
explicit task-based programming style and a more implicit
data-parallel programming style. Data distribution is gov-
erned by user-defined domain maps, and it is a design charac-
teristic of Chapel to use the very same interface for standard
and custom data distributions.

We have been teaching Chapel programming in Amster-
dam for many years, initially at the University of Amster-
dam within the course Programming Concurrent Systems
and currently in the courses Programming Large-Scale Par-
allel Systems and Parallel Programming Practical at the VU
Amsterdam as part of a joint degree program of the two Am-
sterdam universities. In these courses students implement a
fairly simple stencil operation, namely a simplified variant
of heat diffusion on the surface of a cylinder, using a variety
of parallel programming approaches including Chapel. Sten-
cil codes represent a fundamental class of algorithms with
endless applications in the compute-intensive application
domains that Chapel aims at.

In the classroom we advocate Chapel as making the step
from sequential code to parallel code nearly non-existent and
the step from single node parallel code to multi-node parallel
code particularly simple. However, experience across a num-
ber of iterations has shown initial enthusiasm to turn into
disappointment as soon as performance measurements show
their results. In this paper, we aim to share our experiences
with stencil computations in Chapel and we perform a deep

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3329722.3330146
https://doi.org/10.1145/3329722.3330146

CHIUW ’19, June 22, 2019, Phoenix, AZ, USA

analysis of the obtained performance with help from the
Chapel team. In contrast to most previous research (Sec. 2),
we particularly target multi-locale scenarios, the main target
for a PGAS language. We show a total of four Chapel im-
plementations of our flavor of the heat dissipation problem
(Sec. 3) and investigate their performance:

a) a carefully engineered sequential version as a baseline
(Sec. 4);

b) a textbook style single-node implementation (Sec. 5);
c) a global-view data-parallel implementation with do-
main maps for multi-locale execution (Sec. 6); and

d) alocal-view task-parallel implementation (Sec. 7).

We discuss our results in Sec. 8, and conclude that although
Chapel offers promising and highly powerful constructs to
design parallel applications, Chapel’s multi-locale perfor-
mance is below our expectations as a result of reduced sup-
port for our hardware configuration and lack of investment
in the Chapel compiler for the locality assertions that we
use.

2 Related Work

Bertolacci et al. show that Chapel’s parallel iterators, a pro-
gramming construct that allows one to define iterators for
parallel loops, can provide a way to separate the execution
schedule from the computation [4]. This paper compares the
effectiveness of Chapel compared to other languages such
as C or C++ without taking multi-locale execution into ac-
count, while our work investigates several Chapel versions
of stencil operations for single- and multi-locale execution.

Burkhart et al. [5] compare stencil operations implementa-
tions (among others based on work by Barrett et al. [3]) with
different languages such as Java, OpenMP, and MPI in a class-
room setting. In addition, they compare multiple versions
of the Chapel implementation with other PGAS languages
(UPC and Co-array Fortran). Our experiences are also based
on the classroom and similar to our work, they compare var-
ious versions but only evaluate single-node versions, while
we compare multi-node versions.

Mittal explores Successive Over-relaxation in the languages
Chapel, D, and Go [12]. All versions have modest speed-ups
on a single node. We study four different versions on single
node and multiple nodes.

The Chapel team has been investigating the performance
of stencil operations since 2017 using the Intel Parallel Re-
search Kernel benchmark [13]. Over the past years, the per-
formance of stencil operations has steadily increased ap-
proaching MPI/OpenMP performance. To achieve this, it
was necessary to apply more fine-grained locality control
in the code, and to improve the compiler and runtime, for
example for NUMA affinity in the Cray-specific ugni com-
munication layer. In contrast to the Chapel team, we do not
have intricate knowledge about the compiler and runtime
and we do not use the Cray-specific ugni communication

17

Per Fuchs, Pieter Hijma, and Clemens Grelck

layer. The reports on Stencil performance can be accessed
in the performance release notes of version 1.16, 1.17, and
1.19 [8].

3 Problem Definition

We use a simplified version of heat diffusion on the surface
of a cylinder. Our focus is not on the correct modeling of the
underlying physics, but on stencil operation that exposes
various characteristics of common stencil operations.

We discretize the cylinder surface as a temperature matrix
of N x M grid points. Each grid point is associated with a
temperature value, specified as a double precision floating
point number. In each iteration the temperature value of
each grid point is recomputed as the weighted average of the
previous iteration’s value, its four direct and its four diagonal
neighbor grid points. In addition we use an N X M read-only
conductivity coefficient matrix of double precision floating
point numbers to model the material’s conductivity.

The simulation is finished after a given maximum number
of iterations or when the simulation has sufficiently con-
verged, i.e. all absolute differences between the old and new
temperature values across the entire temperature matrix
remain below a given threshold e, whichever occurs first.

3.1 Experimental Setup

All experiments have been performed on the DAS-5 cluster
computer [2] of the VU Amsterdam. Each node in the cluster
contains two sockets with an Intel Xeon E5-2630 CPU with
2.4 GHz with 8 cores with 2 hyperthreads per core. The
nodes are connected with a 48 Gbps InfiniBand network. The
operating system is 64bit CentOS 7.4 with a 3.10.0 kernel.
The Chapel version used is the latest stable release (1.19.0)
and all code was compiled with the --fast flag that turns
on all optimizations.

Chapel itself and the C code generated by Chapel is com-
piled with GCC 6.4.0, the latest version available on our
system. Two run-times were created: one for single-locale
execution and one for multi-locale execution. We set the
environment variable for the target CPU to native for both
run-times. For the multi-locale run-time, we set the environ-
ment variables such that we use the GASNet library with
substrate ibv and maximum of physical memory of 1G. Ad-
ditionally, we set some environment variables to make use
of the Slurm launch code generated by Chapel, but these
environment variables do not influence the performance.

All numbers of the performance experiments are averaged
over three runs executing all 500 iterations. The standard
deviations have been verified for each average and in all
cases, the standard deviation was low for the numbers that
we present in this paper. In other words, all our results are
highly reproducible. The code repository is available with a
permissive license [1] with a permanent link to the specific
versions used in this paper [9] in the form of a DOL

Implementing Stencil Problems in Chapel

1 config const N = 8192;
2 config const M = 8192;
3 config const I = 500;

. config const E = 0.01;

HaloDomain: domain(2) = {0..N+1, 0..M+1};
CylinderDomain: subdomain(HaloDomain) = {1..N, 1..M};

6 const
7 const

LeftHalo: subdomain(HaloDomain) = {1..N, 0..0};
RightHalo: subdomain(HaloDomain) = {1..N, M+1..M+1};
UpperHalo: subdomain(HaloDomain) = {0..0, @..M+1}
LowerHalo: subdomain(HaloDomain) = {N+1..N+1, @..M+1};

9 const
10 const
11 const
12 const

14 const LeftColumn: subdomain(HaloDomain) = {1..N, 1..1};
15 const RightColumn: subdomain(HaloDomain) = {1..N, M..M}
16 const UpperRow: subdomain(HaloDomain) = {1..1, @..M+1};
17 const LowerRow: subdomain(HaloDomain) = {N..N, @..M+1};
18

19 class Cylinder {

20 var temperature : [HaloDomain] real;

21}

23 const factor_direct_neighbors : real =
24 sqrt(2.0) / (sqrt(2.0) + 1) / 4;
25 const factor_diagonal_neighbors :
26 1/ (sqrt(2.0) + 1) / 4;

real =

Figure 1. Global definitions of configuration constants, do-
mains, and classes.

4 Sequential Version

We begin our Chapel implementation of the heat dissipation
problem with a number of (configuration) constants that are
shared across all our different variants. Fig. 1 shows the most
relevant ones.

To serve as a performance baseline we implement a com-
pletely sequential version of our code. Chapel is a language
with inherent parallel constructs, so creating a sequential
version is not natural. Therefore, we show in Fig. 2 the com-
putational kernel of our heat dissipation problem in the way
one would write a parallel version in Chapel naturally.

Within the sequential time iteration loop we consistently
use forall-loops to exploit the abundant data parallelism in
our code. Following the update of the halo columns we see a
classical stencil code with the weight handling as described in
the previous section. We implement the convergence check
with a Chapel reduction, again in a data-parallel way, and
break out of the loop if sufficient convergence is detected.

A potential pitfall for novice Chapel programmers is the
swap operator application that completes the loop body. We
deliberately wrap our array buffers in a class Cylinder, as
shown in Fig. 1, to achieve a pointer swap here. This could
easily be overlooked with the effect that the two (usually
large) buffers are swapped call-by-value.

In principle, we could simply run our experiments with set-
ting the CHPL_RT_NUM_THREADS_PER_LOCALE environment
variable to ensure that no data parallelism is used. In the
absence of knowledge about Chapel compiler implementa-
tion internals we suspect that only dynamically de-activating

18

CHIUW ’19, June 22, 2019, Phoenix, AZ, USA

for iteration in 1..I {

1
2

3 forall (i,j) in zip(LeftHalo, RightColumn) {

4 src.temperature[i] = src.temperature[j];

5 3

6 forall (i,j) in zip(RightHalo, LeftColumn) {

7 src.temperature[i] = src.temperature[j];

8 3

9

10 forall (i, j) in CylinderDomain {

11 var weight = conductivity[i, jJ;

12 var remaining_weight = 1 - weight;

13

14 dst.temperature[i, j] =

15 weight * src.temperature[i, j] +

16 // four direct neighbors

17 remaining_weight * factor_direct_neighbors *
18 (src.temperature[i-1, j] +

19 src.temperature[i, j+1] +
20 src.temperature[i+1, j1 +
21 src.temperature[i, j-11) +
22 // four diagonal neighbors
23 remaining_weight * factor_diagonal_neighbors *
24 (src.temperature[i-1, j-1] +
25 src.temperature[i-1, j+1] +
26 src.temperature[i+1, j+1] +
27 src.temperature[i+1, j-11);
28 }
29
30 max_difference = max reduce [ij in CylinderDomain]
31 abs(dst.temperature[ij] - src.temperature[ij]);
32
33 if max_difference < E break;
34
35 src <=> dst;
36 }

Figure 2. Global-view single-locale textbook implementa-
tion.

parallel execution potentially leaves binary code for the orga-
nization of parallel program execution behind that may cause
overhead. Hence, we decided against this simple solution
and replaced all implicit and explicit data parallel constructs
with sequential ones.

Concretely, we replaced all forall-loops by correspond-
ing for-loops (lines 3, 6, and 10). Likewise, the Chapel re-
duction is replaced by yet another straightforward for-loop
in line 30.

At this point we need to make a clear design decision. It
is possible to reduce the max_difference value outside of
the forall-loop as is shown in Fig. 2 or we could reduce the
value within the forall-loop as is shown in Fig. 3. To find
out what works best, we experimented with both options.

4.1 Expected Results

In our opinion, the latter version with the reduction in the
loop is the most natural version for a sequential implemen-
tation, because it would make better use of the cache as all
elements of the two arrays only have to be accessed once
at the cost of a small amount of unpredictable control-flow
in the main loop. In contrast, having a separate reduce loop

CHIUW ’19, June 22, 2019, Phoenix, AZ, USA

for iteration in 1..I {

1
2
3 // exchange columns
4

5 for (i,
6 const
7 const
8 const

j) in CylinderDomain {

weight = conductivity[i, jI;
remaining_weight = 1 - weight;
oldTemp = src.temperature[i, jl;

10 const newTemp =
11 weight * oldTemp +
12 // neighbor computations

14 max_difference =
15 max(max_difference, abs(newTemp - oldTemp));
16 dst.temperature[i, j] = newTemp;

17 }

19 if max_difference < E break;
20
21 src <=> dst;

22}

Figure 3. Sequential implementation with an in-loop reduc-
tion.

400
350
300
250
200
150
100

50

runtime (s)

% % Sy, S S, S
% s % o % R
RY) N (7 N (7
0, <, CH NG A e,
O T) 7) 7
S, IS8 A 2, e 2,
%@ v (S i S 3
7% 2y %, % %, %
@O' oo o el o ,Oy)
<’<‘ el ® &,) o,
® o, %
% ©

version

Figure 4. Run-times of the Chapel and C versions having
a reduction within the loop or a separate reduction on an
input of 8192 X 8192.

would make the stencil loop more predictable, but the reduc-
tion would need to access all elements of the two arrays a
second time.

4.2 Actual Results

To our surprise, the two versions show a large performance
gap. The version with a separate reduction outside the stencil
loop needs about 151 s while the version with the reduction
inside the stencil loop, the one we expected to perform better,
needs about 390 s.

To get a sense of “ground truth”, we compare it against a
C version as well. The separate reduce version needs about
131 s while the in-place reduction version needs 141 s, again
against our expectations.

We investigated why the performance of the reduction
within the loop is so low. After careful inspection of the

19

Per Fuchs, Pieter Hijma, and Clemens Grelck

compiler output of the Chapel and C compilers, we learned
that the C compiler is able to vectorize the stencil loop, but
only with the reduction outside of the stencil loop.

To better understand the effects of vectorization, we turned
it off in the C versions. This yields 168 s for the version with
the separate reduction and 142 s for the version with the
reduction inside of the stencil loop, which is in line with our
expectations. Figure 4 puts all measurements into context.

Although we now understand why the version with a sep-
arate reduction is faster than the version with the reduction
inside the stencil loop, we still cannot explain why the per-
formance drops by a factor of more than two while the C
version does not have this problem. Disabling vectorization
for the Chapel version with the separate reduction leads to
a performance similar to the ‘in-loop’ version. Apparently,
vectorization is an important optimization for Chapel code.

Since the compiler on our system is two years old, we tried
a more recent compiler (GCC 9.1.0) on a different machine
to investigate whether the vectorization capabilities of the C
compiler are an important factor or whether the Chapel com-
piler generates code that is difficult to vectorize in general.
We can confirm that the more recent compiler is able to suc-
cessfully vectorize the code both for the reduction inside the
loop and outside the loop. This tells us that our experience
over the last few years could have been improved by using
the most recent compiler and we recommend the Chapel
team to add a note about the influence of the C compiler on
the performance in their documentation.

We choose version chpl-separate-reduce as our base-
line. It can be argued that this is not a true sequential version
because the C compiler applies vectorization in the most im-
portant loop. However, in spite of this, we decided to use this
version as a baseline based on the following arguments: From
the perspective of Chapel, this version is purely sequential
as no parallelism is expressed in the code.

Furthermore, the C compiler is external to the Chapel
ecosystem similar to the way that the hardware on which
the code runs, is external to the Chapel ecosystem. The fact
that a C compiler is smart enough to extract parallelism
from a sequential loop is outside of the control of the Chapel
compiler, similar to the fact that it is outside of the control of
the Chapel compiler that hardware extracts parallelism from
an instruction stream on superscalar architectures. With
modern architectures truly sequential execution does simply
not exist.

Finally, the fastest Chapel version is close to the perfor-
mance of the C version, regardless of the way the reduction
is done and regardless of whether vectorization is turned on
or off. Therefore, we choose this as our baseline as it helps
us to come to more precise conclusions. We understand that
there are also arguments against choosing this baseline.

Implementing Stencil Problems in Chapel

Table 1. Execution times in seconds and speedup of the
single-locale version compared to the sequential version
for an input size of 8192 X 8192. Below that the required
bandwidth in GB/s for this execution time and the maximum
bandwidth from the STREAM benchmark (GB/s).

Threads 1 2 4 8 16
par—global—single 152.20 75.23 45,58 35.85 24.99
Speedup 0.99 2.01 3.32 4.22 6.06
BW STREAM 18.8 40.4 71.1 79.9 78.0
Required BW 229 46.4 76.6 97.3 139.6

5 Global View Single Locale

Figure 2 shows the computational kernel of our data-parallel
global-view version for a single locale. In contrast to the
sequential version we use forall-loops instead of for-loops
in lines 3, 6, and 10, and a Chapel reduce expression in line
30 as is shown in the figure.

5.1 Expected Results

Since a node in our cluster has 2 CPUs with 8 cores each, we
measured the execution for this version with 1 to 16 threads
controlled by setting the CHPL_RT_NUM_THREADS_PER_LO-
CALE environment variable. The number of threads of 16 is
also chosen as a default by the Chapel run-time when the
number of threads is not specified. This is sensible for our
use-case because we should not benefit from hyperthread-
ing as the code employs a large amount of floating point
instructions.

Since our main loop touches three large arrays and the
order of magnitude of array accesses and computation is the
same, it is likely that our program is bandwidth limited. To
understand what a realistic speedup is, we apply the Roofline
model [14] by counting the number of accesses (lines 4, 7, 11,
14, 15, 18-21, 24-27, and 31 in Fig. 2), measuring the maximum
bandwidth with the STREAM benchmark [11] for 1 to 16
threads, and deriving execution times from these numbers.
For example, 1 thread achieves a maximum of 18.8 GB/s
and 16 threads a maximum of 78.0 GB/s on the STREAM
benchmark which corresponds to execution times 186 s and
44.7 s respectively. Since the sequential version achieves
151 s, there must be effect from the cache and as such, these
estimated execution times can be considered pessimistic.

We also applied an optimistic scenario where all stencil
accesses are considered to be in the cache (lines 18-21 and
24-27 left out). This leads to an execution time of 71.5 s for
1 thread and 17.2 s for 16 threads, which means that the
maximum speedup we can expect is 8.8 in the optimistic
scenario.

20

CHIUW ’19, June 22, 2019, Phoenix, AZ, USA

16 Ideal
optimistic
14 + par-global-single —+—
pessimistic
12
o 10
3
g
g 8
@
6 +
4 +
2 b
0 1 1 1 |)
12 4 8 16

threads

Figure 5. Speedup and pessimistic and optimistic bounds
for par-global-single compared to the sequential version
on an input of 8192 X 8192.

5.2 Actual Results

Table 1 presents the execution time and speedup for each
configuration. It also shows the maximum bandwidth mea-
sured with the STREAM benchmark and the bandwidth that
would be required to achieve the measured execution time.
The difference between these numbers gives an indication of
the effect of the cache (if the required bandwidth is greater
than the maximum bandwidth, this must be due to caching).

Figure 5 visualizes the speedups and shows that the mea-
sured speedup scales up to about 4 threads and then de-
creases, precisely where the required bandwidth approaches
the maximum bandwidth possible on our system. The mea-
sured speedup is also in between our optimistic and pes-
simistic scenario, where the cache effect becomes larger for
more threads. This is logical as with an increased number
of cores, more cache becomes available. This gives us high
confidence that Chapel achieves the maximum performance
possible and we will use the execution time with 16 threads
as a baseline for the multi-locale versions.

6 Global View Multi Locale

Following Chapel’s multi-resolution approach to parallelism,
we next aim at running our code on a cluster of machines.
This requires the distribution of our three arrays (tempera-
ture source and destination as well as conductivity) over the
distributed memories of the cluster machines. The design
of Chapel very much facilitates this step as it boils down to
annotating the domains with a predefined distribution us-
ing the dmapped keyword. The predefined block distribution
seems like a logical choice for our problem because stencil
operations benefit from both temporal and spatial locality.
The Chapel library offers a special version of the block
distribution for stencil operations, named Stencil. This dis-
tribution provides a cache for a configurable amount of rows
and columns around the blocks that are owned by a clus-
ter node. These rows and columns can be accessed locally

CHIUW ’19, June 22, 2019, Phoenix, AZ, USA

use StencilDist;

1
2
3 var MylLocaleView = {0..numLocales-1, 0..0};

1 var MylLocales =

5 reshape(Locales[@. .numLocales-1], MyLocaleView);
6

7 const HaloDomain: domain(2) dmapped Stencil(

8 boundingBox = {@..N+1, @..M+1},

9 targetLocales = MylLocales,

10 fluff=(1,1)) = {0..N+1, 0..M+1};

Figure 6. Data distribution for the global-view-multi-locale
version.

1 for iteration in 1..I {

3 ref s
4 ref d

src.temperature;
dst.temperature;

6 // exchange columns

8 forall (i, j) in CylinderDomain {

9 local {

10 var weight = conductivity[i, jI;
11 var remaining_weight = 1 - weight;

13 dri, jl =

14 weight * s[i, j] +

15 // neighbor computations
16 3

17 }
18 d.updateFluff();

20 max_difference = max reduce [ij in CylinderDomain]
21 abs(dlijl - s[ijD);

23 if max_difference < E break;

25 src <=> dst;

26}

Figure 7. Global-view multi-locale implementation.

during the stencil operation while updates are meant to hap-
pen once after the stencil operation has completed with an
updateFluff () operation.

A true block-wise distribution however, would hurt the
performance, since it would mean that columns should be
exchanged between the various machines. Therefore, we
decided to distribute the arrays row-wise to prevent column
access in the update. Since columns are not aligned in the
cache, it may trigger many remote messages, while rows are
aligned in the cache and can be sent with one message.

Figure 6 shows that we use the StencilDist distribution.
We create a view on the locales with one column and num-
Locales rows and then use it to reshape the locales. The
HaloDomain is domain mapped with a stencil distribution
with our view on the locales, resulting in a row-wise distri-
bution of our main domains.

Figure 7 shows that the stencil distribution allows us to
assert that the stencil computation can be performed com-
pletely locally (line 9) and that the rows can be exchanged

21

Per Fuchs, Pieter Hijma, and Clemens Grelck

Table 2. Execution times in seconds, speedup and efficiency
of the global view, multi-locale version compared to the
single-locale version with 16 threads for an input size of
8192 x 8192.

Nodes 1 2 4 8 16
par-global-multi 158.68 83.13 40.08 21.10 11.03
Speedup 0.16 0.30 0.62 1.18 2.27
Efﬁciency 0.16 0.15 0.16 0.15 0.14

16 | Ideal

par-global-multi —+—

14 -

12 |

10

speedup

nodes

Figure 8. Speedup of the global view multi locale version
compared to the single locale version with 16 threads on an
input of 8192 x 8192.

after the forall-loop with the updateFluff () call (line 18).
Please note that because of our row-wise distribution, the
column exchanges are also done completely locally (line 6,
identical to lines 3-8 in Fig. 2).

In conclusion, it is enough to change a few lines of code to
get a program that is able to run on multiple machines with
Chapel. Under the hood, the compiler adds a global address
space layer and with that the ability for remote writes and
reads.

6.1 Expected Results

Theoretically, this should result in reasonable speedups over
the par-global-single version: The workload can be perfectly
statically balanced and the amount of computation is an order
of magnitude larger than the communication. Additionally,
the communication increases only linearly with more locales,
can be implemented as a bulk operation and is performed
using our low-latency, high-throughput InfiniBand network.

The main point of synchronization, the reduction, can
efficiently be performed in parallel, as explained in Sec. 5.
Furthermore, by choosing large data sizes, we can mitigate
the effects of the fact that part of our main computation is
serial.

Implementing Stencil Problems in Chapel

160

= exchange columns
== exchange rows
e stencil

I reduction

-
N
o

-
N
o

=
o
o

80

60

execution time (s)

40

20

locales

Figure 9. Breakdown of the execution times of the four
stages of par-global-multi on an input of 8192 X 8192
with 16 parallel tasks per locale.

6.2 Actual Results

Unfortunately, the results are below expectations. Table 2
shows the execution times, speedups and efficiencies of the
multi-locale version compared to the single-locale version
with 16 threads. Figure 8 shows the speedup graphically.

On first glance, an execution time of 158.7 s for one locale
seems reasonable compared to the sequential and single-
locale version, but this version should also use 16 threads
per node to compute the stencil. So in fact, we would at
best expect an execution time of 25 s (the performance of
the single-locale version with 16 threads, see Table 1) and
because of overhead a possibly somewhat higher execution
time.

Although the performance is below expectations, this ver-
sion scales very well. Figure 9 shows in a breakdown of
the execution times for various stages that with more lo-
cales, the highly compute-intensive parts scale very well
and communication of the rows requires virtually no time
in comparison.

The stencil computations contribute for a large part to
the reduced performance despite the fact that 16 threads are
available and that the “stencil” stage is defined completely
within a local block. This should mean that it is not necessary
to perform run-time checks for remote memory in this part
and in principle the code should perform as well as the single-
locale versions from the point-of-view of a user.

6.3 Feedback from the Chapel team

After analysis with help from the Chapel team, we learned
that the local block does not do what we expected but that
we can achieve what we wanted by removing the local block
and use the undocumented feature of asserting that an access
is local by using for example d.localAccess[i, j] in line
13 in Fig. 7. Using this feature improved the performance
by a factor of 3.5 for 1 locale to a factor 2.4 for 16 locales
compared to results in Table 2.

22

CHIUW ’19, June 22, 2019, Phoenix, AZ, USA

1 var tmp :
2

3 local {

4 tmp = [ij in CylinderDomain] abs(d[ij] - s[ijl);
5}

6

7 max_difference = max reduce tmp;

[CylinderDomain] real;

Figure 10. A local block for the reduce expression.

We want to note that we prefer the . localAccess() fea-
ture over the local blocks, because it gives more fine-grained
control. For instance, in line 21 in Fig. 7 it allows us to assert
that the d and s accesses are local whereas we refrained from
the solution shown in Fig. 10 where we create a local block
with a temporary variable to assert that the implicit forall
loop contains only local accesses.

In addition, our performance is hampered by the fact that
our cluster has two sockets per node. GASNet is not NUMA
aware and registers remote memory on one socket resulting
in a penalty for the cores on the other socket. One sugges-
tion was to use GASNet’s MPI conduit that does not have
the NUMA problem because memory need not be registered
with the network. Another suggestion was to either con-
figure Chapel to use GASNet’s ‘fast’ segment or use the
OpenFabrics [10] communication layer. Both methods may
improve network performance although these solutions are
also not NUMA aware. However, all methods require us to
use an MPI based launcher and unfortunately, for an un-
known reason we are unable to configure this launcher to
use more than one core per process on a node in our system,
resulting in reduced performance.

7 Local View Multi Locale

This program written in the local view programming para-
digm allows us to control how and when we want to distrib-
ute data between locales. In Fig. 11 we declare a domain Row,
a class Communicator that contains the first and last row
for a locale, and the array of communicators with domain
LocaleSpace, automatically distributing the values of the
array.

We then start our main coforall loop in which we iterate
over the locales and execute the locale-specific code. In the
first phase, we create the local communicators and distribute
them. After that, each locale accesses the communicators of
their neighboring locales. With this mechanism, locales can
exchange rows with their neighbors by just writing to the
row arrays in their respective communicators.

The local view programming paradigm also allows us to
isolate the compute-intensive regions of the code to ensure
that these regions only work on local data. In our version
we make use of a domain mapping of the HaloDomain in
the same way we did this in the global-view version (see
Fig. 6) but in this case we use the BlockDist distribution
instead of the StencilDist. Given this data distribution we

CHIUW ’19, June 22, 2019, Phoenix, AZ, USA

const Row : domain(1) = {0..M+1};

class Communicator {
var firstRow: [Row] real;

var lastRow: [Row] real;

6 3}
§ var communicators: [LocaleSpace] Communicator;

10 var globallterations = 0;
11 var globalMaxDiff: real = min(real);

13 coforall 1 in Locales with

14 (ref globallterations, ref globalMaxDiff) {
15 on 1l {
16 const myCommunicator = new unmanaged Communicator();

17 communicators[here.id] = myCommunicator;

19 alllLocalesBarrier.barrier();

20 const isLast = here.id == LocaleSpace.last;
21 const isFirst = here.id == LocaleSpace.first;
22

23 const beforeCommunicator = if !isFirst

24 then communicatorsfhere.id - 1]

25 else new unmanaged Communicator();

26 const nextCommunicator = if !islLast

27 then communicatorsfhere.id + 1]

28 else new unmanaged Communicator();

Figure 11. Definition of communicators to exchange rows
between locales for the multi-locale, local view version.

const LocalCylinderDomain = CylinderDomain.localSubdomain();
const LocalHaloDomain = LocalCylinderDomain.expand(1, 1);

const LocalUpperRow = LocalHaloDomain.dim(1).first;
const LocalLowerRow = LocalHaloDomain.dim(1).last;

[I S T N

Figure 12. Definition of local domains.

can obtain the local dimensions automatically by calling
localSubdomain() on the distributed global domain as can
be seen in Fig. 12. This functionality is very convenient in
Chapel as it means that we do not need to compute the
domains manually.

Figure 13 shows the main loop for the iterations. Line 5
shows a local block with the main forall-loop that performs
the stencil computation and performs the exchange of the
columns locally (similar to lines 3-8 in Fig. 2).

The communication after the stencil operation is straight-
forward but its implementation involves some important
decisions. First, it should be noted that we measured remote
writes to be much faster than remote reads. Intuitively, this
can be explained because a remote write can be implemented
in a “fire and forget” way while a remote read has to wait for
an answer. Resulting from this knowledge, the neighboring
row exchanges are implemented as remote writes (lines 24,
25 and 34-43) and all local difference values are stored on
locale 0, obtained from all locales (line 30) which allows the
reduce operation to work locally without a remote read (line

Per Fuchs, Pieter Hijma, and Clemens Grelck

1 do {

2 ref s = src.temperature;
3 ref d = dst.temperature;
4

5

local {
6 local_max_difference = min(real);
8 forall (i, j) in LocalCylinderDomain with
9 (max reduce local_max_difference) {
10 const weight = localConductivity[i, jI;

11 const remaining_weight = 1 - weight;
12 const oldTemp = s[i, jJ;

14 const newTemp = weight * oldTemp +
15 // neighbor computations

17 d[i, j] = newTemp;

18 local_max_difference = max(local_max_difference,
19 abs(new_temp - old_temp));

20 }

21 // exhange columns

22 }

23

24 nextCommunicator.firstRow = d[LocalLowerRow - 1, ..];
25 beforeCommunicator.lastRow = d[LocalUpperRow + 1, ..1;
26

27 src <=> dst;

29 // located on locale @
30 max_diffs[here.id] = local_max_difference;

32 alllocalesBarrier.barrier();

34 if (lisLast) {

35 forall col in Row {

36 d[LocalLowerRow, col] = myCommunicator.lastRow[col];
37 }

38 3

39 if (lisFirst) {

10 forall col in Row {

A1 d[LocalUpperRow, col] = myCommunicator.firstRow[col];
42 3

13 }

45 local_max_difference = max reduce max_diffs;

47 local_iteration += 1;
48 } while (local_max_difference > E && local_iteration < I);

Figure 13. Computational kernel for the local-view multi-
locale version.

45). Note that we synchronize this communication with a
barrier (line 32).

This implementation demonstrates the ability of local view
programming in Chapel and it shows a big advantage of
Chapel: the possibility to choose and combine different levels
of abstraction to gain performance where needed but use
productive and safe abstractions for most parts.

We are pleased with how well global view programming
and local view programming combine in a single Chapel pro-
gram. The initialization can be done using global view pro-
gramming and does not need to change while the compute-
intensive part of the code can use local view programming.

Implementing Stencil Problems in Chapel

Table 3. Execution times in seconds, speedup and efficiency
of the local view, multi-locale version compared to single-
locale version with 16 threads for an input size of 8192x8192.

Nodes 1 2 4 8 16
par-local-multi 47.15 24.74 14.55 7.62 4.33
Speedup 053 101 172 328 5.78
Efficiency 0.53 0.51 043 041 036

Furthermore, it is possible to use much of Chapel’s support-
ing functionality even for the local view part of the program.
For example, the distribution can be done using the local-
Subdomain() and array slicing functionality which is more
convenient and less error-prone than manual distribution.

In addition, the communication in Chapel via global arrays
leaves less room for mistakes than explicit communication
via messaging. However, very subtle code changes can lead
to big performance changes: A programmer in Chapel might
fall down a big performance cliff without having a clue what
caused this cliff to exist.

An example for this is the difference between remote writ-
ing or reading which might depend on syntactically nearly
invisible changes as using LocaleSpace or {0. .LocalesS-
pace.size} as domain for the global array.

Additionally, we noticed that if remote communication
is involved, array slicing beats a semantically equivalent
forall-loop performance-wise. Intuitively this seems logical
because array slicing tells the compiler in a more declarative
way what should be done and can be easier optimized. How-
ever, if no remote communication is involved the forall-
loop seems to be faster. Generally such behavior is bad, but
especially in a high-performance language that offers a work-
flow to incrementally introduce more concrete concepts to
gain performance, this kind of changing performance behav-
ior leads to frustration and unnecessary work.

7.1 Expected Results

We expect that the version in Fig. 13 has high performance
and scales well. We control the computation such that each
locale works on its own local data and the stencil opera-
tion and reduction can be parallelized well locally. We also
perform the reduction in two phases, first locally and then
globally on one locale with a limited amount of values. Fur-
thermore, the iterations are synchronized by only one barrier
and we make use of remote writes that we have found to be
faster. Given the large inputs that we have, from the user’s
perspective, there should be no reason why this version
would not perform and scale well.

7.2 Actual Results

Table 3 shows that the performance is about a factor 2 for
one node to a factor 3 for 16 nodes lower than we expect.

24

CHIUW ’19, June 22, 2019, Phoenix, AZ, USA

16 | Ideal

par-local-multi —+—

12

10

speedup

0 | | | |
1 2 4 8 16

nodes

Figure 14. Speedup of the local view multi locale versions
compared to the single-locale version with 16 threads on an
input of 8192 x 8192.

E==2 exchange rows
[reduction
mmm. barrier

. ocal

execution time (s)

locales

Figure 15. Breakdown of the execution times of the four
stages of par-local-multi on an input of 8192 X 8192 with
a varying number of nodes.

The scalability is not ideal, but this is likely caused by the
fact that the total run-time is less than 5 seconds where the
overhead of synchronization becomes more pronounced. We
estimate that the scalability is better when we increase the
input size.

Figure 14 shows graphically that the speedup lags be-
hind our expectation, although this version achieves bet-
ter results than par-global-multi. Figure 15 shows that
the slowdown is hardly due to communication, but mostly
caused by the computations that are in the local block with
a small share of synchronization.

The implementation that we describe in this section has
the largest potential for speed-up, so for this version we
tried as much as we could think of to let the performance
increase. The performance numbers reported here are for
the implementation that performs the reduction inside of
the loop as this gave better overall performance. We also ex-
perimented with having a separate reduction and we turned

CHIUW ’19, June 22, 2019, Phoenix, AZ, USA

on all performance-related compiler options. We verified the
output of the GCC vectorization that reported that none of
the important loops were vectorized. From a user-perspective,
this is the maximum that can be expected in our opinion.

7.3 Feedback from the Chapel team

The information we received from the Chapel team also
applies here: The reduced performance measured for this
version can be improved by replacing the local blocks with
the undocumented . localAccess() array accesses. In that
case, the execution time improves by 1.46 times for 1 locale
and by 1.36 times for 16 locales. The additional problem of
the lack of NUMA awareness in GASNet is likely a large
contributor.

8 Discussion and Conclusion

Chapel was designed with several principles and concepts
in mind [6, 7]. We share our view on the relevant principles
and concepts given our experiences. One of the principles is
that it should be comfortable to express parallelism. Chapel
certainly satisfies this with stencil computations. Stencil op-
erations can be comfortably expressed and moving to multi-
locale execution needs minimal adjustments. This is also
conform to the principle that explicit orchestration should
not be needed.

Particularly impressive is the way higher-level abstrac-
tions can be carefully applied when programming on a lower
level as we did in our local-view version. The so-called “multi-
resolution” design principles where all higher-level con-
structs are implemented in terms of lower-level constructs
also available to programmers, allowed us to separate local
code conveniently from multi-locale code.

Furthermore, Chapel focuses on separation of concerns
between application developers, parallelism experts, and the
compiler. Users are responsible for identifying parallelism
and locality to achieve high performance but do not need
a deep understanding of the optimizations the compiler ap-
plies.

In our experience, this principle has not been completely
satisfied. The performance of the compiler-generated C code
and the binary that the C compiler generates can vary signif-
icantly based on a small change in the code. We have seen
sequential performance of 151 s and 390 s on the same input.

A final important principle is that the Chapel project sets
ambitious goals to be a high-performance language for dis-
tributed execution. We applaud this, but unfortunately it ap-
pears that there is currently no satisfying way to achieve high
multi-locale performance on our system using the GASNet
communication layer, the recommended default for Infini-
Band networks. However, the new OpenFabrics communica-
tion layer seems promising for our system once it becomes
NUMA aware.

25

Per Fuchs, Pieter Hijma, and Clemens Grelck

Acknowledgments

We want to thank the anonymous reviewers for their valu-
able feedback and Brad Chamberlain, Ben Harshbarger, and
Elliot Ronaghan for their valuable performance insights.
This research has received partial funding from the project
“A methodology and ecosystem for many-core programming”
funded by the Netherlands eScience Center, filenr. 27016G06.

References

[1] 2019. Software repository for the heat-dissipation problem in Chapel.
https://github.com/JungleComputing/heat-dissipation-chapel.
Henri E. Bal, Dick Epema, Cees de Laat, Rob V. van Nieuwpoort, John
Romein, Frank Seinstra, Cees Snoek, and Harry Wijshoff. 2016. A
Medium-Scale Distributed System for Computer Science Research:
Infrastructure for the Long Term. Computer 49, 5 (May 2016), 54-63.
Richard F Barrett, Philip C Roth, and Stephen W Poole. 2007. Finite
Dfference Stencils Implemented Using Chapel. Oak Ridge National
Laboratory, Tech. Rep. ORNL Technical Report TM-2007/122 (2007).
Ian J. Bertolacci, Catherine Olschanowsky, Ben Harshbarger, Brad-
ford L. Chamberlain, David G. Wonnacott, and Michelle Mills Strout.
2015. Parameterized Diamond Tiling for Stencil Computations with
Chapel Parallel Iterators. In Proceedings of the 29th ACM on Interna-
tional Conference on Supercomputing (ICS ’15). ACM, New York, NY,
USA, 197-206. https://doi.org/10.1145/2751205.2751226

Helmar Burkhart, Madan Sathe, Matthias Christen, Olaf Schenk, and

Max Rietmann. 2012. Run, stencil, run! HPC productivity studies in the

classroom. In Proceedings of the 6th Conference on Partitioned Global

Address Space Programming Models (PGAS 2012).

B.L. Chamberlain, D. Callahan, and H.P. Zima. 2007. Parallel Pro-

grammability and the Chapel Language. Int. J. High Perform. Comput.

Appl. 21, 3 (2007), 291-312. https://doi.org/10.1177/1094342007078442

B. L. Chamberlain. 2015. Chapel. In Programming Models for Parallel

Computing, Pavan Balaji (Ed.). MIT Press, Chapter 6, 129-159.

[8] Chapel Team Cray Inc. 2019. Release notes: Benchmarks and Perfor-
mance Results. https://chapel-lang.org/releaseNotes.html.

[9] Per Fuchs, Pieter Hijma, and Clemens Grelck. 2019. Heat-dissipation
in Chapel. https://doi.org/10.5281/zenodo.2713721

[10] Paul Grun, Sean Hefty, Sayantan Sur, David Goodell, Robert D. Russell,
Howard Pritchard, and Jeffrey M. Squyres. 2015. A Brief Introduction
to the OpenFabrics Interfaces - A New Network API for Maximizing
High Performance Application Efficiency. In Proceedings of the 2015
IEEE 23rd Annual Symposium on High-Performance Interconnects (HOTI
’15). IEEE Computer Society, Washington, DC, USA, 34-39.

[11] John D. McCalpin. 1995. Memory Bandwidth and Machine Balance in

Current High Performance Computers. IEEE Comp. Soc. Tech. Comm.

on Comp. Arch. (TCCA) Newsletter (Dec. 1995), 19-25.

Sparsh Mittal. 2014. A Study of Successive Over-relaxation (SOR)

Method Parallelization Over Modern HPC Languages. Int. Jour. of

High Perf. Computing and Networking 7, 4 (2014), 292-298.

[13] R.F. Van der Wijngaart and T. G. Mattson. 2014. The Parallel Research
Kernels. In 2014 IEEE High Performance Extreme Computing Conference
(HPEC). 1-6. https://doi.org/10.1109/HPEC.2014.7040972

[14] Samuel Williams, Andrew Waterman, and David Patterson. 2009.
Roofline: An Insightful Visual Performance Model for Multicore Ar-
chitectures. Commun. ACM 52 (April 2009), 65-76. Issue 4.

(2]

E

—

[4

[l

[5

—

[6

—

(7]

[12]

https://github.com/JungleComputing/heat-dissipation-chapel
https://doi.org/10.1145/2751205.2751226
https://doi.org/10.1177/1094342007078442
https://chapel-lang.org/releaseNotes.html
https://doi.org/10.5281/zenodo.2713721
https://doi.org/10.1109/HPEC.2014.7040972

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Definition
	3.1 Experimental Setup

	4 Sequential Version
	4.1 Expected Results
	4.2 Actual Results

	5 Global View Single Locale
	5.1 Expected Results
	5.2 Actual Results

	6 Global View Multi Locale
	6.1 Expected Results
	6.2 Actual Results
	6.3 Feedback from the Chapel team

	7 Local View Multi Locale
	7.1 Expected Results
	7.2 Actual Results
	7.3 Feedback from the Chapel team

	8 Discussion and Conclusion
	Acknowledgments
	References

