
TU München, Fakultät für Informatik
Lehrstuhl III: Datenbanksysteme

Michael Jungmair

Database System Concepts for Non-Computer Scientist - WiSe 25/26

http://db.in.tum.de/teaching/ws2526/DBSandere/?lang=en

Sheet 03

Exercise 1
Look at the following (familiar) ER-diagram and create SQL DDL statements to create the
respective tables.

Station
#platforms

name

Citylocated_in

name

state

Train

trainNo #wagons

start connects end

departure

arrival

1N

11

1 1

N
NN

Lösung:

create table city (name varchar(50) not null,
state varchar(50) not null,
primary key(name, state)

);

create table station (name varchar not null primary key,
num_platforms int,
cityName varchar(50) not null,
state varchar(50) not null,
foreign key(cityName, state)

references city(name, state)
);

create table train (trainNo int not null primary key,

1



num_wagons int,
start varchar not null references station,
end varchar not null references station

);

create table connects (from varchar not null references station,
to varchar not null references station,
trainNo int not null references train,
departure date,
arrival date,
primary key(from, trainNo)

);

Exercise 2
Write the following queries in SQL on the known university schema:
(a) How many students are there?
(b) Find all students that are in the third semester.
(c) Figure out if there is a lecture with more than five weeklyhours.
(d) Print out a list with all professor names and avoid duplicates.
(e) Find students whose name start and end with the letter ’a’.

Solution:

(a) How many students are there?
select count(*) from Students;

(b) Find all students that are in the third semester.
select * from students where semester = 3;

(c) Figure out if there is a lecture with more than five weeklyhours.
select * from lectures where weeklyhours > 5;

→ No.

(d) Print out a list with all professor names and avoid duplicates.
select distinct name from professors;

(e) Find students whose name start and end with the letter ’a’.
select * from students where name like 'A%' and name like '%a';

Exercise 3
Answer the following questions on our university database using SQL:
(a) List the name and person number of the Assistants of Professor Sokrates.
(b) Which Professors does Fichte know from attending their Lectures.

2



(c) Which Lectures are attended by Students in the 1.-4. semester? Print only the title of
the lectures.

(d) Find all Students that attend at least one Lecture together with Fichte.
Solution:

(a) List the name and person number of the Assistants of Professor Sokrates.
select a.persNr, a.name
from Professors p, Assistants a
where p.name = 'Sokrates'
and p.persNr = a.boss;

(b) Which Professors does Fichte know from attending their Lectures.
select distinct p.persNr, p.name
from Professors p, attend a, Lectures l, Students s
where p.PersNr = l.given_by

and l.lectureNr = a.lectureNr
and a.studNr = s.studNr
and s.name ='Fichte';

(c) Which Lectures are attended by Students in the 1.-4. semester? Print only the title
of the lectures.

select distinct l.title
from Lectures l, attend a, Students s
where l.lectureNr = a.lectureNr

and a.studNr = s.studnr
and s.semester between 1 and 4;

(d) Find all Students that attend at least one Lecture together with Fichte.
select distinct other_s.studNr, other_s.name
from Students fichte_s, attend fichte_a, attend other_a, Students

other_s
where fichte_s.name = 'Fichte'

and fichte_a.studNr = fichte_s.studNr
and other_a.lectureNr = fichte_a.lectureNr
and other_s.studNr = other_a.studNr
and other_s.studNr != fichte_s.studnr

Exercise 4
Answer the following questions on our university database using SQL:

a) Figure out the average semester of all students.
b) What is the average semester of students that are not attending any lecture?
c) Determine the average semester of students that attend at least one lecture of Sokrates.
d) Calculate how many lectures students are attending on average. Students who do not

attend any lecture should be reflected in the result as well. If you get stuck, see hints:

3



1 2

e) Calculate how many lectures each student is attending. Students who do not attend
any lecture should be included in the result as well (attend_count = 0).

Solution:

a) Figure out the average semester of all students.
select avg(semester) from students;

b) What is the average semester of students that are not attending any lecture?
select avg(semester)
from students s
where not exists (

select *
from attend a
where s.studnr = a.studnr)

Or:
select avg(semester)
from students s
where s.studnr not in (

select a.studnr
from attend a)

c) Determine the average semester of students that attend at least one lecture of
Sokrates.

select avg(semester)
from students s
where exists (

select *
from attend a, lectures l, professors p
where s.studnr = a.studnr
and a.lecturenr = l.lecturenr
and l.given_by = p.persnr
and p.name = 'Sokrates')

In this query we need to make sure that each student is only counted once, even if
she is attending two lectures by Sokrates. In our solution, the use of exists takes care
of this. However, we could have also used distinct in combination with a sub-query:

select avg(semester)
from (select distinct s.*

from Students s, attend a, lectures l, professors p
where s.studnr = a.studnr

and a.lecturenr = l.lecturenr
and l.given_by = p.persnr
and p.name = 'Sokrates')

1Remember that the from clause is optional (’select 1.0 / 2.0;’ is a valid query).
2Remember that you can use sub-queries in the select clause.

4



d) Calculate how many lectures students are attending on average. Students who do
not attend any lecture should be reflected in the result as well.

select attend_count/(student_count*1.000)
from (select count(*) as attend_count from attend) a,

(select count(*) as student_count from students) s

Or:
select attend_count / cast(student_count as numeric(10,4))
from (select count(*) as attend_count from attend) a,

(select count(*) as student_count from students) s

Or:
select ((select count(*) from attend) * 1.000)/ (select count(*)

from students)

e) [Bonus] Calculate how many lectures each student is attending. Students who do
not attend any lecture should be included in the result as well (attend_count = 0).
In this exercise we have to make sure to include students that do not attend any
lecture.

select s.studnr, s.name, (select count(*) from attend a where a.
studnr = s.studnr)

from students s;

Another possible solution would be to use union. We first calculate the number of
attended lectures for each student that does attend a lecture. Then we create a
query that produces the student number, student name and a zero for all students
that do not attend a lecture. We then simply combine the two results using the
union operator. Note, however, that it is important to only allow students that
do not attend any lecture in the second sub-query. Otherwise, duplicates would be
possible.

(select s.studnr, s.name, count(*)
from students s, attend a
where s.studnr = a.studnr
group by s.studnr, s.name)

union
(select s.studnr, s.name, 0
from students s
where not exists (select * from attend a where a.studnr = s.

studnr))

A similar approach that takes care of duplicates in a different way is shown in the
following query. Here we do not avoid duplicates, but filter them out in a second
step, instead.

select x.studnr, x.name, sum(x.cnt)
from
((

select s2.studnr, s2.name, count(*) as cnt
from students s2, attend a
where s2.studnr = a.studnr
group by s2.studnr, s2.name

)
union
(

select s1.studnr, s1.name, 0 as cnt
from students s1

)) x
group by x.studnr, x.name

5



As should be clear from this exercise, there are many different ways how a query can be
written. As a rule of thumb, shorter queries are often better, because these are easier to
understand. That holds for everyone involved: you yourself (when proof-reading your
queries in the exam), other people (who read your queries and need to understand
them) and the database (which has to execute your queries in an efficient manner).

6


