
Memory-Optimized Multi-Version Concurrency Control for
Disk-Based Database Systems

Michael Freitag
Technische Universität München

freitagm@in.tum.de

Alfons Kemper
Technische Universität München

kemper@in.tum.de

Thomas Neumann
Technische Universität München

neumann@in.tum.de

ABSTRACT
Pure in-memory database systems o�er outstanding performance
but degrade heavily if the working set does not �t into DRAM,
which is problematic in view of declining main memory growth
rates. In contrast, recently proposed memory-optimized disk-based
systems such as Umbra leverage large in-memory bu�ers for query
processing but rely on fast solid-state disks for persistent storage.
They o�er near in-memory performance while the working set
is cached, and scale gracefully to arbitrarily large data sets far
beyond main memory capacity. Past research has shown that this
architecture is indeed feasible for read-heavy analytical workloads.

We continue this line of work in the following paper, and present
a novel multi-version concurrency control approach that enables a
memory-optimized disk-based system to achieve excellent perfor-
mance on transactional workloads as well. Our approach exploits
that the vast majority of versioning information can be maintained
entirely in-memory without ever being persisted to stable storage,
which minimizes the overhead of concurrency control. Large write
transactions for which this is not possible are extremely rare, and
handled transparently by a lightweight fallback mechanism. Our
experiments show that the proposed approach achieves transaction
throughput up to an order of magnitude higher than competing
disk-based systems, con�rming its viability in a real-world setting.

PVLDB Reference Format:
Michael Freitag, Alfons Kemper, and Thomas Neumann.
Memory-Optimized Multi-Version Concurrency Control for Disk-Based
Database Systems. PVLDB, 15(11): 2797 - 2810, 2022.
doi:10.14778/3551793.3551832

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/freitmi/experiments-vldb2022.

1 INTRODUCTION
Over the past decade, we have observed a divergence of relational
database system design into two competing species. On the one
hand, there are pure in-memory systems that o�er unprecedented
performance, but do not handle large data sets well. On the other
hand, traditional disk-based systems do scale to data sets much
larger than main memory transparently and gracefully, but due to
a variety of factors they exhibit suboptimal performance even if

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 11 ISSN 2150-8097.
doi:10.14778/3551793.3551832

all data �ts into main memory. We argue that this dichotomy has
become obsolete, as recent hardware trends make it feasible and in
fact necessary to move towards a novel type of memory-optimized
disk-based database architecture which uni�es the performance of
an in-memory system with the scalability of a disk-based system.

As in-memory databases were conceived, it was assumed that
main memory sizes would rise in accord with the amount of data in
need of processing for the foreseeable future [22, 23]. In reality, how-
ever, a�ordable main memory sizes have increased only marginally
since then, e�ectively reaching a plateau of at most a few TB [46].
In view of this development, serious concerns have been raised
about the viability of pure main memory systems and we currently
observe a renewed interest in disk-based databases [41, 46].

However, traditional disk-based database systems do not meet
the expectations for such amemory-optimized system. This is due to
several profound di�erences between modern hardware platforms,
and the hardware platforms for which these traditional systems
were originally designed. First of all, main memory has become
much more plentiful, with database servers routinely having access
to hundreds of GB to several TB of RAM. Furthermore, persistent
solid-state storagemedia havemade several quantum leaps in recent
years, and now achieve excellent IO throughput up to multiple
GB per second, orders of magnitude higher than the previously
used rotating disks. Finally, modern multi-core CPUs allow for
massive parallelism on a single machine, both in analytical and in
transactional workloads.

Past research has shown that in order to fully exploit the capabili-
ties of such modern hardware, it is required to redesign the majority
of components of a typical disk-based database system [20, 35, 46].
The result of this process is a novel type of memory-optimized
disk-based system which o�ers excellent performance as long as
the working set �ts into main memory, while scaling transparently
and gracefully to the out-of-memory case. Of course, such a sys-
tem will usually fall short of a pure in-memory system in terms of
maximum attainable raw performance, but this is o�set by its far
superior robustness since most in-memory systems simply cease
operation when they run out of memory [10, 20, 23, 61]. In this
spirit, we recently presented the Umbra general-purpose database
system as the evolution of HyPer towards this kind of system, and
discussed key design characteristics that allow it to achieve close
to in-memory performance on analytical workloads [46].

In the following paper, we build upon this foundation and present
a novel multi-version concurrency control (MVCC) approach that
allows a memory-optimized disk-based system to achieve the same
goal on transactional workloads. Our approach is guided by the key
insight that due to the large amount of RAM available to a modern
database system, the versioning information for the vast majority
of transactions can easily be maintained entirely in-memory. For

https://doi.org/10.14778/3551793.3551832
https://github.com/freitmi/experiments-vldb2022
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3551793.3551832


instance, any given TPCC transaction updates substantially fewer
than 100 tuples. We extend the bu�er manager to transparently
maintain a minimal mapping layer which associates logical data
objects on the database pages with memory-resident versioning
information in a decentralized way. Since none of this data needs
to be written to persistent storage, the impact of concurrency con-
trol on the overall system performance is minimized. Obviously,
extremely large write transactions for which this approach is not
feasible can still realistically occur, for example during database
bulk loading. However, such transactions are rare during regular
operation, and we propose a lightweight versioning mechanism
that stores some minimal information on each database page in
order to isolate bulk operations from concurrent readers.

All techniques presented in this paper have been integrated and
evaluated within the general-purpose database system Umbra [46].
We thus provide a detailed architecture blueprint for the transac-
tion processing infrastructure within a general-purpose disk-based
database system. It makes full use of modern hardware, allowing
it to combine both excellent scalability and excellent performance
within a single system. As we will demonstrate in our experimental
evaluation, the proposed system architecture achieves transaction
throughput numbers up to an order of magnitude higher than tra-
ditional disk-based database systems, which further con�rms the
viability of the memory-optimized disk-based paradigm.

In summary, the key contributions of this paper are:
(1) A novel, low-overhead MVCC approach for disk-based sys-

tems which exploits that most versioning information does
not need to be persisted to disk. This prevents bloating
of database �les, and tremendously expedites transaction
processing for the common case of small transactions.

(2) A transparent fallback mechanism which allows the sys-
tem to support arbitrarily large write transactions whose
footprint exceeds the available main memory size.

(3) Full integration and thorough evaluation of the proposed
approach within the general-purpose Umbra DBMS, vali-
dating that the proposed system architecture is viable in a
real-world setting.

The remainder of this paper is structured as follows. In Section 2
we present the architecture of a prototypical memory-optimized
disk-based system as well as essential background information on
multi-version concurrency control. Subsequently, we discuss our
MVCC approach in Section 3, and conduct a detailed experimental
evaluation of our system in Section 4. Finally, we outline relevant
related work in Section 5 and draw conclusions in Section 6.

2 FOUNDATIONS
In the following, we outline key architectural characteristics of a
modern memory-optimized disk-based database system. Further-
more, we provide some essential background on multi-version con-
currency control and its implementation within a practical system.

2.1 Memory-Optimized Disk-Based Systems
As outlined above, previous work has demonstrated that most com-
ponents of a traditional disk-based database system exhibit subop-
timal performance on modern hardware [5, 19, 20, 35, 36, 46, 62].
Of particular interest to our discussion are the bu�er manager and

the logging subsystem that are found in virtually all disk-based sys-
tems [21], since their characteristics directly in�uence the design
of our proposed approach.

Disk-based system designs that rely on a bu�er manager provide
an intelligent global replacement strategy across all persistent data
structures, and hide the complexities of IO bu�ering behind a sim-
ple interface. These characteristics are desirable within a memory-
optimized system as well, but classical bu�er managers incur a
number of major ine�ciencies mostly related to excessive global
synchronization [35]. Recently proposed storage managers such as
LeanStore overcome these problems through a number of key tech-
niques, which minimizes their overhead in the common case that
the entire working set �ts intomainmemory [35]. Most importantly,
pointer swizzling allows the translation from logical page identi�ers
to physical bu�er frame addresses to be implemented in a decentral-
ized way [15]. Here, any reference to a database page is represented
as a �xed-size integer called a swip. A swip can either store a logical
page identi�er in case the referenced page is currently residing on
persistent storage, or a physical pointer to a bu�er frame in case it is
currently cached in the bu�er manager [35, 46]. In contrast to tradi-
tional designs, pointer swizzling allows cached pages to be accessed
with minimal overhead and without any global synchronization
since no lookup into any centralized translation data structure is
required. E�cient thread synchronization is achieved through a
lightweight and highly scalable hybrid mutex implementation that
supports both pessimistic and optimistic latching modes [5, 36].

Most disk-based database systems employ some form of ARIES-
style write-ahead logging in order to guarantee durability of com-
mitted transactions and enable recovery from system failure [20, 21].
Similar to bu�er management, ARIES is attractive since it o�ers
a wide range of important features, but it su�ers from poor scal-
ability [19, 45]. All worker threads must append their log records
to a single global log which requires expensive synchronization.
More recently, decentralized logging approaches have been pro-
posed which retain the core features of ARIES but minimize its
overhead [20, 62]. Conceptually, these approaches assign a private
thread-local log to each worker threads, while retaining a su�cient
global ordering of log records for recovery [20, 62].

2.2 Multi-Version Concurrency Control
Robust and well-de�ned transaction isolation is one of the major
selling points of a general-purpose DBMS. Historically, concur-
rency control algorithms often relied on locking to ensure trans-
action isolation, e.g. the well-known two-phase locking protocol in
which the database maintains read and write locks to coordinate
con�icting transactions [64]. However, locking-based approaches
typically su�er frommajor scalability problems as readers can block
writers and vice-versa [47]. In contrast, multi-version concurrency
control allows much higher concurrency between readers and writ-
ers [4, 45, 47, 64]. Under MVCC any update of a data object creates
a new version of that object while initially retaining the old ver-
sion, so that concurrent readers can still access it. Consequently,
writers can proceed even if there are concurrent readers, and read-
only transactions will never have to wait at all. Since this is a
highly desirable property, MVCC has emerged as the concurrency
control algorithm of choice both in disk-based systems such as



A
B
C
D
...

T5 T2

T1 T1

Tc

ZT2 Y

W

U

X

V

Relation Transaction Version Buffers

Figure 1: Illustration of decentralized version maintenance
in an in-memory system. Relations store the most recent
version of a tuple which is linked to a chain of before-images
stored in the transaction version bu�ers.

MySQL [1], SQL Server [43], Oracle [2], or PostgreSQL [16, 51], and
in in main memory databases such as HyPer [47], Hekaton [10, 30],
SAP HANA [13, 56], or Oracle TimesTen [29].

Our approach is based on the decentralized MVCC implementa-
tion �rst proposed for the HyPer in-memory database system [47,
65]. We choose this approach since it introduces little overhead and
requires only minimal synchronization, which matches the gen-
eral design objectives for a memory-optimized disk-based system.
Furthermore, it allows for a garbage collection scheme that is well-
optimized and has been proven to be highly e�ective [5, 47, 65]. The
key idea of this approach is to perform updates in-place, and copy
the previous values of the updated attributes to the private version
bu�er of the updating transaction (cf. Figure 1). These before-images
form a chain for each tuple which possibly spans the version bu�ers
of multiple transactions. The entries in a given chain are ordered in
the direction from newest to oldest change, and can be traversed in
order to reconstruct a previous version of a tuple. Outdated versions
that are no longer relevant to any transaction are garbage collected
continually, which is facilitated by having them clustered within
the transaction version bu�ers.

Each new transaction is associated with two timestamps, namely
a unique transaction identi�er )83 ∈ {263, . . . , 264 − 1} and a start
timestamp )BC0AC ∈ {0, . . . , 263 − 1} which corresponds to the most
recent committed transaction. Together, these timestamps deter-
mine the range of versions that are visible to the transaction. During
commit processing, transactions draw the next available commit
timestamp )2><<8C from the same sequence that is used to gener-
ate the start timestamps. Each version E stores a single timestamp
) (E) that is initially set to the identi�er )83 of the transaction that
created the version, and later updated to the commit timestamp
)2><<8C . Thereby, the uncommitted state of a tuple is initially only
accessible to the transaction that modi�ed the tuple, and all other
transactions reconstruct an old state of the tuple by traversing the
chain of before-images associated with the tuple.

Speci�cally, a transaction that accesses a tuple �rst reads the
most recent state of the tuple. Subsequently it traverses all versions
E in the corresponding version chain, applying the respective before-
images along the way until the following stopping criterion is met:

E = ∅ ∨ ) (E) = )83 ∨ ) (E) ≤ )BC0AC .

The �rst term of the disjunction simply terminates traversal if there
are no more entries in a chain, the second term allows a transaction
to see its own changes, and the third term ensures that transactions
reconstruct the state of a tuple that was committed at the time of
transaction begin. Consider, for example, the scenario depicted in
Figure 1 and assume that there is an active transaction with)83 = )2
and )BC0AC = )2. A scan of the relation would then yield the values
� (since the update * → � was performed by )2 itself), + (since
the update + → � by )5 is invisible due to )5 > )BC0AC , but the
update . → + by )2 is visible to )2 due to )2 ≤ )BC0AC ), � (since
the tuple is unversioned), and � (since the update - → � by )1 is
visible to )2 due to )1 ≤ )BC0AC ).

3 MEMORY-OPTIMIZED MVCC
Main memory databases o�er superior performance over tradi-
tional disk-based systems, and consequently most recent work on
high-performance MVCC implementations has focused on the in-
memory case [53, 58, 65]. This allows several key simpli�cations
that are not immediately applicable to a disk-based system, such as
assuming that all relation and version data will reside in-memory
at all times. In comparison, little attention has been devoted to
exploring novel MVCC approaches in a disk-based setting [44, 54].
Existing systems such as PostgreSQL still rely on MVCC imple-
mentations that were devised decades ago [16, 65], and thus fail to
optimally exploit the capabilities of modern hardware (cf. Section 1).
In particular, these systems often assume that almost no database
pages and version data at all can be maintained in-memory. We
bridge this gap and present a novel approach that is well-suited for
a memory-optimized disk-based system.

Our proposal is based on the fundamental observation that the
vast majority of write transactions encountered during regular
transaction processing are extremely small. In particular, they gen-
erate comparably few versions which consume many orders of mag-
nitude less main memory than the amount typically available on
modern hardware. In these cases, a memory-optimized disk-based
system can easily maintain all versioning information required by
MVCC entirely in-memory. By carefully relying on the logging
subsystem that is already in place anyway, it is in fact possible to
ensure that this versioning information is truly ephemeral and will
never be written to persistent storage. As discussed in further detail
in Section 3.1, we can therefore design our MVCC approach for the
most part like a pure in-memory implementation and adopt many
of the existing innovations and optimizations for this scenario. Not
only does this lead to excellent performance in the common case
that the working set �ts into main memory, but it also dramatically
reduces the amount of redundant data that has to be written to
disk, since generally only the most recent version of a data object
will be present on the actual database pages. Of course, large write
transactions with a footprint larger than main memory do realisti-
cally occur, e.g. during bulk loading, and an e�cient technique for
providing transaction isolation in these cases is required. We argue
that the main objective here is to allow read-only OLAP transac-
tions to continue unimpeded by a concurrent bulk operation, and
consequently present a lightweight versioning scheme that does
not consume any additional main memory as a transparent fallback
mechanism (cf. Section 3.2).



Transaction Version Buffers

...

6
7

...
9

A
B
...

6
7
...Pa

ge
 3

...

...

... ...
...
...Pa

ge
 4

...

...

... ...
...
...Pa

ge
1

C
D
...

8
9
...Pa

ge
2

... ...

Buffer FramesBuffer Pool

Orphans

...
2

Local Mapping
Tables

Evicted Page
Data on SSD

Buffer Manager

T5 T2

T1 T1

Tc

ZT2 Y

W

U

X

V

Figure 2: Overview of version maintenance within our proposed approach. Solid arrows represent physical pointers while
dotted arrows indicate logical references. Database pages store only the most recent version of a data object, and all additional
versioning information resides exclusively in-memory. The bu�er manager maintains a local mapping table for each versioned
database page which associates stable data object identi�ers with version chains.

3.1 In-Memory Version Maintenance
A bu�er-managed database system typically employs a steal policy,
i.e. database pages containing uncommitted changes may be evicted
to persistent storage. This is essential in order to allow the system
to scale gracefully beyond main memory, but poses a key challenge
when integrating any MVCC approach within such a system. The
logical data objects comprising the database contents are stored on
database pages which may be evicted from main memory at any
time, yet at the same time they have to be associated with their
respective version chain in some way.

Existing systems resolve this challenge in a wide variety of di�er-
ent ways, but unfortunately none of these solutions are immediately
applicable to a memory-optimized disk-based system. A straightfor-
ward option is to physically materialize all versions of a data object
within the same storage space, e.g. all versions of a tuple within
the corresponding relation [65]. Although this approach is taken
by established systems such as the disk-based PostgreSQL [51]
and the in-memory Hekaton [10, 31], we argue that it leads to
suboptimal resource utilization and performance. Since they are
maintained within the same physical storage space, all versions
necessarily become part of the persistent database state that is
written to disk, whereas only the most recent version of a data
object is actually required to be durable if write-ahead logging is
used. Thus, a large amount of redundant data is persisted leading
to severe write ampli�cation. Append-only storage was extremely
useful historically since it allowed MVCC to be implemented with
very few in-memory data structures, but this is no longer necessary
or desirable on modern hardware.

In order to avoid such write ampli�cation it makes sense to store
any additional versions separately from the most recent version of
a data object and only include the latter in the persistent database
state [65]. Variations of this basic scheme are widespread in existing
systems such as SQL Server, Oracle DB, MySQL, SAP HANA, or
HyPer [65]. Disk-based systems typically employ a global version
storage data structure which maps stable logical identi�ers to ac-
tual versions. Each version of a data object, including the master
version that is persisted to disk, contains such a logical identi�er

as an additional attribute to form a link to the next version in the
corresponding chain. However, a global data structure can easily be-
come a major scalability bottleneck [6]. Moreover, versions can only
be accessed through a non-trivial lookup into this data structure,
which makes even uncontended version chain traversals rather
expensive. In contrast, pure in-memory systems like HyPer store
versions in a decentralized way, and use raw pointers to directly
link individual versions within a chain instead of relying on logical
identi�ers [47]. This approach is of course much more e�cient, but
a minimal logical mapping layer is still required in our case since
we cannot store raw pointer on database pages [35].

We thus propose the following high-level architecture for an
e�cient MVCC implementation within a memory-optimized disk-
based system (cf. Figure 2). Database pages that can be evicted
to disk store only the most recent version of a data object. If a
given database page contains any versioned data objects at all, we
maintain a local mapping table for this speci�c database page exclu-
sively in-memory. While the page is pinned in the bu�er manager,
the respective bu�er frame stores a pointer to the associated map-
ping table, allowing direct access without consulting any global
data structures. The table maps suitable stable logical identi�ers
of the versioned data objects (e.g. tuple identi�ers) residing on the
page to the corresponding version chains which are maintained in-
memory. Any bu�er-managed data structures are thus decoupled
from the actual version chain implementation and overall MVCC
protocol, allowing the latter to be chosen �exibly from a range of
existing in-memory MVCC implementations. As discussed previ-
ously, we argue that a decentralized version maintenance scheme
is best suited for our use-case and thus adopt the MVCC approach
outlined in Section 2.2. Garbage collection is based on the highly
scalable Steam algorithm devised for in-memory systems, albeit
with some extensions to account for the local mapping tables [6].

3.1.1 Version Maintenance. As outlined above, the logical version-
ing information required by MVCC is physically highly decentral-
ized within our proposed system. Central to our approach are the
local mapping tables that establish a link between data objects on a
page and their associated version chains, if any. A pointer to the



mapping table is stored in the corresponding bu�er frame while a
page resides in the bu�er pool, and can be accessed through the
same latching protocol that is already in place to access the page
itself (cf. Section 2.1). That is, no additional synchronization over-
head is introduced since the system can request access to both the
database page and the associated mapping table with a single latch
acquisition [46]. The bu�er manager can still evict arbitrary pages
as usual, but only the page data is actually written to disk. Any
orphaned mapping tables are retained in-memory by the bu�er
manager within a hash table that maps the identi�er of the corre-
sponding page to the mapping table. Once a page is loaded back
into memory at a later point in time, the bu�er manager probes this
hash table to check whether a mapping table exists for the page and
reattaches it to the respective bu�er frame if necessary. A mapping
table entry only stores a pointer to the corresponding version chain
that is maintained separately within the transaction-local version
bu�ers (cf. Section 2.2). This is extremely useful, since it allows
transactions to e�ciently update the timestamps of their versions
during commit processing. Speci�cally, we do not have to update
any mapping tables which would require latching database pages.

Since we continuously reclaim expired versions, the vast major-
ity of pages will have no attached mapping table. Semantically, this
means that there are no version chains and thus the most recent
state of all data objects on that page is globally visible to all transac-
tions. Note that such a page may still contain logically deleted data
objects that have not yet been physically reclaimed. A mapping
table is initialized lazily once a write transaction actually modi�es
a data object on a previously unversioned page. Subsequently, writ-
ers can insert mappings into this table in order to associate newly
created version chains with currently unversioned data objects,
or retrieve existing mappings to apply further modi�cations to an
already versioned data object. When reading from a versioned page,
a lookup into the mapping table is required to determine whether
a version chain exists for a given data object. These lookups are
only performed in case that a page actually contains versioned data
objects, which we can determine at the granularity of pages by
checking whether a mapping table is present. In all other cases we
can employ an optimized scan implementation that uncondition-
ally reads all non-deleted data objects from a page, minimizing the
overhead of our approach.

Consider, for example, the situation illustrated in Figure 2 which
mirrors the in-memory scenario shown previously in Figure 1. Pages
1 and 4 have no associated local mapping table and thus contain
no versioned data objects. In contrast, pages 2 and 3 do contain
versioned data objects which is indicated by the presence of a local
mapping table for these pages. Page 3 is currently loaded into the
bu�er pool, so the respective bu�er frame contains a pointer to this
mapping table. Page 2 is currently evicted, for which reason the
bu�er manager remembers the pointer to the associated mapping
table within the separate orphan table. It will be reattached to the
corresponding bu�er frame once page 2 is loaded back into memory.

3.1.2 Garbage Collection. Like all MVCC implementations, our
approach must ensure that outdated versioning information is re-
claimed in a timely manner to prevent the system from quickly run-
ning out of memory. For this purpose, we adapt the Steam garbage

Page
Access

Page
Access

Transaction
Commit

42
84
21







Transaction Version BuffersMapping Tables

Figure 3: Illustration of garbage collection within our pro-
posed approach. Empty version chainmappings andmapping
tables are pruned on page access. Version bu�ers of globally
visible transactions are reclaimed upon transaction commit.

collection approach to our proposed system architecture. This ap-
proach has been shown to exhibit superior performance in com-
parison to a number of alternative garbage collection schemes [6].
Moreover, Steam can be integrated smoothly into our proposed
system since it assumes a similar versioning protocol [47].

Garbage accumulates in two di�erent forms within our approach
(cf. Figure 3). First, the version bu�ers maintained by the trans-
actions must be reclaimed once they are no longer relevant for
any active transaction. Second, each mapping table attached to a
database page must be pruned regularly until there are no more
versioned data objects on the page and the mapping table itself can
be discarded. We deliberately split responsibility for these di�er-
ent manifestations of garbage between several components of our
system in order to exploit the decentralized nature of our approach
and minimize the communication overhead incurred by garbage
collection. Speci�cally, during commit processing the transaction
version bu�ers are cleaned up but the mapping tables are not modi-
�ed in any way, since this would require latching the corresponding
database pages. Instead, they are pruned whenever a page is ac-
cessed during regular query processing and we have to acquire a
suitable latch on the page anyway. Of course, on its own this only
guarantees timely garbage collection of the mapping tables for hot
pages that are frequently accessed, and we additionally rely on the
bu�er manager to prune the mapping tables of cold pages. Finally,
as proposed by Boettcher et al. individual obsolete versions can be
pruned eagerly during version chain traversal in order to ensure
that the number of versions per data object is limited to the number
of active transactions [6]. This serves to minimize the number of
versions that have to be retained in the presence of long-running
readers, which otherwise could quickly cause obsolete versions to
accumulate.

In order to facilitate garbage collection of the transaction-local
version bu�ers, we maintain active and recently committed trans-
actions in two ordered linked lists (cf. Figure 4). A transaction is
appended to the active list when it begins, andmoved to the recently
committed list when it commits so that the versions it created can
be retained as long as they are still relevant to other active trans-
actions. Read-only transactions that did not create any versions
can be discarded immediately upon committing [6, 47]. As part of
the commit processing, we reclaim all recently committed transac-
tions with a commit timestamp that is less than the minimum start
timestamp of any active transaction. Note that we may unlink the
last version of a chain during this process, resulting in an empty



Tid = a, Tstart = 6

Tid = b, Tstart = 7

Tcommit = 5

Active Recently Committed

version buffer

Tcommit = 6 version buffer

Tcommit = 7 version buffer

Figure 4: Transaction lists for garbage collection. Once trans-
action 0 from the active transaction list commits, we can
reclaim the oldest two recently committed transactions.

version chain that is still associated with a data object through a
local mapping table. A data object which has an empty associated
version chain is by de�nition globally visible, so this obviously
does not a�ect correctness. However, we still want to remove such
empty mappings as fast as possible in order to limit the size of the
local mapping tables and retain high scan performance.

For this purpose, we extend the regular page-level maintenance
processing such as page compaction that is performed by a typical
relation and index implementation whenever it acquires a latch on
a page. Before any implementation-speci�c maintenance work is
done, we �rst attempt to prune any local mapping table that may
be associated with the page. That is, we iterate over the entries
within the mapping table, discard mappings that reference empty
version chains, and �nally remove the entire mapping table if it has
become empty. In order to avoid excessively many traversals of the
local mapping tables, we track some minimal statistics about the
number of empty version chains within the mapping tables, and
only attempt pruning if the fraction of empty version chains within
a mapping table exceeds a certain threshold, e.g. 5 %.

Usually, write activity in the database will be focused on a com-
parably small number of hot pages and the corresponding mapping
tables will be continuously pruned. Nevertheless, it is possible that
versioned pages become cold and are not accessed anymore, in
which case they may even be evicted entirely by the bu�er man-
ager. In order to limit the number of orphaned mapping tables
within the bu�er manager, the worker threads employ the same
pruning approach on the orphaned mapping tables whenever they
perform disk IO within the bu�er manager. Since we handle large
write transactions through an entirely separate mechanism that
does not generate any physical versioning information at all, we
expect eviction of versioned pages to be extremely unlikely during
regular operation. Correspondingly the worker threads will rarely,
if at all, have to perform garbage collection duties on cold pages.

3.1.3 Recovery. As outlined brie�y above, all versioning informa-
tion maintained by our MVCC implementation is ephemeral, mean-
ing that it will never be written to disk and is thus lost in case
of system failure. This does not a�ect correctness, however, since
this information is only necessary in order to provide transaction
isolation during forward processing. Recovery exclusively relies on
the information captured in the write-ahead log generated during
forward processing, and does not require any concurrency control.
After recovery, the database is in a globally consistent state without
any active transactions, and consequently no version chains at all
are present within the system. This allows the state of our MVCC

implementation to be initialized in the same way every time the sys-
tem is (re-)started, e.g. the transaction timestamp counters always
start at their initial values listed in Section 2.2 and the transaction
lists are initially empty.

This property of our approach allows us to almost completely
decouple the logging and concurrency control subsystems, which
greatly simpli�es the overall system design. One important excep-
tion to this strict separation is transaction rollback, which has to be
implemented carefully to account for both components. In particu-
lar, an ARIES-style write-ahead logging protocol requires that we
write exactly one compensation log record whenever we revert an
existing log record, so that recovery can skip these log records in
the undo pass [45]. Since a single log record may encode changes
to multiple data objects, our system must implement rollback by
scanning log records. When reverting changes to a data object, the
most recent version of that object on the database page is over-
written with the before-image stored in the log record, and the
corresponding irrelevant version is unlinked from the respective
chain. This di�ers from a pure in-memory system which does not
require undo logging and can thus simply scan the version bu�ers
and revert all changes to the a�ected data objects individually.

3.1.4 Implementation Details. In order to ensure that garbage col-
lection scales well, our actual implementation avoids centralized
data structures wherever possible, which is especially important
on multi-socket systems. Speci�cally, we maintain additional ac-
tive and recently committed transaction lists locally within each
worker thread as proposed by the Steam framework [6]. Small write
transactions are pinned to a single worker thread, and subject to
thread-local garbage collection according to the approach outlined
above. Larger transactions can be executed on multiple worker
threads, and are maintained within the global transaction lists for
garbage collection. These are protected through a regular latch, but
this does not constitute a major scalability bottleneck since it is
unlikely that a large number of multi-threaded transactions execute
simultaneously (cf. Section 3.2). Internally, a multi-threaded trans-
action maintains a separate version bu�er for each worker thread,
so that version allocation requests do not result in contention on a
single centralized data structure.

Since garbage collection directly operates on individual versions
without accessing them through the local mapping tables, it is pos-
sible that another transaction tries to access the same versions
concurrently during regular forward processing. In order to en-
sure proper synchronization in this case, each individual version
chain contains a lightweight latch implemented using a single inte-
ger which has to be acquired for any modi�cation of the version
chain [5]. All modifying operations are implemented carefully in
such a way that readers can still traverse version chains without
latching them, using only atomic operations.

3.2 Out-of-Memory Version Maintenance
Obviously, the in-memory versioning approach discussed in the
previous section fails for transactions which generate more version
data than the amount of available working memory. It is optimized
for throughput in OLTP workloads, where we expect a high in�ux
of concurrent but comparably small transactions. In contrast, OLAP
workloads typically consist of expensive read-only queries, with



occasional ingestion of large amounts of data. Additionally, a user
may issue large write transactions at any point during regular
operation, for example intentionally for administrative purposes, or
unintentionally due to a buggy query. In all of these cases a robust
mechanism is required to process such bulk operations and allow
the system to scale gracefully beyond main memory.

We argue that unlike the general-purpose MVCC implementa-
tions in existing disk-based systems, our fallback mechanism only
has to support limited concurrency which allows for a streamlined
implementation. In particular, a large write transaction will ideally
saturate the available write bandwidth anyway, so there is no ben-
e�t in allowing multiple such transactions to execute in parallel.
Furthermore, since a bulk operation by de�nition touches a large
fraction of the entire database, any concurrent writer substantially
increases the likelihood of write-write con�icts which could force
the bulk operation to abort. Due to the large amount of data that is
modi�ed, this is extremely undesirable.

We thus give bulk operations exclusive write access to the en-
tire database, and only allow read transactions to execute concur-
rently. This greatly simpli�es concurrency control, and additionally
ensures that bulk operations will never abort due to write-write
con�icts. Conceptually, our approach allows bulk operations to
create virtual versions which encode creation or deletion of a data
object. This is su�cient to support transaction isolation for arbi-
trary modi�cations in bulk operations, provided that bulk updates
are performed out-of-place. For the purpose of visibility checks,
these virtual versions are treated just like regular versions in our
MVCC protocol. That is, a data object can be associated both with
virtual versions created by a bulk operation, and regular versions
created by the in-memory versioning approach. Crucially, such
virtual versions require no physical memory allocation, allowing
our approach to process arbitrarily large write transactions.

3.2.1 Versioning Protocol. Our proposed versioning protocol for
bulk operations is based on a central monotonically increasing bulk
operation epoch counter maintained by the database. Similar to the
timestamps employed in the in-memory case, each transaction is
associated with a start epoch �BC0AC ∈ {0, . . . , 264−1} taken from this
sequence. A virtual version E∗ is marked with an epoch � (E∗) which
is set to the start epoch �BC0AC of the bulk operation that created
the virtual version. A virtual version E∗ is visible to a transaction i�

� (E∗) ≤ �BC0AC .

For regular transactions, the start epoch is simply set to the current
value of the central counter when they begin. This allows them to
see any virtual versions that were created by bulk operations that
committed before they started. In bulk transactions, �BC0AC is set
to the next available value of the central counter. Therefore, any
virtual versions created by a bulk operation are initially invisible to
concurrent readers. Upon commit, a bulk transaction atomically in-
crements the central bulk operation epoch, which makes all virtual
versions it created visible to subsequent transactions. Note that a
single epoch value per transaction is su�cient here, since we do
not allow multiple concurrent bulk operations.

The central bulk operation epoch is persistent across system
restarts, and any changes thereof are properly logged to ensure

cre
ate

d

del
ete

d

reference epoch 6

Page Logical Version Chains

A
B
C

YT2 createE6

E6 delete T1 X

T1 Z

Figure 5: Bulk operations create virtual versions (illustrated
as dashed boxes) by setting Boolean �ags on the database
pages. In this example, two regular transactions )1 and )2
updated tuples on a database page,whereas a bulk transaction
�6 created one tuple and deleted another. The local mapping
table for the database page and the individual transaction
version bu�ers are omitted for clarity.

durability. This allows us to implement virtual versions with ex-
tremely low overhead by storing a single reference bulk load epoch
in the header of each database page containing potentially ver-
sioned data objects. Within each data object, two Boolean �ags are
maintained which indicate whether the object has an associated
virtual creation or deletion version, which are implicitly marked
with the reference bulk load epoch of the page. The reference epoch
is initially set to an impossible value indicating that no virtual ver-
sions are present on the page. When a bulk operation later modi�es
a data object, it �rst sets the reference bulk load epoch of the page
to its start epoch �BC0AC . Subsequently, it updates the data object
and sets the appropriate virtual version �ag. Note that these �ags
do not actually consume any additional space on the pages in our
implementation, since we can pack them into some unused bits of
the tuple identi�er stored in each data object.

Within the version chain associated with a given data object,
a virtual version implicitly constitutes the oldest (in case of cre-
ation) or newest (in case of deletion) version (cf. Figure 5). These
virtual versions are processed together with the in-memory ver-
sions during version chain traversal, and the visibility of the data
object is computed according to the visibility criterion given above.
Therefore, our approach for bulk operations does not require any
intrusive modi�cations of the high-level MVCC protocol imple-
mented within our system, which ensures that it incurs negligible
overhead during regular transaction processing.

Consider, for example, Figure 5 where three subsequent transac-
tions modi�ed tuples on a given database page. A regular transac-
tion with commit timestamp )1 updated the �rst tuple from - to �
and the third tuple from / to � . Subsequently, a bulk transaction
with epoch �6 deleted the �rst tuple, and created the second tuple
with value . . Instead of allocating physical versions like a regular
transaction, this information is recorded by setting the reference
bulk load epoch and the respective Boolean �ags on the database
page. Readers interpret these �ags as virtual versions with epoch
�6 when scanning the page (illustrated as dashed boxes in Fig-
ure 5). Finally, another regular transaction with commit timestamp
)2 updated the second tuple from . to �. Therefore, a scan with
)BC0AC = )1 and �BC0AC = 5 would return A and C, whereas a scan
with )BC0AC = )1 and �BC0AC = 6 would return Y and C.



In theory, it would be possible to directly use the transaction
timestamps for marking virtual versions but this has several major
disadvantages. First of all, it requires making changes to these time-
stamps durable since our persistent database pages can reference
them. Thus, every transaction commit would need to write some
additional data to disk. Most importantly, the in-memory versioning
protocol requires that all versions generated by a transaction are
retimestamped during commit. While this is practicable for small
transactions, it is prohibitively expensive for bulk operations that
potentially modify a large number of database pages.

3.2.2 Synchronization. As outlined above, our approach requires
some synchronization between transactions of di�erent kinds. For
this purpose we maintain a single global mutex within the database.
Read transactions never need to latch this mutex since they are
always allowed to proceed. Regular write transactions acquire a
shared latch on this mutex, allowing multiple regular write transac-
tions to be executed concurrently. Finally, bulk transactions acquire
an exclusive latch on this mutex. Despite requiring a global mutex,
our approach introduces negligible contention since latch acquisi-
tions never block unless a bulk transaction is currently executing.
Note that our approach would allow for more �ne-grained syn-
chronization of writers on the relation or partition level, so that
multiple independent bulk operations can execute concurrently.
While this increases implementation complexity, it is attractive on
multi-socket systems where a centralized latch could introduce
noticeable overhead.

A side-e�ect of our virtual version implementation is that we
cannot allow a new bulk operation to begin until after any previous
bulk operations have become globally visible to all active trans-
actions. The reference bulk load epoch stored on a database page
is used to implicitly determine the visibility of all virtual versions
on the page, i.e. we cannot store virtual versions with multiple
visibilities on a single page. Thus, when committing a bulk oper-
ation we do not immediately release the exclusive write latch on
the database, but initially only downgrade it to a shared latch. This
allows regular write transactions to begin immediately after a bulk
operation has committed, but prevents another bulk operation from
starting until the shared latch is released once the previous bulk
operation has become globally visible. A desirable consequence
of this restriction is that long-running readers delay the next bulk
operation instead of forcing the system to maintain an excessive
number of obsolete versions.

3.2.3 Detecting Bulk Operations. Detecting bulk operations in the
�rst place poses a challenge in itself. The preferred way is to receive
explicit instructions from the user to execute a transaction as a bulk
operation, e.g. in an interactive administration session or when
ingesting large amounts of data. For this purpose, the database
system can provide a SET TRANSACTION BULK WRITE statement,
for instance. Naturally, this mechanism is inherently unreliable
since it relies on correct user input. It is thus not su�cient on its
own, and we provide several fallback options to alleviate this. First,
we additionally try to infer the write behavior of statements during
query optimization, and automatically switch to bulk processing if
the �rst statement within a transaction is likely to modify a large
amount of data. As a last resort, e.g. during subsequent statements
of a multi-statement transaction or in case the optimizer incorrectly

deduced the write behavior of a statement, we also track the amount
of memory consumed by the version bu�ers of the transaction. If
the system is in risk of running out of memory, the transaction is
aborted and the user can restart it explicitly as a bulk operation.

3.2.4 Garbage Collection. Since our versioning approach for bulk
operations does not generate any physical versions, garbage collec-
tion can be performed more lazily than in the in-memory approach.
Whenever a page containing virtual versions is accessed, we check
whether the corresponding reference bulk load epoch is globally
visible. If this is the case, we clear the virtual version �ags of all
data objects on the page, and reset the reference bulk load epoch to
an impossible value. These operations can be performed alongside
the pruning of local mapping tables during each page access, where
a suitable latch on the database page has already been acquired.

3.3 Further Considerations
In the following we brie�y discuss further relevant aspects of the
proposed approach.

3.3.1 Scalability to Multi-Socket Systems. Although modern CPUs
already feature up to 100 logical threads, multi-socket server con-
�gurations promise even greater parallelism. However, this comes
at the cost of a non-uniform memory access (NUMA) topology
which can impede performance in case of excessive cross-socket
communication. As outlined in more detail above, the proposed
MVCC approach itself takes care to avoid centralized data struc-
tures whenever possible to reduce potential scalability bottlenecks.
Cross-socket communication could be reduced further by leverag-
ing information about data locality and making the bu�er manager
and scheduler aware of the NUMA topology [34, 35]. Write opera-
tions can then be scheduled in such a way that most local mapping
tables and their associated version chains are created within the
same NUMA region as the corresponding database pages. If neces-
sary, larger operations can also be split into smaller fragments that
are then scheduled individually [34].

3.3.2 Serializability Validation. Our approach as described in this
paper guarantees snapshot isolation for all transactions processed
by the system [47]. Full serializability could be achieved through
the precision locking approach proposed by Neumann et al. [47].
Conceptually, this requires a validation phase during transaction
commit in whichwe validate all reads against potentially con�icting
writes by recently committed transactions. For regular transactions,
this can be achieved e�ciently by scanning the version bu�ers
maintained in the recently committed transaction list [47]. This is
not possible for bulk transactions since they create no versions in
main memory. Therefore, we have to fall back to actually repeating
the reads performed by the transaction under validation in this case.
However, this is still reasonably performant since we can use the
reference bulk load epoch stored on the database pages to quickly
determine whether a page could contain any potentially con�icting
writes.

4 EXPERIMENTS
In the following we provide a thorough evaluation of our proposed
system architecture as it is implemented within the disk-based
relational database management system Umbra [46].



The design of Umbra closely follows the architecture presented
in Section 2.1. Its bu�er manager is derived from LeanStore, and
durability is provided by a low-overhead decentralized logging
scheme [35, 46]. Our system implements group commit by default,
i.e. the committing thread simply waits for the commit record to
become stable. For high-throughput scenarios that allow for relaxed
commit semantics, our system additionally supports asynchronous
commit. Umbra relies on a compiling execution engine for query
processing [46, 47]. Users can either issue individual ad-hoc SQL
statements to the system, or implement more complex transaction
logic in user-de�ned functions using the SQL-based programming
language UmbraScript. In both cases, we �rst generate an optimized
logical query plan which is subsequently transformed into e�cient
machine code through a series of lowering steps [24, 28, 46].

4.1 Setup
In order to demonstrate the feasibility of our proposed approach
within a real-world setting, all experiments are performed through
an external benchmark driver that communicates with the data-
base system server over a standard communication protocol. We
compare our implementation to PostgreSQL version 14 and another
widely used commercial database management system referred to
as DBMS A in the following [16]. We consider both the disk-based
(DBMS AD) and the in-memory (DBMS AM) storage engines pro-
vided by DBMS A in our evaluation. The respective workloads are
implemented as stored procedures that require minimum commu-
nication with the benchmark driver, i.e. we carefully avoid any
unnecessary data transfer. In case of Umbra, we make use of the
UmbraScript scripting language for this purpose. For PostgreSQL,
the workloads are implemented using PL/pgSQL and for DMBS A
we rely on its proprietary scripting language.

In case of both Umbra and PostgreSQL, the benchmark driver
uses libpq version 14 for communication through the PostgreSQL
message protocol. We make use of the message pipelining capa-
bilities provided by this protocol in order to minimize the com-
munication overhead in both cases. For DBMS A, communication
with the database server occurs through ODBC where we simulate
message pipelining by issuing batches of prepared statements. All
systems are con�gured to employ snapshot isolation in conjunction
with asynchronous commit semantics which ensures that through-
put results are not a�ected by the latency of the storage device.
Finally, we ensure that a separate DBMS worker thread is available
to process the requests by a given benchmark driver client thread.

Experiments are run on a server system equipped with 192GB
of RAM and an Intel Xeon Gold 6212U CPU providing 24 physical
cores and 48 hyper-threads at a base frequency of 2.4 GHz. The
write-ahead log resides on a 768GB Intel Optane DC Persistent
Memory device, while all remaining database �les are placed on a
PCIe-attached Samsung 970 Pro 1 TB NVMe SSD, both of which are
formatted as ext4. Note that we only rely on the persistent memory
device since it is able to absorb the large volume of log data written
during the benchmark runs, i.e. we do not exploit any properties
speci�c to persistent memory. As Haas et al. have demonstrated,
comparable write bandwidth could be obtained through directly-
attached NVMe arrays which we expect to become widely available
in future server con�gurations [18].

1 4 8 16 24 32 40 48

number of clients

0.5

1.0

1.5

2.0

2.5

3.0

3.5

th
ro

u
g
h
p
u
t

[·1
0
6

T
X

/
s] Umbra PostgreSQL DBMS AD DBMS AM

(a) TATP throughput results.

1 4 8 16 24 32 40 48

number of clients

50
100

200

300

400

th
ro

u
g
h
p
u
t

[·1
0
3

T
X

/
s] Umbra PostgreSQL DBMS AD DBMS AM

(b) TPCC throughput results.

Figure 6: Transaction throughput on the OLTP workloads
(~-axis) in relation to the number of client threads (G-axis).

4.2 System Comparison
We begin our experiments with an end-to-end system compari-
son between Umbra, PostgreSQL, and DBMS A. For this purpose
we select the well-known TATP and TPCC transaction process-
ing benchmarks [48, 59]. For TATP we populate the database with
10 000 000 subscribers and run the default transaction mix con-
sisting of 80 % read transactions and 20% write transactions with
uniformly distributed keys. For TPCC, we use 100 warehouses and
run the full transaction mix consisting of about 8 % read transac-
tions and 92% write transactions. Depending on the system, the
initial database population including indexes requires between 7GB
to 8GB for TATP, and between 11GB to 12GB for TPCC. Umbra is
con�gured to employ hash partitioning on the warehouse number
for the TPCC database, i.e. it internally creates separate relation and
index instances for each warehouse hash value in order to minimize
latch contention. Partitioning is disabled for the other systems, as
our preliminary experiments showed that it has a negative e�ect
on their overall performance. The systems are con�gured to use
100GB of main memory for their bu�er pool, which is su�cient to
accommodate the entire working set throughout the benchmarks.
Therefore, they are executed under ideal conditions for high per-
formance since only minimal disk IO is required, which allows us
to investigate to which extent the di�erent systems can exploit the
capabilities o�ered by modern hardware platforms. All benchmarks
�rst run for 30 seconds to warm up any caches and internal data
structures, after which throughput numbers are measured over
another 30 seconds.

4.2.1 Performance Results. Throughput results on the TATP and
TPCC benchmarks in relation to the number of client threads are
shown in Figure 6. In both cases Umbra outperforms its competi-
tors by up to an order of magnitude, reaching a maximum speedup
of 9.2× over PostgreSQL, 27.6× over DBMS AD, and 18.8× over



DBMS AM. Transaction throughput universally scales well with
the number of client threads on the TATP benchmark. With a sin-
gle client thread, the systems respectively process 183 000 TX/s
(Umbra), 33 400 TX/s (PostgreSQL), 7 900 TX/s (DBMS AD), and
15 000 TX/s (DBMS AM). Umbra, PostgreSQL, and DBMS AM attain
their maximum throughput at 48 client threads with 3 247 000 TX/s,
618 700 TX/s, and 237 900 TX/s, respectively. DBMS AD achieves its
maximum of 117 700 TX/s at 40 client threads after which through-
put decreases marginally to 113 000 TX/s. Since TPCC is much more
write-heavy than TATP, we observe generally lower throughput,
starting at 27 000 TX/s (Umbra), 2 600 TX/s (PostgreSQL), 1 100 TX/s
(DBMS AD), and 4 000 TX/s (DBMS AM) with a single client thread.
Nevertheless, performance scales well for Umbra, PostgreSQL, and
DBMS AM as the number of client threads is increased, and they
reach maximum throughput at 48 client threads with 413 300 TX/s,
44 700 TX/s, and 22 000 TX/s respectively. In contrast DBMS AD
struggles to achieve good scalability, and attains its maximum
throughput of 14 900 TX/s at 24 client threads beyond which per-
formance decreases again down to around 9 000 TX/s.

4.2.2 Discussion. Our experiments clearly demonstrate that tradi-
tionally designed disk-based database systems such as PostgreSQL
and DBMS AD cannot fully exploit the capabilities of modern hard-
ware, which con�rms earlier such results from related work [20,
35, 46]. The single-threaded throughput numbers constitute partic-
ularly strong evidence for this conclusion, as system performance
is far from being bound by IO throughput in this case. In fact, even
the mature in-memory system DBMS AM falls short of Umbra al-
though it can avoid many of the complexities encountered in a
disk-based system. Note that despite the low absolute performance
of DBMS AM, its relative speedup over DBMS AD matches the cor-
responding performance metrics published by the manufacturer.
The large speedup of Umbra over its competitors is almost entirely
due to the greatly reduced overhead of its novel memory-optimized
system architecture and the proposed MVCC implementation. We
can in fact exclude communication overhead as a source of the ob-
served speedup over PostgreSQL, since the benchmark drivers for
Umbra and PostgreSQL rely on exactly the same client-server com-
munication protocol (cf. Section 4.1). Although PostgreSQL does
scale well on both TATP and TPCC, adding more client threads
cannot resolve the inherent performance impediment caused by
the excessive implementation overhead.

In contrast, Umbra is much better suited to exploit the large
amount of main memory and high IO bandwidth o�ered by the
benchmark platform. Its low-overhead bu�er manager and decen-
tralized logging framework ensure that virtually no overhead is
introduced while accessing and modifying database pages [20, 35],
despite generating slightly over 1 GB/s of log data in order to guar-
antee durability. Since the proposed memory-optimized MVCC
implementation is highly decentralized and closely integrated with
the bu�er manager, it introduces little additional overhead and neg-
ligible contention (cf. Section 4.3.1). As outlined above, the storage
engine employed by Umbra is derived from LeanStore which is one
of the fastest disk-based storage engines currently published [35].
Therefore, our experiments provide a unique opportunity to quan-
tify the additional implementation overhead that is required to
provide general-purpose relational database functionality on top of

Table 1: Breakdown of the impact that various components
of the proposed approach have on the overall performance
of Umbra. We show TPCC transaction throughput for 1 and
24 client threads, along with the slowdown relative to non-
transactional Umbra in parentheses.

TPCC throughput [·103 TX/s]
1 client 24 clients

non-transactional Umbra 32.8 452.0
+ transaction lists 31.6 (-1.04×) 440.7 (-1.03×)
+ shared writer latches 31.3 (-1.05×) 429.8 (-1.05×)
+ snapshot isolation 27.0 (-1.22×) 366.0 (-1.23×)
- in-place updates 6.4 (-5.13×) 86.2 (-5.24×)

such a state-of-the-art storage manager. On the same benchmark
platform as used for our experiments, a standalone implementa-
tion of LeanStore achieves a single-threaded TPCC throughput of
41 000 TX/swhich scales to 857 000 TX/swith 48 threads, albeit with-
out any concurrency control [20]. Various factors contribute to the
observed performance di�erential. For example, data is manipulated
through SQL in Umbra, and its relation and index implementations
have to generically support arbitrary tuple layouts. In contrast,
both data layout and manipulation are hard-coded in the LeanStore
benchmark driver. A further contributing factor is that LeanStore
employs clustered relations, whereas Umbra only supports non-
clustered relations which roughly doubles the number of lookup
operations that Umbra has to perform [46]. A well-optimized in-
memory system can operate with even lower overhead since it
can employ highly specialized data structures that are not appli-
cable to a disk-based setting [37]. For instance, we measured the
single-threaded TPCC throughput of HyPer in our benchmark en-
vironment to be 58 800 TX/s, using the libpq driver executable
also employed for our experiments with Umbra and PostgreSQL.
In summary, our results show that a memory-optimized disk-based
system architecture, and in particular the MVCC implementation
proposed in this paper, are viable in a real-world setting and achieve
excellent performance even when integrated into a general-purpose
database system.

4.3 Detailed Evaluation
In the following we present additional experiments within Umbra
in order to investigate key characteristics of our proposed approach
in more detail.

4.3.1 Impact of MVCC Implementation. In our �rst experiment we
quantify the impact of various components of our MVCC imple-
mentation (cf. Table 1). Speci�cally, we begin my measuring the
TPCC throughput achieved by Umbra without any of the transac-
tional features discussed in this paper, i.e. under read uncommitted
isolation semantics. Subsequently, we successively enable the trans-
action lists discussed in Section 3.1.2, and the centralized shared
writer latch introduced in Section 3.2, both of which require some
coordination between worker threads. Note that we do not yet
perform any versioning in these measurements in order to iso-
late the overhead introduced by the respective components. The



0

100

200

300

400

th
ro

u
g
h
p
u
t

[k
T

X
/
s]

TPCC throughput

0.1

1

10

100

M
V

C
C

m
e
m

o
ry

[M
B

]

mapping tables version chains

0 120 240 360 480 600

time [s]

0

0.5

1.0

IO
a
c
ti

v
it

y
[G

B
/
s] log write page read page write

Figure 7: Umbra performance metrics (~-axis) sampled over
time (G-axis) in 100ms intervals. We run TPCC with 24 client
threads and a restricted bu�er pool size in this experiment,
resulting in heavy memory pressure.

e�cient latch implementation employed by Umbra ensures that
the combined slowdown is barely noticeable at 1.05× for both 1
and 24 client threads [5]. Next, we enable the actual MVCC imple-
mentation and thus change the transaction semantics to snapshot
isolation. As expected, this a�ects transaction throughput which
decreases by a factor of about 1.2× relative to the non-transactional
system con�guration. Nevertheless, these results demonstrate that
our MVCC implementation allows the system to retain both good
scalability and high transaction throughput. Finally, we disable
in-place updates in our approach, forcing all versions to be phys-
ically materialized within the same storage space. The resulting
system con�guration thus imitates the append-only version storage
scheme employed by established systems such as PostgreSQL and
Hekaton [65]. As shown in Table 1, this causes throughput to drop
dramatically by more than 5× relative to the maximum attainable
value, although the system still outperforms its competitors due to
other optimizations such as a compiling query execution engine.
Based on previously published results, we expect the bene�t of sup-
porting in-place updates to be even more pronounced in scan-heavy
workloads since they prevent excessive fragmentation of the rela-
tions [47]. In summary, the experiment con�rms that the proposed
MVCC implementation has a crucial impact on the performance of
a memory-optimized disk-based system.

4.3.2 Scalability Beyond Main Memory. As we repeatedly empha-
size throughout this paper, one of the major selling points of a
memory-optimized disk-based system is its scalability to working
set sizes which exceed the available main memory capacity. We
demonstrate the feasibility of the proposed MVCC approach within

Table 2: Time and version memory required to load the ini-
tial TPCH database population at scale factor 10, depending
on whether MVCC is enabled and the optimized versioning
scheme for bulk operations is used.

MVCC Bulk Op. Time [s] Version Memory [GB]

no N/A 11.7 0
yes no 15.0 2.9
yes yes 13.0 0

such a system by running the TPCC benchmark with 24 client
threads and an arti�cially constrained bu�er pool size of 16GB in
order to simulate such an out-of-memory scenario. Since Umbra
requires roughly 12GB of database pages in order to store the initial
TPCC population, this quickly results in heavy memory pressure.
Figure 7 shows the development of various performance metrics
over 10 minutes of running this workload. The �nal database state
after the experiment contains close to 150GB of database pages.

During roughly the �rst half of the experiment, we observe a
smooth and graceful transition from pure in-memory transaction
processing to steady-state operation beyond main memory. During
this transition, Umbra transparently begins to swap database pages
to disk as memory pressure increases, while retaining high write
throughput for the write-ahead log. Regular phases of increased
page write activity are caused by the checkpointer which continu-
ously writes dirty pages to disk in order to ensure bounded recov-
ery time [20]. Subsequently, the system continues to exhibit stable
performance during the second half of the experiment. Raw trans-
action throughput settles at ~340 000 TX/s, which unsurprisingly is
slightly lower than the ~370 000 TX/s achieved in the corresponding
in-memory experiments presented thus far. Crucially, the experi-
ment con�rms that it is entirely feasible to maintain all versioning
information in main memory even under otherwise heavily con-
strained conditions. The decentralized garbage collection approach
proposed in Section 3.1.2 is able to keep the memory consumption
of the proposed MVCC approach bounded by continuously reclaim-
ing unnecessary versions and local mapping tables. On average, the
system requires ~38MB to store the local mapping tables, and an
additional ~400 KB to store the actual versions. Occasionally, mem-
ory consumption exhibits some minor spikes, although they never
reach beyond 60MB. Spikes generally occur during brief times in
which the available IO bandwidth decreases due to operating sys-
tem interference and transaction latencies increase correspondingly.
Overall, however, the amount of memory required by our MVCC
approach remains several orders of magnitude below the amount
of available main memory, and is e�ectively constant over time.

4.3.3 Bulk Operations. We conclude our experiments by studying
the impact of the optimized versioning scheme for bulk operations
introduced in Section 3.2. For this purpose, we �rst measure the time
and amount of version memory required to load the initial TPCH
database population at scale factor 10 without any indexes [60], the
results of which for di�erent system con�gurations are displayed
in Table 2. Unsurprisingly, bulk loading requires the least time at
11.7 s when versioning is disabled entirely, and no memory at all
is allocated for versioning information in this case. If the speci�c



Table 3: Multi-threaded query throughput on TPCH at scale
factor 10 with and without a concurrent update stream.

TPCH throughput [queries/s]
No Updates Regular Updates Bulk Updates

28.6 23.8 25.0

circumstances allow for relaxed transaction isolation, this is a viable
option for ingesting large amounts of data. In contrast, the system
has to allocate 2.9 GB of memory for storing versioning information
and bulk loading time increases to 15.0 s if we enable MVCC but
disable the optimized bulk versioning scheme. Since the amount
of versioning information is directly proportional to the amount
of data ingested within a single transaction, this quickly becomes
problematic for large data set sizes. The optimized bulk versioning
scheme resolves this problem by creating virtual versions that do
not require any physical memory, completing bulk loading in 13.0 s
without allocating any memory for versioning information.

Furthermore, we execute a workload inspired by the TPCH
power test, i.e. we continuously submit batches of analytical queries
from a single client thread, while another client thread simultane-
ously updates the orders and lineitem tables by ingesting new
data and deleting old data [60]. Note that the analytical queries
are su�ciently complex to bene�t from parallelization across all
available CPU cores, i.e. this setup fully utilizes the underlying
hardware platform. Without any concurrent updates, Umbra can
process 28.6 analytical queries per second, which drops to 23.8
queries per second when concurrent updates are performed using
the regular in-memory versioning scheme. When using bulk opera-
tions to perform the updates, throughput is slightly higher at 25.0
queries per second (cf. Table 3). In summary, our results show that
the proposed bulk versioning scheme allows the system to transpar-
ently process arbitrarily large write transactions without having
a negative impact on system performance. In fact, performance is
generally improved slightly since creating and interpreting virtual
versions introduces less overhead to both readers and writers than
the full in-memory versioning scheme.

5 RELATEDWORK
Multi-version concurrency control was �rst proposed towards the
end of the 1970s [52]. Due to its immediately obvious advantages
over alternative concurrency control algorithms (cf. Section 2.2),
the �eld quickly developed through some initial theoretical consid-
erations [4, 7, 50] into a vast area of both active research and prac-
tical relevance. A large number of both disk-based and in-memory
database management systems rely on MVCC for transaction isola-
tion [1, 2, 10, 13, 16, 26, 29, 31–33, 39, 40, 43, 47, 51, 56], ranging from
fully featured commercial solutions to prototype systems explor-
ing novel approaches. Active research focuses on many aspects of
MVCC, among them variations of the underlying multi-versioning
protocol [11, 40, 42, 54], physical version maintenance [3, 25, 47, 57],
scalability [6, 17, 40], serializability [8, 12, 47, 51, 63], or support
for mixed workloads [3, 6, 25, 26, 30, 49].

Recent work on the practical aspects of implementing these
MVCC approaches within a larger system is mostly focused on

puremain-memory systems, even though the underlying theoretical
concepts are often more widely applicable [53, 58, 65, 66]. At the
same time, many in-memory systems acknowledge the importance
of scaling beyond main memory, and have added some form of
fallback support for extremely large data sets. However, Leis et al.
argue that adding such functionality as an afterthought leads to
a suboptimal system design [35]. For instance, these approaches
commonly require index structures to remain memory-resident
which constitutes a major limitation [9, 14, 35, 55].

Many disk-based MVCC implementations are found within es-
tablished commercial database systems with a rigid architecture
that cannot easily be adapted to modern hardware [1, 2, 16, 35, 43].
As outlined in Section 3.1, these implementations consequently
su�er from several drawbacks such as substantial overhead, severe
write ampli�cation, or poor scalability. In view of these issues, sev-
eral novel disk-based system designs have been proposed recently.
LLAMA is a log-structured storage engine on top of which the
Deuteronomy component uses MVCC to provide a transactional
key-value store [38, 39]. Versions are physically stored in the re-
covery log, and accessed through a latch-free but centralized hash
table. This architecture thus incurs a non-negligible overhead dur-
ing version chain traversal. Similar to our approach, the BTrim
architecture recognizes that modern hardware platforms provide
su�cient RAM for disk-based systems to maintain a large amount
of data purely in-memory [17]. It adds a transparent in-memory
row store on top of the bu�er-managed SAP ASE system, although
the main objective here is to reduce contention. The design of FOE-
DUS is based on the same fundamental observation, combining a
bu�er manager with large in-memory bu�ers for optimistic con-
currency control [27]. It achieves excellent scalability by avoiding
most latch acquisitions, but requires specialized hardware such as
Phase Change Memory.

6 CONCLUSIONS
In this paper, we developed a novel multi-version concurrency con-
trol approach which is designed speci�cally for memory-optimized
disk-based database systems deployed on modern hardware. The
proposed approach allows such systems to achieve excellent trans-
action throughput in the common case that the entire working set
�ts into main memory, and o�ers transparent and graceful scalabil-
ity to working sets exceeding main memory capacity. Speci�cally,
we exploit that most versioning information can be maintained
entirely in main memory on modern hardware, which allows for a
highly optimized implementation that directly attaches this infor-
mation to bu�er frames. In line with previous results on the subject,
our experiments demonstrate that such a memory-optimized disk-
based system is indeed viable in a real-world setting, and far out-
performs traditionally designed systems. Our paper thus presents
strong evidence in favor of a paradigm shift towards a memory-
optimized disk-based system architecture for the next generation
of general-purpose database systems.

ACKNOWLEDGMENTS
This project has received funding from the European Research
Council (ERC) under the European Unions Horizon 2020 research
and innovation program (grant agreement number 725286).



REFERENCES
[1] Oracle Corporation and/or its a�liates. 2022. MySQL. Retrieved February 7,

2022 from https://www.mysql.com/
[2] Oracle Corporation and/or its a�liates. 2022. Oracle. Retrieved February 7, 2022

from https://www.oracle.com/database/
[3] JoyArulraj, Andrew Pavlo, and PrashanthMenon. 2016. Bridging the Archipelago

between Row-Stores and Column-Stores for Hybrid Workloads. In SIGMOD
Conference. ACM, 583–598.

[4] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. 1987. Concurrency
Control and Recovery in Database Systems. Addison-Wesley.

[5] Jan Böttcher, Viktor Leis, Jana Giceva, Thomas Neumann, and Alfons Kemper.
2020. Scalable and Robust Latches for Database Systems. In DaMoN. ACM,
2:1–2:8.

[6] Jan Böttcher, Viktor Leis, Thomas Neumann, and Alfons Kemper. 2019. Scalable
Garbage Collection for In-Memory MVCC Systems. Proc. VLDB Endow. 13, 2
(2019), 128–141.

[7] Michael J. Carey andWaleed A.Muhanna. 1986. The Performance ofMultiversion
Concurrency Control Algorithms. ACM Trans. Comput. Syst. 4, 4 (1986), 338–378.

[8] Mohammad Dashti, Sachin Basil John, Amir Shaikhha, and Christoph Koch.
2017. Transaction Repair for Multi-Version Concurrency Control. In SIGMOD
Conference. ACM, 235–250.

[9] Justin A. DeBrabant, Andrew Pavlo, Stephen Tu, Michael Stonebraker, and Stan-
ley B. Zdonik. 2013. Anti-Caching: A New Approach to Database Management
System Architecture. Proc. VLDB Endow. 6, 14 (2013), 1942–1953.

[10] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Åke Larson, Pravin Mittal,
Ryan Stonecipher, Nitin Verma, and Mike Zwilling. 2013. Hekaton: SQL Server’s
Memory-Optimized OLTP Engine. In SIGMOD Conference. ACM, 1243–1254.

[11] Bailu Ding, Lucja Kot, and Johannes Gehrke. 2018. Improving Optimistic Concur-
rency Control Through Transaction Batching and Operation Reordering. Proc.
VLDB Endow. 12, 2 (2018), 169–182.

[12] Jose M. Faleiro and Daniel J. Abadi. 2015. Rethinking serializable multiversion
concurrency control. Proc. VLDB Endow. 8, 11 (2015), 1190–1201.

[13] Franz Färber, Sang Kyun Cha, Jürgen Primsch, Christof Bornhövd, Stefan Sigg,
and Wolfgang Lehner. 2011. SAP HANA Database – Data Management for
Modern Business Applications. SIGMOD Rec. 40, 4 (2011), 45–51.

[14] Florian Funke, Alfons Kemper, and Thomas Neumann. 2012. Compacting Trans-
actional Data in Hybrid OLTP & OLAP Databases. Proc. VLDB Endow. 5, 11 (2012),
1424–1435.

[15] Goetz Graefe, Haris Volos, Hideaki Kimura, Harumi A. Kuno, Joseph Tucek, Mark
Lillibridge, and Alistair C. Veitch. 2014. In-Memory Performance for Big Data.
Proc. VLDB Endow. 8, 1 (2014), 37–48.

[16] The PostgreSQL Global Development Group. 2022. PostgreSQL: The World’s Most
Advanced Open Source Relational Database. Retrieved February 7, 2022 from
https://www.postgresql.org/

[17] Aditya Gurajada, Dheren Gala, Fei Zhou, Amit Pathak, and Zhan-Feng Ma. 2018.
BTrim - Hybrid In-Memory Database Architecture for Extreme Transaction
Processing in VLDBs. Proc. VLDB Endow. 11, 12 (2018), 1889–1901.

[18] Gabriel Haas, Michael Haubenschild, and Viktor Leis. 2020. Exploiting Directly-
Attached NVMe Arrays in DBMS. In CIDR. www.cidrdb.org.

[19] Stavros Harizopoulos, Daniel J. Abadi, Samuel Madden, and Michael Stonebraker.
2008. OLTP Through the Looking Glass, and What We Found There. In SIGMOD
Conference. ACM, 981–992.

[20] Michael Haubenschild, Caetano Sauer, Thomas Neumann, and Viktor Leis. 2020.
Rethinking Logging, Checkpoints, and Recovery for High-Performance Storage
Engines. In SIGMOD Conference. ACM, 877–892.

[21] Joseph M. Hellerstein, Michael Stonebraker, and James R. Hamilton. 2007. Ar-
chitecture of a Database System. Found. Trends Databases 1, 2 (2007), 141–259.
https://doi.org/10.1561/1900000002

[22] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alex Rasin,
Stanley B. Zdonik, Evan P. C. Jones, Samuel Madden, Michael Stonebraker, Yang
Zhang, John Hugg, and Daniel J. Abadi. 2008. H-store: A High-Performance,
Distributed Main Memory Transaction Processing System. Proc. VLDB Endow. 1,
2 (2008), 1496–1499.

[23] Alfons Kemper and Thomas Neumann. 2011. HyPer: A Hybrid OLTP&OLAP
Main Memory Database System Based on Virtual Memory Snapshots. In ICDE.
IEEE Computer Society, 195–206.

[24] Timo Kersten, Viktor Leis, and Thomas Neumann. 2021. Tidy Tuples and Flying
Start: Fast Compilation and Fast Execution of Relational Queries in Umbra. VLDB
J. 30, 5 (2021), 883–905.

[25] Jong-Bin Kim, Kihwang Kim, Hyunsoo Cho, Jaeseon Yu, Sooyong Kang, and
Hyungsoo Jung. 2021. Rethink the Scan in MVCC Databases. In SIGMOD Confer-
ence. ACM, 938–950.

[26] Kangnyeon Kim, Tianzheng Wang, Ryan Johnson, and Ippokratis Pandis. 2016.
ERMIA: Fast Memory-Optimized Database System for HeterogeneousWorkloads.
In SIGMOD Conference. ACM, 1675–1687.

[27] Hideaki Kimura. 2015. FOEDUS: OLTP Engine for a Thousand Cores andNVRAM.
In SIGMOD Conference. ACM, 691–706.

[28] André Kohn, Viktor Leis, and Thomas Neumann. 2018. Adaptive Execution of
Compiled Queries. In ICDE. IEEE Computer Society, 197–208.

[29] Tirthankar Lahiri, Marie-Anne Neimat, and Steve Folkman. 2013. Oracle
TimesTen: An In-Memory Database for Enterprise Applications. IEEE Data
Eng. Bull. 36, 2 (2013), 6–13.

[30] Per-Åke Larson, Spyros Blanas, Cristian Diaconu, Craig Freedman, Jignesh M.
Patel, and Mike Zwilling. 2011. High-Performance Concurrency Control Mecha-
nisms for Main-Memory Databases. Proc. VLDB Endow. 5, 4 (2011), 298–309.

[31] Per-Åke Larson, Mike Zwilling, and Kevin Farlee. 2013. The Hekaton Memory-
Optimized OLTP Engine. IEEE Data Eng. Bull. 36, 2 (2013), 34–40.

[32] Juchang Lee, Michael Muehle, Norman May, Franz Faerber, Vishal Sikka, Hasso
Plattner, Jens Krüger, and Martin Grund. 2013. High-Performance Transaction
Processing in SAP HANA. IEEE Data Eng. Bull. 36, 2 (2013), 28–33.

[33] Juchang Lee, Hyungyu Shin, Chang Gyoo Park, Seongyun Ko, Jaeyun Noh,
Yongjae Chuh, Wolfgang Stephan, and Wook-Shin Han. 2016. Hybrid Garbage
Collection for Multi-Version Concurrency Control in SAP HANA. In SIGMOD
Conference. ACM, 1307–1318.

[34] Viktor Leis, Peter A. Boncz, Alfons Kemper, and Thomas Neumann. 2014. Morsel-
Driven Parallelism: A NUMA-Aware Query Evaluation Framework for the Many-
Core Age. In SIGMOD Conference. ACM, 743–754.

[35] Viktor Leis, Michael Haubenschild, Alfons Kemper, and Thomas Neumann. 2018.
LeanStore: In-Memory Data Management beyond Main Memory. In ICDE. IEEE
Computer Society, 185–196.

[36] Viktor Leis, Michael Haubenschild, and Thomas Neumann. 2019. Optimistic Lock
Coupling: A Scalable and E�cient General-Purpose Synchronization Method.
IEEE Data Eng. Bull. 42, 1 (2019), 73–84.

[37] Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The Adaptive Radix
Tree: ARTful indexing for main-memory databases. In ICDE. IEEE Computer
Society, 38–49.

[38] Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. 2013. LLAMA: A
Cache/Storage Subsystem for Modern Hardware. Proc. VLDB Endow. 6, 10 (2013),
877–888.

[39] Justin J. Levandoski, David B. Lomet, Sudipta Sengupta, Ryan Stutsman, and
Rui Wang. 2015. High Performance Transactions in Deuteronomy. In CIDR.
www.cidrdb.org.

[40] Hyeontaek Lim, Michael Kaminsky, and David G. Andersen. 2017. Cicada:
Dependably Fast Multi-Core In-Memory Transactions. In SIGMOD Conference.
ACM, 21–35.

[41] David B. Lomet. 2019. Cost/Performance in Modern Data Stores: How Data
Caching Systems Succeed. In ICDE Workshops. IEEE, 140.

[42] David B. Lomet, Alan D. Fekete, Rui Wang, and Peter Ward. 2012. Multi-version
Concurrency via Timestamp Range Con�ict Management. In ICDE. IEEE Com-
puter Society, 714–725.

[43] Microsoft. 2022. Microsoft Data Platform. Retrieved February 7, 2022 from
https://www.microsoft.com/en-us/sql-server/

[44] Pulkit A. Misra, Je�rey S. Chase, Johannes Gehrke, and Alvin R. Lebeck. 2019.
Multi-version Indexing in Flash-based Key-Value Stores. CoRR abs/1912.00580
(2019).

[45] C. Mohan, Hamid Pirahesh, and Raymond A. Lorie. 1992. E�cient and Flexible
Methods for Transient Versioning of Records to Avoid Locking by Read-Only
Transactions. In SIGMOD Conference. ACM Press, 124–133.

[46] Thomas Neumann and Michael J. Freitag. 2020. Umbra: A Disk-Based System
with In-Memory Performance. In CIDR. www.cidrdb.org.

[47] Thomas Neumann, Tobias Mühlbauer, and Alfons Kemper. 2015. Fast Serializable
Multi-Version Concurrency Control for Main-Memory Database Systems. In
SIGMOD Conference. ACM, 677–689.

[48] Simo Neuvonen, Antoni Wolski, Markku Manner, and Vilho Raatikka. 2011.
Telecom Application Transaction Processing Benchmark. Retrieved January 18,
2022 from http://tatpbenchmark.sourceforge.net/

[49] Fatma Özcan, Yuanyuan Tian, and Pinar Tözün. 2017. Hybrid Transactional/An-
alytical Processing: A Survey. In SIGMOD Conference. ACM, 1771–1775.

[50] Christos H. Papadimitriou and Paris C. Kanellakis. 1984. On Concurrency Control
by Multiple Versions. ACM Trans. Database Syst. 9, 1 (1984), 89–99.

[51] Dan R. K. Ports and Kevin Grittner. 2012. Serializable Snapshot Isolation in
PostgreSQL. Proc. VLDB Endow. 5, 12 (2012), 1850–1861.

[52] David P. Reed. 1978. Naming and synchronization in a decentralized computer
system. Ph.D. Dissertation. Massachusetts Institute of Technology, Cambridge,
MA, USA.

[53] Mohammad Sadoghi and Spyros Blanas. 2019. Transaction Processing on Modern
Hardware. Morgan & Claypool Publishers.

[54] Mohammad Sadoghi, Mustafa Canim, Bishwaranjan Bhattacharjee, Fabian Nagel,
and Kenneth A. Ross. 2014. Reducing Database Locking Contention Through
Multi-Version Concurrency. Proc. VLDB Endow. 7, 13 (2014), 1331–1342.

[55] Reza Sherkat, Colin Florendo, Mihnea Andrei, Rolando Blanco, Adrian Dra-
gusanu, Amit Pathak, Pushkar Khadilkar, Neeraj Kulkarni, Christian Lemke,
Sebastian Seifert, Sarika Iyer, Sasikanth Gottapu, Robert Schulze, Chaitanya
Gottipati, Nirvik Basak, Yanhong Wang, Vivek Kandiyanallur, Santosh Pendap,
Dheren Gala, Rajesh Almeida, and Prasanta Ghosh. 2019. Native Store Extension
for SAP HANA. Proc. VLDB Endow. 12, 12 (2019), 2047–2058.

https://www.mysql.com/
https://www.oracle.com/database/
https://www.postgresql.org/
https://doi.org/10.1561/1900000002
https://www.microsoft.com/en-us/sql-server/
http://tatpbenchmark.sourceforge.net/


[56] Vishal Sikka, Franz Färber, Wolfgang Lehner, Sang Kyun Cha, Thomas Peh,
and Christof Bornhövd. 2012. E�cient Transaction Processing in SAP HANA
Database: The End of a Column Store Myth. In SIGMOD Conference. ACM,
731–742.

[57] Yihan Sun, Guy E. Blelloch, Wan Shen Lim, and Andrew Pavlo. 2019. On Sup-
porting E�cient Snapshot Isolation for Hybrid Workloads with Multi-Versioned
Indexes. Proc. VLDB Endow. 13, 2 (2019), 211–225.

[58] Takayuki Tanabe, Takashi Hoshino, Hideyuki Kawashima, and Osamu Tatebe.
2020. An Analysis of Concurrency Control Protocols for In-Memory Database
with CCBench. Proc. VLDB Endow. 13, 13 (2020), 3531–3544.

[59] Transaction Processing Performance Council (TPC). 2010. TPC benchmark C:
Standard speci�cation. Retrieved January 18, 2022 from http://www.tpc.org/

[60] Transaction Processing Performance Council (TPC). 2021. TPC benchmark H:
Standard speci�cation. Retrieved January 26, 2022 from http://www.tpc.org/

[61] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.
2013. Speedy transactions in multicore in-memory databases. In SOSP. ACM,
18–32.

[62] Tianzheng Wang and Ryan Johnson. 2014. Scalable Logging through Emerging
Non-Volatile Memory. Proc. VLDB Endow. 7, 10 (2014), 865–876.

[63] Tianzheng Wang, Ryan Johnson, Alan D. Fekete, and Ippokratis Pandis. 2017.
E�ciently making (almost) any concurrency control mechanism serializable.
VLDB J. 26, 4 (2017), 537–562.

[64] Gerhard Weikum and Gottfried Vossen. 2002. Transactional Information Systems:
Theory, Algorithms, and the Practice of Concurrency Control and Recovery. Morgan
Kaufmann.

[65] Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew Pavlo. 2017. An
Empirical Evaluation of In-Memory Multi-Version Concurrency Control. Proc.
VLDB Endow. 10, 7 (2017), 781–792.

[66] Ling Zhang, Matthew Butrovich, Tianyu Li, Andrew Pavlo, Yash Nannapaneni,
John Rollinson, Huanchen Zhang, Ambarish Balakumar, Daniel Biales, Ziqi
Dong, Emmanuel J. Eppinger, Jordi E. Gonzalez, Wan Shen Lim, Jianqiao Liu,
Lin Ma, Prashanth Menon, Soumil Mukherjee, Tanuj Nayak, Amadou Ngom,
Dong Niu, Deepayan Patra, Poojita Raj, Stephanie Wang, Wuwen Wang, Yao
Yu, and William Zhang. 2021. Everything is a Transaction: Unifying Logical
Concurrency Control and Physical Data Structure Maintenance in Database
Management Systems. In CIDR. www.cidrdb.org.

http://www.tpc.org/
http://www.tpc.org/

	Abstract
	1 Introduction
	2 Foundations
	2.1 Memory-Optimized Disk-Based Systems
	2.2 Multi-Version Concurrency Control

	3 Memory-Optimized MVCC
	3.1 In-Memory Version Maintenance
	3.2 Out-of-Memory Version Maintenance
	3.3 Further Considerations

	4 Experiments
	4.1 Setup
	4.2 System Comparison
	4.3 Detailed Evaluation

	5 Related Work
	6 Conclusions
	Acknowledgments
	References

