
Code Generation for Data Processing (CIT3230001)
Prof. Dr. Thomas Neumann Friday, February 17, 2023 16:30 – 18:00

Problem 1: Code Representations and Formats (12)
a) (3 pts) Name the three typical phases of a compiler front-end and the three phases of a back-end.

b) (1 pts) Why do compilers often use several intermediate representations (IRs) instead of going
from source code to machine code in a single step?

c) (2 pts) What are advantages of compiling to bytecode as opposed to machine code?

d) (2 pts) Name two widespread bytecode languages that implement a stack machine. What is the
key advantage of stack machines over register machines?

e) (2 pts) Give name and purpose of the two ELF sections that typically contain unwind information.

f) (2 pts) Which components are responsible for resolving static and dynamic relocations?

a

b
c

d

e f

g

Problem 2: Control Flow Graphs (20)
a) (2 pts) What is a basic block and what are its properties regarding control flow?

b) (3 pts) Is a Control Flow Graph (CFG) always a connected graph during compi-
lation? If not, what does it mean and how can this happen?

c) (2 pts) When does some basic block A strictly dominate a basic block B?

d) (5 pts) Give the dominator tree for the CFG on the right.

e) (6 pts) Identify all loops in the CFG on the right. For each loop, give its basic
blocks, its entry block(s), and its header. When ambiguous, give all possibilities.

f) (2 pts) What is an irreducible loop? Is the CFG on the right reducible?

Problem 3: Single Static Assignment (20)
int f(int);
void magic(int a, int b) {
while (a != b || f(a) < 7) {
if (a > b) {
a = f(b);

} else {
b = 5;
a = f(a);

}
b = f(b);

}
}

a) (1 pts) Name an important advantage of using SSA.

b) (19 pts) Derive an LLVM-IR module for the C code on the
right, include function definitions and declarations. An int is
32 bits wide. Construct pruned SSA and avoid alloca.

Note: your LLVM-IR does not need to be 100% syntactically
correct, but important concepts should be shown clearly.

Problem 4: Generating Executable Code (12)
a) (4 pts) For achieving low compile times, which instruction selection strategy is beneficial? Briefly
describe the approach and a related simple optimization to improve code quality.

b) (2 pts) What is a critical edge and why is it problematic for SSA destruction?

c) (4 pts) Describe two approaches and their respective advantage and disadvantage to handle
critical edges during SSA destruction.

d) (2 pts) Briefly outline a common strategy of JIT compilers to combine low-latency with high-
performance code execution.



Problem 5: Unwinding (18)
a) (3 pts) C++ exceptions are often implemented with stack unwinding (“zero-overhead exception”).
When and why is this beneficial?

b) (2 pts) How do dynamic shared objects loaded by the kernel or runtime linker and JIT-compiled
code differ in exposing/registering their unwind information?

c) (1 pts) What is the canonical frame address (CFA) of a stack frame?

d) (8 pts) Consider the assembly code and the DWARF CFI program below. Construct the call frame
information table with a row for every instruction and columns for the instruction address, the CFA,
the return address, and rbp. Note: the DWARF code is erroneous, see below.

Disassembly

15f0: cmp rdi, 0x5
15f4: ja 1610
15f6: push rbp
15f7: shl rdi, 0x4
15fb: mov rbp, rsp
15fe: sub rsp, rdi
1601: mov rdi, rsp
1604: call 1660
1609: leave
160a: ret
160b: nop [rax+rax*1+0x0]
1610: lea eax, [rdi+0x1]
1613: ret

Decoded DWARF CIE

CIE
Format: DWARF32
Version: 1
Augmentation: "zR"
Code alignment factor: 1
Data alignment factor: -8
Return address column: 16
Augmentation data: 1B

DW_CFA_def_cfa: RSP +8
DW_CFA_offset: RIP -8
DW_CFA_nop:
DW_CFA_nop:

Decoded DWARF FDE

FDE cie=0000 pc=15f0...1614
Format: DWARF32
DW_CFA_advance_loc: 7
DW_CFA_def_cfa_offset: +16
DW_CFA_offset: RBP -16
DW_CFA_advance_loc: 7
DW_CFA_def_cfa_register: RBP
DW_CFA_advance_loc: 12
DW_CFA_def_cfa: RSP +8

e) (4 pts) Where exactly is a mismatch between the CFI program and the assembly code? Accurately
describe a fix for the FDE to match the assembly code. You may only use the following instructions:

• DW_CFA_advance_loc delta
• DW_CFA_def_cfa reg off, DW_CFA_def_cfa_register reg, DW_CFA_def_cfa_offset off
• DW_CFA_offset reg off, DW_CFA_restore reg
• DW_CFA_remember_state, DW_CFA_restore_state

Problem 6: Query Compilation (8)
a) (1 pts) What does vectorization refer to in the context of query execution?

b) (2 pts) What is the key benefit of vectorized processing for unpredictable selection predicates?

c) (5 pts) Derive the query plan for the SQLite3 bytecode below.

addr opcode p1 p2 p3 p4 p5 comment
---- ------------- -- -- -- -------- -- -------------
0 Init 0 13 0 0 Start at 13
1 OpenRead 0 2 0 1 0 root=2 iDb=0; "customer"
2 OpenRead 1 2 0 2 0 root=2 iDb=0; "customer"
3 Rewind 0 12 0 0
4 Rewind 1 12 0 0
5 Column 0 0 1 0 r[1]= cursor 0 column 0
6 Column 1 1 2 0 r[2]= cursor 1 column 1
7 Eq 2 10 1 BINARY -8 83 if r[1]==r[2] goto 10
8 Column 0 0 3 0 r[3]= cursor 0 column 0
9 ResultRow 3 1 0 0 output=r[3]
10 Next 1 5 0 1
11 Next 0 4 0 1
12 Halt 0 0 0 0
13 Transaction 0 0 1 0 1 usesStmtJournal =0
14 Goto 0 1 0 0


