
1 Introduction and Interpretation

1.1 Organization

[Slide 2] Module “Code Generation for Data Processing”

Learning Goals
• Getting from an intermediate code representation to machine code
• Designing and implementing IRs and machine code generators
• Apply for: JIT compilation, query compilation, ISA emulation

Prerequisites
• Computer Architecture, Assembly ERA, GRA/ASP
• Databases, Relational Algebra GDB
• Beneficial: Compiler Construction, Modern DBs

[Slide 3] Topic Overview

Introduction
• Introduction and Interpretation
• Compiler Front-end

Intermediate Representations
• IR Concepts and Design
• LLVM-IR
• Analyses and Optimizations

Compiler Back-end
• Instruction Selection
• Register Allocation
• Linker, Loader, Debuginfo

Applications
• JIT-compilation + Sandboxing
• Query Compilation
• Binary Translation

[Slide 4] Lecture Organization

• Lecturer: Dr. Alexis Engelke engelke@in.tum.de
• Time slot: Thu 10-14, 02.11.018
• Material: https://db.in.tum.de/teaching/ws2425/codegen/

1

https://db.in.tum.de/teaching/ws2425/codegen/

1 Introduction and Interpretation

Exam

• Written exam, 90 minutes, no retake, date TBD
• (Might change to oral on very low registration count)

[Slide 5] Exercises

• Regular homework, often with programming exercise
• Submission via POST request (see assignments)

– Grading with {∗,+,∼,−}, feedback on best effort
• Exercise session modes:

– Present and discuss homework solutions
– Hands-on programming or analysis of systems (needs laptop)

Grade Bonus

• Requirement: N − 2 “sufficiently working” homework submissions and one presen-
tations of homework in class (depends on submission count)

• Bonus: grades in [1.3; 4.0] improved by 0.3/0.4

[Slide 6] Why study compilers?

• Critical component of every system, functionality and performance
– Compiler mostly alone responsible for using hardware well

• Brings together many aspects of CS:
– Theory, algorithms, systems, architecture, software engineering, (ML)

• New developments/requirements pose new challenges
– New architectures, environments, language concepts, . . .

• High complexity!

[Slide 7] Compiler Lectures @ TUM

Compiler Construction
IN2227, SS, THEO

Front-end, parsing, seman-
tic analyses, types

Program Optimization
IN2053, WS, THEO

Analyses, transformations,
abstract interpretation

Virtual Machines
IN2040, SS, THEO

Mapping programming
paradigms to IR/bytecode

Programming Languages
CIT3230000, WS

Implementation of ad-
vanced language features

Code Generation
CIT3230001, WS

Back-end, machine code
generation, JIT comp.

2

1.2 Overview

[Slide 8] Why study code generation?

• Frameworks (LLVM, . . .) exist and are comparably good, but often not good enough
(performance, features)

– Many systems with code gen. have their own back-end
– E.g.: V8, WebKit FTL, .NET RyuJIT, GHC, Zig, QEMU, Umbra, . . .

• Machine code is not the only target: bytecode
– Often used for code execution
– E.g.: V8, Java, .NET MSIL, BEAM (Erlang), Python, MonetDB, eBPF, . . .
– Allows for flexible design
– But: efficient execution needs machine code generation

[Slide 9] Proebsting’s Law

“Compiler advances double computing power every 18 years.”

– Todd Proebsting, 1998a

ahttp://proebsting.cs.arizona.edu/law.html

• Still optimistic; depends on number of abstractions

The performance increases compilers can make on existing code are typically low.
However, optimizing compilers gain more abilities in simplifying needlessly complex
code, enabling the use of more abstractions and therefore higher level code. These ab-
stractions are removed/optimized during compilation, enabling languages to promote
these as zero-cost abstractions. They do, however, have a cost: compile times.

Also note that some of these “zero-cost” abstractions actually do have some run-
time cost. For example, the mere possibility of C++ exceptions can cause less efficient
machine code and might prevents optimizations due to the more complex control flow
possibilities.

1.2 Overview

[Slide 10] Motivational Example: Brainfuck

• Turing-complete esoteric programming language, 8 operations
– Input/output: . ,
– Moving pointer over infinite array: < >
– Increment/decrement: + -
– Jump to matching bracket if (not) zero: []

++++++[->++++++<]>.

• Execution with pen/paper? :(

3

http://proebsting.cs.arizona.edu/law.html

1 Introduction and Interpretation

[Slide 11] Program Execution

Program Hardware Result

Programs
• High flexibility (possibly)
• Many abstractions (typically)
• Several paradigms

Hardware/ISA
• Low-level interface
• Few operations, imperative
• “Not easy” to write

[Slide 12] Motivational Example: Brainfuck – Interpretation

• Write an interpreter!

unsigned char state[10000];
unsigned ptr = 0, pc = 0;
while (prog[pc])
switch (prog[pc++]) {
case ’.’: putchar(state[ptr]); break;
case ’,’: state[ptr] = getchar(); break;
case ’>’: ptr++; break;
case ’<’: ptr--; break;
case ’+’: state[ptr]++; break;
case ’-’: state[ptr]--; break;
case ’[’: state[ptr] || (pc = matchParen(pc, prog)); break;
case ’]’: state[ptr] && (pc = matchParen(pc, prog)); break;
}

[Slide 13] Program Execution

Compiler

Program Compiler Program

• Translate program to other lang.
• Might optimize/improve program

• C, C++, Rust → machine code
• Python, Java → bytecode

Interpreter

Program Interpreter Result

• Directly execute program
• Computes program result

• Shell scripts, Python bytecode, ma-
chine code (conceptually)

Multiple compilation steps can precede the “final interpretation”

4

1.3 High-Level Structure of Compilers

1.3 High-Level Structure of Compilers

[Slide 14] Compilers

• Targets: machine code, bytecode, or other source language
• Typical goals: better language usability and performance

– Make lang. usable at all, faster, use less resources, etc.
• Constraints: specs, resources (comp.-time, etc.), requirements (perf., etc.)
• Examples:

– “Classic” compilers source → machine code
– JIT compilation of JavaScript, WebAssembly, Java bytecode, . . .
– Database query compilation
– ISA emulation/binary translation

[Slide 15] Compiler Structure: Monolithic

Source
Program Compiler Machine

Code

Errors

• Inflexible architecture, hard to retarget

Some languages like C are designed to be compilable in a single pass without building
any intermediate representation of the code between source and assembly. Single-pass
compilers exist, but often have very limited possibilities to transform the code. They
might not even know basic code properties, e.g., the size of the stack frame, during
compilation of a function.

[Slide 16] Compiler Structure: Two-phase architecture

Source
Program Front-end Back-end Machine

Code
IR

Errors

Front-end
• Parses source code
• Detect syntax/semantical errors
• Emit intermediate representation encode semantics/knowledge
• Typically: O(n) or O(n log n)

Back-end
• Translate IR to target architecture
• Can assume valid IR (⇝ no errors)
• Possibly one back-end per arch.

5

1 Introduction and Interpretation

• Contains NP-complete problems

After parsing, all information is encoded in the IR, including references to source code
constructs for debugging support. The input source code is (at least conceptually)
no longer needed.

In practice, there are very rare cases where the back-end can also raise errors. This
can happen, for example, when some very architecture-specific constraints might be
hard to verify during parsing (e.g., inline assembly constraints in combination with
available registers).

[Slide 17] Compiler Structure: Three-phase architecture

Source
Program Front-end Optimizer Back-end Machine

Code
IR IR

Errors

• Optimizer: analyze/transform/rewrite program inside IR

• Conceptual architecture: real compilers typically much more complex
– Several IRs in front-end and back-end, optimizations on different IRs
– Multiple front-ends for different languages
– Multiple back-ends for different architectures

Example Clang/LLVM (will be covered in more detail later): Clang parses the in-
put into an abstract syntax tree (IR 1), uses this for semantic analyses; then Clang
transforms the code into LLVM-IR (IR 2), which is primarily used for optimization;
then the LLVM back-end transforms the code further into LLVM’s Machine IR (IR
3), executes some low-level optimizations and register allocation there; the assembly
printer of the back-end then lowers the code further to LLVM’s machine code rep-
resentation (IR 4), before finally emitting machine code. Some optimizations inside
this pipeline, e.g. vectorization, might even build further representation of the code.

Why are compilers using so many different code representations? Different trans-
formations work best at different abstraction levels. Diagnosing unused variables,
for example, requires information about the source code. Optimization of arithmetic
computations is easier in a data-flow-focused representation, where no explicit vari-
ables exist. Low-level modifications, like folding operations into complex addressing
modes of the ISA, need a code representation where ISA instructions are already
present.

[Slide 18] Compiler Front-end

1. Tokenizer: recognize words, numbers, operators, etc. Re

• Example: a+b*c → ID(a) PLUS ID(b) TIMES ID(c)

6

1.4 Interpretation

2. Parser: build (abstract) syntax tree, check for syntax errors CFG

• Syntax Tree: describe grammatical structure of complete program Example:
expr("a", op("+"), expr("b", op("*"), expr("c"))

• Abstract Syntax Tree: only relevant information, more concise Example:
plus("a", times("b", "c"))

3. Semantic Analysis: check types, variable existence, etc.

4. IR Generator: produce IR for next stage

• This might be the AST itself

[Slide 19] Compiler Back-end

1. Instruction Selection: map IR operations to target instructions

• Use target features: special insts., addressing modes, . . .
• Still using virtual/unlimited registers

2. Instruction Scheduling: optimize order for target arch.

• Start memory/high-latency earlier, etc.
• Requires knowledge about micro-architecture

3. Register Allocation: map values to fixed register set/stack

• Use available registers effectively, minimize stack usage

1.4 Interpretation

[Slide 20] Motivational Example: Brainfuck – Front-end

• Need to skip comments
• Bracket searching is expensive/redundant
• Idea: “parse” program!
• Tokenizer: yield next operation, skipping comments
• Parser: find matching brackets, construct AST

+[[-]>]

root

+ []

[]

-

>

7

1 Introduction and Interpretation

[Slide 21] Motivational Example: Brainfuck – AST Interpretation

• AST can be interpreted recursively

struct node { char kind; unsigned cldCnt; struct node* cld; };
struct state { unsigned char* arr; size_t ptr; };
void donode(struct node* n, struct state* s) {
switch (n->kind) {
case ’+’: s->arr[s->ptr]++; break;
// ...
case ’[’: while (s->arr[s->ptr]) children(n, s); break;
case 0: children(n, s); break; // root
}

}
void children(struct node* n, struct state* s) {
for (unsigned i = 0; i < n->cldCnt; i++) donode(n->cld + i, s);

}

[Slide 22] Motivational Example: Brainfuck – Optimization

• Inefficient sequences of +/-/</> can be combined
– Trivially done when generating IR

• Fold patterns into more high-level operations

In-Class Exercise:

Look at some Brainfuck programs. Which patterns are beneficial to fold?

[Slide 23] Motivational Example: Brainfuck – Optimization

• Fold offset into operation
– right(2) add(1) = addoff(2, 1) right(2)
– Also possible with loops

• Analysis: does loop move pointer?
– Loops that keep position intact allow more optimizations
– Maybe distinguish “regular loops” from arbitrary loops?

• Get rid of all “effect-less” pointer movements
• Combine arithmetic operations, disambiguate addresses, etc.

[Slide 24] Motivational Example: Brainfuck – Bytecode

• Tree is nice, but rather inefficient ⇝ flat and compact bytecode
• Avoid pointer dereferences/indirections; keep code size small
• Maybe dispatch two instructions at once?

– switch (ops[pc] | ops[pc+1] << 8)

• Superinstructions: combine common sequences to one instruction

8

1.4 Interpretation

Dispatching multiple instructions at once can be problematic due to the explosion of
cases that need to be implemented (often results in large jump tables and lots of code
with resulting cache misses and branch mispredictions). Often, it is advisable to not
always switch over multiple neighbored instructions, but instead combine common
sequences into superinstructions.

[Slide 25] Motivational Example: Brainfuck – Threaded Interpretation

• Simple switch–case dispatch has lots of branch misses
• Threaded interpretation: at end of a handler, jump to next op

struct op { char op; char data; };
struct state { unsigned char* arr; size_t ptr; };
void threadedInterp(struct op* ops, struct state* s) {

static const void* table[] = { &&CASE_ADD, &&CASE_RIGHT, };
#define DISPATCH do { goto *table[(++pc)->op]; } while (0)

struct op* pc = ops;
DISPATCH;

CASE_ADD: s->arr[s->ptr] += pc->data; DISPATCH;
CASE_RIGHT: s->arr += pc->data; DISPATCH;
}

With threaded interpretation there is not a single indirect jump instruction inside the
dispatcher, but one indirect jump instruction per operation. Each of these indirect
jumps then occupies a different branch prediction slot in the CPU. If an operation of
type X is typically followed by an operation of type Y, with threaded interpretation
the CPU has a much better chance of correctly predicting the dispatch branch to
the next operation, because the indirect jump at the end of operation X typically
jumps to operation Y. Without threaded interpretation, there would be only a single
indirect branch, which is much harder to predict.

Threaded interpretation is especially useful on older and less powerful CPUs. Re-
cent CPUs (e.g., Intel since Skylake, AMD since Zen 3, Apple Silicon) store the
history of indirect branches and use this for better prediction. On such processors,
threaded interpretation might not improve performance (or gains might be lower).

[Slide 26] Fast Interpretation

• Key technique to “avoid” compilation to machine code
• Preprocess program into efficiently executable bytecode

– Easily identifiable opcode, homogeneous structure
– Can be linear (fast to execute), but trees also work
– Match bytecode ops with needed operations ⇝ fewer instructions

• Perhaps optimize – if it’s worth the benefit
– Fold constants, combine instructions, . . .
– Consider superinstructions for common sequences

9

1 Introduction and Interpretation

• For very cold code: avoid transformations at all

1.5 Context of Compilation

[Slide 27] Compiler: Surrounding – Compile-time

• Typical environment for a C/C++ compiler:

fileA.c fileA.i
Preprocessor

cpp
fileA.s

C-Compiler

cc1
fileA.o

Assembler

as
exec

Linker

ld

• Calling Convention: interface with other objects/libraries
• Build systems, dependencies, debuggers, etc.
• Compilation target machine (hardware, VM, etc.)

[Slide 28] Compiler: Surrounding – Run-time

• OS interface (I/O, . . .)
• Memory management (allocation, GC, . . .)
• Parallelization, threads, . . .
• VM for execution of virtual assembly (JVM, . . .)
• Run-time type checking
• Error handling: exception unwinding, assertions, . . .
• Reflection, RTTI

[Slide 29] Motivational Example: Brainfuck – Runtime Environment

• Needs I/O for . and ,
• Error handling: unmatched brackets
• Memory management: infinitely sized array

In-Class Exercise:

How to efficiently emulate an infinitely sized array?

[Slide 30] Compilation point: AoT vs. JIT

Ahead-of-Time (AoT)
• All code has to be compiled
• No dynamic optimizations
• Compilation-time secondary concern

Just-in-Time (JIT)
• Compilation-time is critical
• Code can be compiled on-demand

– Incremental optimization, too
• Handle cold code fast

10

1.5 Context of Compilation

• Dynamic specializations possible
• Allows for eval()

Various hybrid combinations possible

[Slide 31] Introduction and Interpretation – Summary

• Compilation vs. interpretation and combinations
• Compilers are key to usable/performant languages
• Target language typically machine code or bytecode
• Three-phase architecture widely used
• Interpretation techniques: bytecode, threaded interpretation, . . .
• JIT compilation imposes different constraints

[Slide 32] Introduction and Interpretation – Questions

• What is typically compiled and what is interpreted? Why?
– PostScript, C, JavaScript, HTML, SQL

• What are typical types of output languages of compilers?
• How does a compiler IR differ from the source input?
• What is the impact of the language paradigm on optimizations?
• What are important factors for an efficient interpreter?
• What are key differences between AoT and JIT compilation?

11

2 Compiler Front-end

[Slide 34] Compiler Front-end

Source
Program Lexer Parser

Semantic
Analysis

Syntax
Tree

Tokens AST

Errors

• Typical architecture: separate lexer, parser, and context analysis
– Allows for more efficient lexical analysis
– Smaller components, easier to understand, etc.

• Some languages: preprocessor and macro expansion

2.1 Lexing

[Slide 35] Lexer

• Convert stream of chars to stream of words (tokens)
• Detect/classify identifiers, numbers, operators, . . .
• Strip whitespace, comments, etc.

a+b*c → ID(a) PLUS ID(b) TIMES ID(c)

• Typically representable as regular expressions

[Slide 36] Typical Token Kinds

• Punctuators () [] { } ; = + += | ||
• Identifiers abc123 main
• Keywords void int __asm__
• Numeric constants 123 0xab1 5.7e3 0x1.8p1 09.1f
• Char constants ’a’ u’œ’
• String literals "abc\x12\n"
• Internal EOF COMMENT UNKNOWN INDENT DEDENT

– Comments might be useful for annotations, e.g. // fallthrough

13

2 Compiler Front-end

Indentation-based languages like Python need separate tokens for indent/dedent, the
indentation level is tracked in the lexer. Parsing numbers may need special care to
correctly handle all possible cases of integer and floating-point numbers.

[Slide 37] Lexer Implementation

struct Token { enum Kind { IDENT, EOF, PLUS, PLUSEQ, /*...*/ };
std::string_view v; Kind kind; };

Token next(std::string_view v) {
if (v.empty()) return Token{v, Token::EOF};
if (v.starts_with("+=")) return Token{"+="sv, Token::PLUSEQ};
if (v.starts_with("+")) return Token{"+"sv, Token::PLUS};
switch (v[0]) {
case ’␣’, ’\n’, ’\t’: return next(v.substr(1)); // skip whitespace
case ’a’ ... ’z’, ’A’ ... ’Z’, ’_’: {
Token t = // ... parse identifer, e.g. using regex
if (auto kind = isKeyword(t.v)) return Token{*kind, t.v};
return t;

}
case ’0’ ... ’9’: // ... parse number
default: return Token{v.substr(0, 1), Token::ERROR};
}

}

This is just a minimal and non-optimized implementation to illustrate the concept.
Performance-focused implementations do not use explicit regular expressions but
write the state machine into code.

The struct Token has room for improvement. First, a string_view is unnecessarily
large with 16 bytes, most tokens are smaller than 216 bytes. Some tracking of the
source locations is advisable for attaching diagnostics to their origin inside the code,
for example by storing a file ID and the byte offset into the file. By tracking the byte
offsets of line breaks, the line number can be reconstructed in O(log n) from the byte
offset.

Another optimization strategy is string interning, where identifiers are converted
into unique integers (or pointers) during parsing. During later phases, comparing
interned strings is much more efficient, as it is just an integer/pointer comparison.
Another benefit is that the entire input file does not need to be kept in memory
during parsing.

[Slide 38] Lexing C??=

main() <%
// yay, this is C99??/
puts("hi␣world!");
puts("what’s␣up??!");

%>

Output: what’s up|

• Trigraphs for systems with more limited encodings/char sets
• Digraphs to provide a more readable alternative...

14

2.2 Parsing

Besides digraphs, trigraphs, and the preprocessor, C has another weird property:
identifier names can be split by \, which concatenates two lines. It is necessary to
construct the “real” identifier first. To simplify memory management in such cases, a
bump pointer allocator (allocate large chunks of memory from the OS, then simply
bump the end pointer for every allocation) can be useful to store such constructed
names.

[Slide 39] Lexer Implementation

• Essentially a DFA (for most languages)
– Set of regexes → NFA → DFA

• Respect whitespace/separators for operators, e.g. + and +=
• Automatic tools (e.g., flex) exist; most compilers do their own
• Keywords typically parsed as identifiers first

– Check identifier if it is a keyword; can use perfect hashing
• Other practical problems

– UTF-8 homoglyphs; trigraphs; pre-processing directives

A tool to generate perfect hash tables from a set of keywords is gperf. Example,
compile with gperf -L C++ -C -E -t <input>:
struct keyword {char* name; int val; }
%%
int, 1
char, 2
void, 3
if, 4
else, 5
while, 6
return, 7

2.2 Parsing

[Slide 40] Parsing

• Convert stream of tokens into (abstract) syntax tree
• Most programming languages are context-sensitive

– Variable declarations, argument count, type match, etc. ⇝ separated into
semantic analysis

Syntactically valid: void foo = doesntExist / "abc";
• Grammar usually specified as CFG

[Slide 41] Context-Free Grammar (CFG)

• Terminals: basic symbols/tokens
• Non-terminals: syntactic variables

15

2 Compiler Front-end

• Start symbol: non-terminal defining language
• Productions: non-terminal → series of (non-)terminals

stmt → whileStmt | breakStmt | exprStmt
whileStmt → while (expr) stmt
breakStmt → break ;
exprStmt → expr ;

expr → expr + expr | expr * expr | expr = expr | (expr) | number

[Slide 42] Hand-written Parsing – First Try

• One function per non-terminal
• Check expected structure
• Return AST node
• Need look-ahead!

NodePtr parseBreakStmt() {
consume(Token::BREAK);
consume(Token::SEMICOLON);
return newNode(Node::BreakStmt);

}
NodePtr parseWhileStmt() {
consume(Token::WHILE);
consume(Token::LPAREN);
NodePtr expr = parseExpr();
consume(Token::RPAREN);
NodePtr body = parseStmt();
return newNode(Node::WhileStmt,
{expr, body});

}
NodePtr parseStmt() {
// whoops!

}

[Slide 43] Hand-written Parsing – Second Try

• Need look-ahead to distinguish production rules
• Consequences for grammar:

– No left-recursion
– First n terminals must allow distinguishing rules
– LL(n) grammar; n typically 1

⇒ Not all CFGs (easily) parseable (but most programming langs. are)
• Now... expressions

NodePtr parseBreakStmt() { /*...*/ }
NodePtr parseWhileStmt() { /*...*/ }

NodePtr parseStmt() {
Token t = peekToken();
if (t.kind == Token::BREAK)
return parseBreakStmt();

16

2.2 Parsing

if (t.kind == Token::WHILE)
return parseWhileStmt();

// ...
NodePtr expr = parseExpr();
consume(Token::SEMICOLON);
return newNode(Node::ExprStmt,
{expr});

}

[Slide 44] Ambiguity

expr → expr + expr | expr * expr | expr = expr | (expr) | number

Input: 4 + 3 ∗ 2

E

E

4 + 3

* 2

E

4 + E

3 * 2

The grammar, as specified, is ambiguous, there are two possible ways to parse the
input.

[Slide 45] Ambiguity – Rewrite Grammar?

primary → (expr) | number
expr → primary + expr | primary * expr | primary = expr | primary

Input: 4 + 3 ∗ 2

E

4 + E

3 * 2

Input: 4 ∗ 3 + 2

E

4 * E

3 + 2

The grammar is no longer ambiguous, but the result might not be expected, conven-
tionally, multiplication has a stronger binding than addition.

[Slide 46] Ambiguity – Precedence

Input: 4 ⋆ 5 ⃝ 6

17

2 Compiler Front-end

⋆

4 ⃝

5 6

If prec(⃝) > prec(⋆) or equal prec.
and ⋆ is right-assoc.

Examples:
• 4 + 5 · 6 (prec(·) > prec(+))
• a = b = c (= is right-assoc.)
b = c should be executed first

⃝

⋆

4 5

6

If prec(⃝) < prec(⋆) or equal prec.
and ⋆ is left-assoc.

Examples:
• 4+5 < 6 (prec(<) < prec(+))
• a+ b− c (+ is left-assoc.)
a+ b should be executed first

[Slide 47] Hand-written Parsing – Expression Parsing

• Start with basic expr.:
• Number, variable, etc.
• Parenthesized expr.

– Parse full expression
– Next token must be)

• Unary expr: followed by expr. with higher prec.
– - < unary - < []/->

NodePtr parseExpr(unsigned minPrec=0);
NodePtr parsePrimaryExpr() {
switch (Token t = next(); t.kind) {
case Token::IDENT:
return makeNode(Node::IDENT, t.v);

case Token::NUMBER: // ...
case Token::MINUS:
// Only exprs with high precedence
return makeNode(Node::UMINUS,
{parseExpr(UNARY_PREC)});

case Token::LPAREN: // ...
// ...
}

}

[Slide 48] Hand-written Parsing – Expression Parsing

• Only allow ops. with higher prec. on the right child
– Right-assoc.: allow same

• Lower prec.: return + insert higher up in the tree
OpDesc OPS[] = { // {prec, rassoc}
[Token::MUL] = {12, false},
[Token::ADD] = {11, false},

18

2.2 Parsing

[Token::EQ] = {2, true},
[Token::QUEST] = {3, true}, // ?:

}
NodePtr parseExpr(unsigned minPrec=1) {
auto lhs = parsePrimaryExpr();
while (auto op = OPS[next().kind];

op.prec >= minPrec) {
// ... handle (, [, ?: ...
auto newPrec = op.rassoc ?
op.prec : op.prec + 1;

auto rhs = parseExpr(newPrec);
lhs = makeNode(op.nodeKind,
{lhs, rhs});

}
return lhs;

}

In-Class Exercise:

a = 3 * 2 + 1; a = b + c + d = 1; a ? 1 : b ? 2 : 3;

Example for input: a = 3 * 2 + 1;

19

2 Compiler Front-end

Rec. Depth 1 Rec. Depth 2 Rec. Depth 3

minPrec 1
lhs a
op (prec/assoc) = (2/r)

minPrec 1 2
lhs a 3
op (prec/assoc) = (2/r) * (12/l)

minPrec 1 2 13
lhs a 3 2
op (prec/assoc) = (2/r) * (12/l) + (11/l)

minPrec 1 2
lhs a 3*2
op (prec/assoc) = (2/r) + (11/l)

minPrec 1 2 12
lhs a 3*2 1
op (prec/assoc) = (2/r) + (11/l) ; (0/–)

minPrec 1 2
lhs a (3*2)+1
op (prec/assoc) = (2/r) ; (0/–)

minPrec 1
lhs a=((3*2)+1)
op (prec/assoc) ; (0/–)

[Slide 49] Top-down vs. Bottom-up Parsing

Top-down Parsing
• Start with top rule
• Every step: choose expansion
• LL(1) parser

– Left-to-right, Leftmost Derivation
• “Easily” writable by hand
• Error handling rather simple
• Covers many prog. languages

Bottom-up Parsing
• Start with text
• Reduce to non-terminal
• LR(1) parser

– Left-to-right, Rightmost Derivation
– Strict super-set of LL(1)

• Often: uses parser generator

20

2.2 Parsing

• Error handling more complex
• Covers nearly all prog. languages

[Slide 50] Parser Generators

• Writing parsers by hand can be large effort
• Parser generators can simplify parser writing a lot

– Yacc/Bison, PLY, ANTLR, . . .
• Automatic generation of parser/parsing tables from CFG

– Finds ambiguities in the grammar
– Lexer often written by hand

• Used heavily in practice, unless error handling is important

[Slide 51] Bison Example – part 1

%define api.pure full
%define api.value.type {ASTNode *}
%param { Lexer* lexer }
%code{
static int yylex(ASTNode ** lvalp , Lexer* lexer);
}
%token NUMBER
%token WHILE "while"
%token BREAK "break"

// precedence and associativity
%right ’=’
%left ’+’
%left ’*’

[Slide 52] Bison Example – part 2

%%
stmt : WHILE ’(’ expr ’)’ stmt { $$ = mkNode(WHILE , $1 , $2); }

| BREAK ’;’ { $$ = mkNode(BREAK , NULL , NULL); }
| expr ’;’ { $$ = $1; }
;

expr : expr ’+’ expr { $$ = mkNode(’+’, $1, $2); }
| expr ’*’ expr { $$ = mkNode(’*’, $1, $2); }
| expr ’=’ expr { $$ = mkNode(’=’, $1, $2); }
| ’(’ expr ’)’ { $$ = $1; }
| NUMBER
;

%%
static int yylex(ASTNode ** lvalp , Lexer* lexer) {

/* return next token , or YYEOF /... */ }

Compile with bison -dg input.ypp, it will emit a C++ header, the implementation
file, and also a graph showing the state machine of he parser.

21

2 Compiler Front-end

[Slide 53] Parsing in Practice

• Some use parser generators, e.g. Python some use hand-written parsers, e.g. GCC,
Clang, Swift, Go

• Optimization of grammar for performance
– Rewrite rules to reduce states, etc.

• Useful error-handling: complex!
– Try skipping to next separator, e.g. ; or ,

• Programming languages are not always context-free
– C: foo* bar;
– May need to break separation between lexer and parser

In fact, many compilersa use hand-written parsers, because they allow for better error
messages a more graceful handling of syntax errors, leading to more reported errors
during a single (failing) ompilation.
ahttps://notes.eatonphil.com/parser-generators-vs-handwritten-parsers-survey-2021.
html

[Slide 54] Parsing C++

• C++ is not context-free (inherited from C): T * a;
• C++ is ambiguous: Type (a), b;

– Can be a declaration or a comma expression
• C++ templates are Turing-complete1

• C++ parsing is hence undecidable2

– Template instantiation combined with C T * a ambiguity

2.3 Semantic Analysis

[Slide 55] Semantic Analysis

• Syntactical correctness ̸⇒ correct program void foo = doesntExist / ++"abc";

• Needs context-sensitive analysis:
– Variable existence, storage, accessibility, . . .
– Function existence, arguments, . . .
– Operator type compatibility
– Attribute allowance

• Additional type complexity: inference, polymorphism, . . .
1TL Veldhuizen. C++ templates are Turing complete. 2003. url: http://port70.net/~nsz/c/c%2B%
2B/turing.pdf.

2J Haberman. Parsing C++ is literally undecidable. 2013. url: https://blog.reverberate.org/
2013/08/parsing-c-is-literally-undecidable.html.

22

https://notes.eatonphil.com/parser-generators-vs-handwritten-parsers-survey-2021.html
https://notes.eatonphil.com/parser-generators-vs-handwritten-parsers-survey-2021.html
http://port70.net/~nsz/c/c%2B%2B/turing.pdf
http://port70.net/~nsz/c/c%2B%2B/turing.pdf
https://blog.reverberate.org/2013/08/parsing-c-is-literally-undecidable.html
https://blog.reverberate.org/2013/08/parsing-c-is-literally-undecidable.html

2.4 Miscellaneous

[Slide 56] Semantic Analysis: Scope Checking with AST Walking

• Idea: walk through AST (in DFS-order) and validate on the way
• Keep track of scope with declared variables

– Might need to keep track of defined types separately

In-Class Exercise:

How to implement the scope data structure?

• For identifiers: check existence and get type
• For expressions: check types and derive result type
• For assignment: check lvalue-ness of left side
• Might be possible during AST creation
• Needs care with built-ins and other special constructs

There are two ways of implementing a scoped hash table:
• Chain of hash maps: Scope = (Map[Name → Type] names, Scope parent).

This is, however, very slow for deeply nested scopes, as all hash maps of the
parent scopes must be queried. Hash map lookups are fairly expensive.

• Hash map of lists: Map[Name → List[Tuple[Depth, Type]]]. For every iden-
tifier, the type at a given scope nesting depth is stored. Invalidation can be
implemented with an epoch counter for every depth. The downside is that this
hash map can grow very large, as entries are never removed.

[Slide 57] Semantic Analysis and Post-Parsing Transformations

• Check for error-prone code patterns
– Completeness of switch, out-of-range constants, unused variables, ...

• Check method calls, parameter types
• Duplicate code for templates
• Make implicit value conversions explicit
• Handle attributes: visibility, warnings, etc.
• Mangle names, split functions (OpenMP), ABI-specific setup, ...
• Last step: generate IR code

2.4 Miscellaneous

[Slide 58] Parsing Performance

Is parsing/front-end performance important?

• Not necessarily: normal compilers
– Some languages (e.g., Rust) need unbounded time for parsing

23

2 Compiler Front-end

• Somewhat: JIT compilers
– Start-up time is generally noticable

• Somewhat more: Developer tools
– Imagine: waiting for seconds just for updated syntax highlighting
– Often uses tricks like incremental updates to parse tree

[Slide 59] Data Types

• Important part of programming languages
• Might have large variety and compatibility

– Numbers, Strings, Arrays, Compound Types (struct/union), Enum, Templates,
Functions, Pointers, . . .

– Class hierarchy, Interfaces, Abstract Classes, . . .
– Integer/float compatibility, promotion, . . .

• Might have implicit conversions

[Slide 60] Data Types: Implementing Classes

• Simple class/struct: trivial, just bunch of fields
– Methods take (pointer to) this as implicit parameter

• Single inheritance: also trivial – extend struct at end
• Virtual methods: store vtable in object representation

– vtable = table of function pointers for virtual methods
– Each sub-class has their own vtable

• Multiple inheritance is much more involved
• Dynamic casts: needs run-time type information (RTTI)

[Slide 61] Recommended Lectures

AD IN2227 “Compiler Constructions” covers parsing/analysis in depth

AD CIT3230000 “Programming Languages” covers dispatching/mixins/...

[Slide 62] Compiler Front-end – Summary

• Lexer splits input into tokens
– Essentially Regex-Matching + Keywords; rather simple

• Parser constructs (abstract) syntax tree from tokens
– Top-down vs. bottom-up parsing
– Typical: top-down for control flow; bottom-up for expressions
– Respect precedence and associativity for operators

• Semantic analysis ensures meaningful program

24

2.4 Miscellaneous

• Some data structures are complex to implement
• Some programming languages are more difficult to parse

[Slide 63] Compiler Front-end – Questions

• What are typical components of a compiler front-end?
• What output does the lexer produce?
• How does a parser disambiguate rules?
• What is the typical way to handle operator precedence?
• Why are not all programming languages describable using CFGs?
• How to implement classes with virtual functions?

25

3 Intermediate Representations

[Slide 65] Intermediate Representations: Motivation

• So far: program parsed into AST
+ Great for language-related checks
+ Easy to correlate with original source code (e.g., errors)
− Hard for analyses/optimizations due to high complexity

– variable names, control flow constructs, etc.
– Data and control flow implicit

− Highly language-specific

[Slide 66] Intermediate Representations: Motivation

block

stmt_decl

int ident

x

+

num

5

num

3

stmt_decl

int ident

y

+

ident

x

num

1

stmt_expr

=

ident

x

num

12

stmt_decl

int ident

z

+

ident

x

num

1

stmt_ret

−

ident

z

ident

y

Question: how to optimize? Is x+1 redundant? ⇝ hard to tell :(

In this representation, it is very easy to see that the two +1 operations have different
operands on the left side and are therefore not trivially redundant.

[Slide 67] Intermediate Representations: Motivation

x1 ← 5 + 3
y1 ← x1 + 1
x2 ← 12
z1 ← x2 + 1
tmp1 ← z1 − y1
return tmp1

Question: how to optimize? Is x+1 redundant? ⇝ No! :)

27

3 Intermediate Representations

[Slide 68] Intermediate Representations

• Definitive program representation inside compiler
– During compilation, only the (current) IR is considered

In practice, there are, of course, exceptions to the general rule; sometimes
an IR contains references to a previous/higher-level IR. An example is
LLVM’s low-level Machine IR, which only represents single functions and
therefore references to global variables use the higher-level LLVM IR.

• Goal: simplify analyses/transformations
– Technically, single-step compilation is possible for, e.g., C ... but optimizations

are hard without proper IRs
• Compilers design IRs to support frequent operations

– IR design can vary strongly between compilers
• Typically based on graphs or linear instructions (or both)

[Slide 69] Compiler Design: Effect of Languages – Imperative

• Step-by-step execution of program modification of state
• Close to hardware execution model
• Direct influence of result

• Tracking of state is complex
• Dynamic typing: more complexity
• Limits optimization possibilities

void addvec(int* a, const int* b) {
for (unsigned i = 0; i < 4; i++)
a[i] += b[i]; // vectorizable?

}
func:
mov [rdi], rsi
mov [rdi+8], rdx
mov [rdi], 0 // redundant?
ret

Tracking state, especially when memory is involved, is one of the main challenges
during optimization. In the first example, the loop is not easily vectorizable, because
a and b could point to the same underlying array (e.g., with addvec(buf + 1, buf)).

[Slide 70] Compiler Design: Effect of Languages – Declarative

• Describes execution target
• Compiler has to derive good mapping to imperative hardware

• Allows for more optimizations
• Mapping to hardware non-trivial

28

– Might need more stages
– Preserve semantic info for opt!

• Programmer has less “control”

select s.name
from studenten s
where exists (select 1

from hoeren h
where h.matrno=s.matrno)

let rec fac = function
| 0 | 1 -> 1
| n -> n * fac (n - 1)

[Slide 71] Graph IRs: Abstract Syntax Tree (AST)

• Code representation close to the source
• Representation of types, constants, etc. might differ
• Storage might be problematic for large inputs

block

stmt_decl

int ident

x

+

num

5

num

3

stmt_decl

int ident

y

+

ident

x

num

1

stmt_expr

=

ident

x

num

12

stmt_decl

int ident

z

+

ident

x

num

1

stmt_ret

−

ident

z

ident

y

[Slide 72] Graph IRs: Control Flow Graph (CFG)

• Motivation: model control flow between different code sections
• Graph nodes represent basic blocks

– Basic block: sequence of branch-free code (modulo exceptions)
– Typically represented using a linear IR

stmt1
while (exp1)
stmt2

stmt3

block

stmt1 stmt_while

exp1 stmt2

stmt3

stmt1

exp1

stmt3

stmt2

[Slide 73] Build CFG from AST – Function

• Idea: Keep track of current insert block while walking through AST

29

3 Intermediate Representations

function

ret. type name arguments B

fn. prologue

B

fn. epilogue

[Slide 74] Build CFG from AST – While Loop

stmt_while

condition B

c=condition
if(!c) ↙ else ↘

B

Written in pseudo-code:
IRValue generateCFG(ASTNode* node, BasicBlock*& insPos) {
switch (node->kind()) {
case ASTNode::Function:
insPos = generatePrologue(node);
generateCFG(node->child(0), insPos);
generateEpilogue(insPos);
return nullptr;

case ASTNode::Block:
for (ASTNode* child : node->children())
generateCFG(child, insPos);

return nullptr;
case ASTNode::While: {
BasicBlock* cond = newBlock();
BasicBlock* body = newBlock();
BasicBlock* end = newBlock();
branchTo(insPos, cond);
insPos = cond;
IRValue brcond = generateCFG(node->child(0), insPos);
// NB: generateCFG can modify insPos
branchToCond(insPos, brcond, body, end);
insPos = body;
generateCFG(node->child(1), insPos);
branchTo(insPos, cond);
insPos = end;
return nullptr;

30

}
// ...
}

}

[Slide 75] Build CFG from AST – If Condition

stmt_if

condition T E

c=condition
if(c) ↙ else ↘

T E

[Slide 76] Build CFG from AST: Switch

Linear search
t ← exp
if t == 3: goto B3

if t == 4: goto B4

if t == 7: goto B7

if t == 9: goto B9

goto BD

+ Trivial
− Slow, lot of code

Binary search
t ← exp
if t == 7: goto B7

elif t > 7:
if t == 9: goto B9

else:
if t == 3: goto B3

if t == 4: goto B4

goto BD

+ Good: sparse values
− Even more code

Jump table
t ← exp
if 0 ≤ t< 10:
goto table[t]

goto BD

table = {
BD, BD, BD, B3,
B4, BD, ... }

+ Fastest
− Table can be large,

needs ind. jump

[Slide 77] Build CFG from AST: Break, Continue, Goto

• break/continue: trivial
– Keep track of target block, insert branch

• goto: also trivial
– Split block at target label, if needed
– But: may lead to irreducible control flow graph (see later)

[Slide 78] CFG: Formal Definition

• Flow graph: G = (N,E, s) with a digraph (N,E) and entry s ∈ N

31

3 Intermediate Representations

– Each node is a basic block, s is the entry block
– (n1, n2) ∈ E iff n2 might be executed immediately after n1

– All n ∈ N shall be reachable from s (unreachable nodes can be discarded)
– Nodes without successors are end points

[Slide 79] CFG from C – Example

In-Class Exercise:

Derive the CFG for the these functions. Assume a switch instruction exists.

int fn1() {
if (a()) {
while (b()) {
c();
if (d())
continue;

e();
}

} else {
f();

}
}

int fn2() {
a();
do switch (c()) {
case 1:
while (d()) {
e();

case 2:
f();

}
default:
g();

} while (h());
return b();

}

[Slide 80] Graph IRs: Call Graph

• Graph showing (possible) call relations between functions
• Useful for interprocedural optimizations

– Function ordering
– Stack depth estimation
– . . .

main

parseArgs

strtol

printf

write

fibonacci

[Slide 81] Graph IRs: Relational Algebra

• Higher-level representation of query plans
– Explicit data flow

• Allow for optimization and selection actual implementations
– Elimination of common sub-trees
– Joins: ordering, implementation, etc.

32

SELECT s.name, h.vorlnr
FROM studenten s, hoeren h
WHERE s.matrnr = h.matrnr

σs.matrnr=h.matrnr

×

studenten hoeren

⋊⋉HJ
s.matrnr=h.matrnr

studenten hoeren

[Slide 82] Linear IRs: Stack Machines

• Operands stored on a stack
• Operations pop arguments from top and push result
• Typically accompanied with variable storage
• Generating IR from AST: trivial
• Often used for bytecode, e.g. Java, Python

+ Compact code, easy to generate and implement
− Performance, hard to analyze

push 5
push 3
add
pop x
push x
push 1
add
pop y
push 12
pop x
push x
push 1
add
pop z

[Slide 83] Linear IRs: Register Machines

• Operands stored in registers
• Operations read and write registers
• Typically: infinite number of registers
• Typically: three-address form

– dst = src1 op src2
• Generating IR from AST: trivial
• E.g., GIMPLE, eBPF, Assembly

x ← 5 + 3
y ← x + 1
x ← 12
z ← x + 1
tmp1 ← z − y
return tmp1

33

3 Intermediate Representations

[Slide 84] Example: High GIMPLE

int foo(int n) {
int res = 1;
while (n) {
res *= n * n;
n -= 1;

}
return res;

}
int fac (int n)
gimple_bind < // <-- still has lexical scopes
int D.1950;
int res;

gimple_assign <integer_cst, res, 1, NULL, NULL>
gimple_goto <<D.1947>>
gimple_label <<D.1948>>
gimple_assign <mult_expr, _1, n, n, NULL>
gimple_assign <mult_expr, res, res, _1, NULL>
gimple_assign <plus_expr, n, n, -1, NULL>
gimple_label <<D.1947>>
gimple_cond <ne_expr, n, 0, <D.1948>, <D.1946>>
gimple_label <<D.1946>>
gimple_assign <var_decl, D.1950, res, NULL, NULL>
gimple_return <D.1950>

>

$ gcc -fdump-tree-gimple-raw -c foo.c

[Slide 85] Example: Low GIMPLE

int foo(int n) {
int res = 1;
while (n) {
res *= n * n;
n -= 1;

}
return res;

}
int fac (int n)
{
int res;
int D.1950;

gimple_assign <integer_cst, res, 1, NULL, NULL>
gimple_goto <<D.1947>>
gimple_label <<D.1948>>
gimple_assign <mult_expr, _1, n, n, NULL>
gimple_assign <mult_expr, res, res, _1, NULL>
gimple_assign <plus_expr, n, n, -1, NULL>
gimple_label <<D.1947>>
gimple_cond <ne_expr, n, 0, <D.1948>, <D.1946>>
gimple_label <<D.1946>>
gimple_assign <var_decl, D.1950, res, NULL, NULL>
gimple_goto <<D.1951>>
gimple_label <<D.1951>>
gimple_return <D.1950>

}

$ gcc -fdump-tree-lower-raw -c foo.c

34

[Slide 86] Example: Low GIMPLE with CFG

int foo(int n) {
int res = 1;
while (n) {
res *= n * n;
n -= 1;

}
return res;

}
int fac (int n) {
int res;
int D.1950;
<bb 2> :
gimple_assign <integer_cst, res, 1, NULL, NULL>
goto <bb 4>; [INV]
<bb 3> :
gimple_assign <mult_expr, _1, n, n, NULL>
gimple_assign <mult_expr, res, res, _1, NULL>
gimple_assign <plus_expr, n, n, -1, NULL>
<bb 4> :
gimple_cond <ne_expr, n, 0, NULL, NULL>
goto <bb 3>; [INV]

else
goto <bb 5>; [INV]

<bb 5> :
gimple_assign <var_decl, D.1950, res, NULL, NULL>
<bb 6> :

gimple_label <<L3>>
gimple_return <D.1950>

}

$ gcc -fdump-tree-cfg-raw -c foo.c

[Slide 87] Linear IRs: Register Machines

• Problem: no clear def–use information
– Is x+ 1 the same?
– Hard to track actual values!

• How to optimize?

⇒ Disallow mutations of variables

x ← 5 + 3
y ← x + 1
x ← 12
z ← x + 1
tmp1 ← z − y
return tmp1

[Slide 88] Single Static Assignment: Introduction

• Idea: disallow mutations of variables, value set in declaration
• Instead: create new variable for updated value

35

3 Intermediate Representations

• SSA form: every computed value has a unique definition
– Equivalent formulation: each name describes result of one operation

x ← 5 + 3
y ← x + 1
x ← 12
z ← x + 1
tmp1 ← z − y
return tmp1

v1 ← 5 + 3
v2 ← v1 + 1
v3 ← 12
v4 ← v3 + 1
v5 ← v4 − v2
return v5

[Slide 89] Single Static Assignment: Control Flow

• How to handle diverging values in control flow?
• Solution: Φ-nodes to merge values depending on predecessor

– Value depends on edge used to enter the block
– All Φ-nodes of a block execute concurrently (ordering irrelevant)

entry : x ← . . .
if (x > 2) goto cont

then : x ← x ∗ 2
cont : return x

entry : v1 ← . . .
if (v1 > 2) goto cont

then : v2 ← v1 ∗ 2
cont : v3 ← Φ(entry : v1, then : v2)

return v3

[Slide 90] Example: GIMPLE in SSA form

int foo(int n) {
int res = 1;
while (n) {
res *= n * n;
n -= 1;

}
return res;

}
int fac (int n) { int res, D.1950, _1, _6;
<bb 2> :
gimple_assign <integer_cst, res_4, 1, NULL, NULL>
goto <bb 4>; [INV]
<bb 3> :
gimple_assign <mult_expr, _1, n_2, n_2, NULL>

36

gimple_assign <mult_expr, res_8, res_3, _1, NULL>
gimple_assign <plus_expr, n_9, n_2, -1, NULL>
<bb 4> :
gimple_phi <n_2, n_5(D)(2), n_9(3)>
gimple_phi <res_3, res_4(2), res_8(3)>
gimple_cond <ne_expr, n_2, 0, NULL, NULL>
goto <bb 3>; [INV]

else
goto <bb 5>; [INV]

<bb 5> :
gimple_assign <ssa_name, _6, res_3, NULL, NULL>
<bb 6> :

gimple_label <<L3>>
gimple_return <_6>

}

$ gcc -fdump-tree-ssa-raw -c foo.c

[Slide 91] SSA Construction – Local Value Numbering

• Simple case: inside block – keep mapping of variable to value

Code
x ← 5 + 3
y ← x + 1
x ← 12
z ← x + 1
tmp1 ← z − y
return tmp1

SSA IR
v1 ← add 5, 3
v2 ← add v1, 1
v3 ← const 12
v4 ← add v3, 1
v5 ← sub v4, v2

ret v5
Variable Mapping

x → v3
y → v2
z → v4

tmp1 → v5

[Slide 92] SSA Construction – Across Blocks

• SSA construction with control flow is non-trivial
• Key problem: find value for variable in predecessor
• Naive approach: Φ-nodes for all variables everywhere

– Create empty Φ-nodes for variables, populate variable mapping
– Fill blocks (as on last slide)
– Fill Φ-nodes with last value of variable in predecessor

37

3 Intermediate Representations

• Why is this a bad idea? ⇒ don’t do this!
– Extremely inefficient, code size explosion, many dead Φ

[Slide 93] SSA Construction – Across Blocks (“simple”1)

• Key problem: find value in predecessor
• Idea: seal block once all direct predecessors are known

– For acyclic constructs: trivial
– For loops: seal header once loop block is generated

• Current block not sealed: add Φ-node, fill on sealing
• Single predecessor: recursively query that
• Multiple preds.: add Φ-node, fill now

Confer the (very readable) paper for a more formal specification of the algorithm.
The removal of trivial and redundant Φ-nodes is not strictly required.

[Slide 94] SSA Construction – Example

int foo(int n) {
int res = 1;
while (n) {
res *= n * n;
n -= 1;

}
return res;

}
func foo (v1)

entry: sealed; varmap: n→ v1, res→ v2

v2 ← 1

header: sealed; varmap: n→ ϕ1, res→ ϕ2

ϕ1 ← ϕ(entry: v1, body: v6)
ϕ2 ← ϕ(entry: v2, body: v5)
v3 ← equal ϕ1, 0
br v3, cont, body

body: sealed; varmap: n→v6, res→ v5

v4 ← mul ϕ1, ϕ1

v5 ← mul ϕ2, v4
v6 ← sub ϕ1, 1
br header

cont: sealed; varmap: res→ ϕ2

ret ϕ2

[Slide 95] SSA Construction – Example

1M Braun et al. “Simple and efficient construction of static single assignment form”. In: CC. 2013,
pp. 102–122. url: https://link.springer.com/content/pdf/10.1007/978-3-642-37051-9_6.pdf.

38

https://link.springer.com/content/pdf/10.1007/978-3-642-37051-9_6.pdf

In-Class Exercise:

Construct an IR in SSA form for the following C code.
int phis(int a, in b){
a = a * b;
if (a > b * b) {
int c = 1;
while (a > 0)
a = a - c;

} else {
a = b * b;

}
return a;

}

[Slide 96] SSA Construction – Pruned/Minimal Form

• Resulting SSA is pruned – all ϕ are used
• But not minimal – ϕ nodes might have single, unique value
• When filling ϕ, check that multiple real values exist

– Otherwise: replace ϕ with the single value
– On replacement, update all ϕ using this value, they might be trivial now, too

• Sufficient? Not for irreducible CFG
– Needs more complex algorithms2 or different construction method3

AD IN2053 “Program Optimization” covers this more formally

[Slide 97] SSA: Implementation

• Value is often just a pointer to instruction
• ϕ nodes placed at beginning of block

– They execute “concurrently” and on the edges, after all
• Variable number of operands required for ϕ nodes
• Storage format for instructions and basic blocks

– Consecutive in memory: hard to modify/traverse
– Array of pointers: O(n) for a single insertion...
– Linked List: easy to insert, but pointer overhead

Is SSA a graph IR?

Only if instructions have no side effects,consider load, store, call, . . .
These can be solved using explicit dependencies as SSA values, e.g. for memory

2M Braun et al. “Simple and efficient construction of static single assignment form”. In: CC. 2013,
pp. 102–122. url: https://link.springer.com/content/pdf/10.1007/978-3-642-37051-9_6.pdf.

3R Cytron et al. “Efficiently computing static single assignment form and the control dependence graph”.
In: TOPLAS 13.4 (1991), pp. 451–490. url: https://dl.acm.org/doi/pdf/10.1145/115372.
115320.

39

https://link.springer.com/content/pdf/10.1007/978-3-642-37051-9_6.pdf
https://dl.acm.org/doi/pdf/10.1145/115372.115320
https://dl.acm.org/doi/pdf/10.1145/115372.115320

3 Intermediate Representations

[Slide 99] Intermediate Representations – Summary

• An IR is an internal representation of a program
• Main goal: simplify analyses and transformations
• IRs typically based on graphs or linear instructions
• Graph IRs: AST, Control Flow Graph, Relational Algebra
• Linear IRs: stack machines, register machines, SSA
• Single Static Assignment makes data flow explicit
• SSA is extremely popular, although non-trivial to construct

[Slide 100] Intermediate Representations – Questions

• Who designs an IR? What are design criteria?
• Why is an AST not suited for program optimization?
• How to convert an AST to another IR?
• What are the benefits/drawbacks of stack/register machines?
• What benefits does SSA offer over a normal register machine?
• How do ϕ-instructions differ from normal instructions?

40

4 LLVM-IR

4.1 Overview

[Slide 102] LLVM1

LLVM “Core” Library

• Optimizer and compiler back-end
• “Set of compiler components”

– IRs: LLVM-IR, SelDag, MIR
– Analyses and Optimizations
– Code generation back-ends

• Started from Chris Lattner’s master’s thesis
• Used for C, C++, Swift, D, Julia, Rust, Haskell, . . .

LLVM Project
• Umbrella for several projects related to compilers/toolchain

– LLVM Core
– Clang: C/C++ front-end for LLVM
– libc++, compiler-rt: runtime support
– LLDB: debugger
– LLD: linker
– MLIR: experimental IR framework

[Slide 103] LLVM: Overview

a.c

b.cc

...

LLVM-IR

Front-end

Analyses
Optimization

aarch64.o

x86_64.o

...

CodeGen

• Independent front-end derives LLVM-IR, LLVM does opt. and code gen.
• LTO: dump LLVM-IR into object file, optimize at link-time

1C Lattner and V Adve. “LLVM: A compilation framework for lifelong program analysis & transforma-
tion”. In: CGO. 2004, pp. 75–86. url: http://www.llvm.org/pubs/2004-01-30-CGO-LLVM.pdf.

41

http://www.llvm.org/pubs/2004-01-30-CGO-LLVM.pdf

4 LLVM-IR

The single IR allows multiple front-ends to reuse the same back-end infrastructure.
Thus, generating LLVM-IR provides an easy way to target a wide range of architec-
tures.

For link-time optimization, the LLVM-IR is stored in the object files instead of the
machine code. At link-time, a linker plugin detects these files, merges the LLVM-IR
from all object files, and then runs the actual compilation as part of the linking step.
We will look at LTO again later when discussing object file generation and linking.

4.2 LLVM-IR

[Slide 104] LLVM-IR: Overview

• SSA-based IR, representations textual, bitcode, in-memory
• Hierarchical structure

– Module
– Functions, global variables
– Basic blocks
– Instructions

• Strongly/strictly typed
define dso_local i32 @foo(i32 %0) {
%2 = icmp eq i32 %0, 0
br i1 %2, label %10, label %3

3: ; preds = %1, %3
%4 = phi i32 [%7, %3], [1, %1]
%5 = phi i32 [%8, %3], [%0, %1]
%6 = mul nsw i32 %5, %5
%7 = mul nsw i32 %6, %4
%8 = add nsw i32 %5, -1
%9 = icmp eq i32 %8, 0
br i1 %9, label %10, label %3

10: ; preds = %3, %1
%11 = phi i32 [1, %1], [%7, %3]
ret i32 %11

}

[Slide 105] LLVM-IR: Data types

• First class types:
– i<N> – arbitrary bit width integer, e.g. i1, i25, i1942652
– ptr/ptr addrspace(1) – pointer with optional address space
– float/double/half/bfloat/fp128/. . .
– <N x ty> – vector type, e.g. <4 x i32>

• Aggregate types:
– [N x ty] – constant-size array type, e.g. [32 x float]
– { ty, ... } – struct (can be packed/opaque), e.g. {i32, float}

42

4.2 LLVM-IR

• Other types:
– ty (ty, ...) – function type, e.g. {i32, i32} (ptr, ...)
– void
– label/token/metadata

Although structure types can be used in various places in the IR, e.g., a single in-
struction to load a large structure from memory, this is strongly discouraged: LLVM
is not optimized for this and both code quality and compile times get considerably
worse. Only use struct types for globals and to implement multiple return values.

[Slide 106] LLVM-IR: Modules

• Top-level entity, one compilation unit – akin to C/C++
• Contains global values, specified with linkage type
• Global variable declarations/definitions

@externInt = external global i32, align 4

@globVar = global i32 4, align 4

@staticPtr = internal global ptr null, align 8

• Function declarations/definitions
declare i32 @readPtr(ptr)
define i32 @return1() {
ret i32 1

}

• Global named metadata (discarded during compilation)

[Slide 107] LLVM-IR: Functions

• Functions definitions contain all code, not nestable
• Single return type (or void), multiple parameters, list of basic blocks

– No basic blocks ⇒ function declaration
• Specifiers for callconv, section name, other attributes

– E.g.: noinline/alwaysinline, noreturn, readonly
• Parameter and return can also have attributes

– E.g.: noalias, nonnull, sret(<ty>)

[Slide 108] LLVM-IR: Basic Block

• Sequence of instructions
– ϕ nodes come first
– Regular instructions come next
– Must end with a terminator

• First block in function is entry block Entry block cannot be branch target

43

4 LLVM-IR

[Slide 109] LLVM-IR: Instructions – Control Flow and Terminators

• Terminators end a block/modify control flow

• ret <ty> <val>/ret void
• br label <dest>/br i1 <cond>, label <then>, label <else>
• switch/indirectbr
• unreachable
• Few others for exception handling

• Not a terminator: call

Although call does modify control flow in some sense, the assumption is that every
function call returns ordinarily. When special control flow for exceptions is needed,
the invoke instruction is used, which specifies one basic block as successor for the
ordinary case and one basic block for the exceptional case.

[Slide 110] LLVM-IR: Instructions – Arithmetic-Logical

• add/sub/mul/udiv/sdiv/urem/srem
– Arithmetic uses two’s complement
– Division corner cases are undefined behavior

• fneg/fadd/fsub/fmul/fdiv/frem
• shl/lshr/ashr/and/or/xor

– Out-of-range shifts have an undefined result
• icmp <pred>/fcmp <pred>/select <cond>, <then>, <else>
• trunc/zext/sext/fptrunc/fpext/fptoui/fptosi/uitofp/sitofp
• bitcast

– Cast between equi-sized datatypes by reinterpreting bits

Technically, out-of-range shifts return poison, see below.

[Slide 111] LLVM-IR: Instructions – Memory and Pointer

• alloca <ty> – allocate addressable stack slot
• load <ty>, ptr <ptr>/store <ty> <val>, ptr <ptr>

– May be volatile (e.g., MMIO) and/or atomic
• cmpxchg/atomicrmw – similar to hardware operations
• ptrtoint/inttoptr
• getelementptr – address computation on ptr/structs/arrays

[Slide 112] LLVM-IR: getelementptr Examples

• %r = getelementptr i32, ptr %p, i64 3

44

4.2 LLVM-IR

i32 i32 i32 i32 i32 . . .

%p %r

Equivalent in C: &((int*) p)[3]

• %r = getelementptr {i16, i32}, ptr %p, i64 1, i32 1

i16 i16i32 i32

{i16, i32}

. . .

%p %r

Equivalent in C: &((struct {short _0; int _1;}*) p)[1]._1

• Also works with nested structs and arrays

[Slide 113] LLVM-IR: undef and poison

• undef – unspecified value, compiler may choose any value
– %b = add i32 %a, i32 undef → i32 undef

– %c = and i32 %a, i32 undef → i32 %a

– %d = xor i32 %b, i32 %b → i32 undef

– br i1 undef, label %p, label %q → undefined behavior
• poison – result of erroneous operations

– Delay undefined behavior on illegal operation until actually relevant
– Allows to speculatively “execute” instructions in IR
– %d = shl i32 %b, i32 34 → i32 poison

[Slide 114] LLVM-IR: Intrinsics

• Not all operations provided as instructions
• Intrinsic functions: special functions with defined semantics

– Replaced during compilation, e.g., with instruction or lib call
• Benefit: no changes needed for parser/bitcode/... on addition
• Examples:

– declare iN @llvm.ctpop.iN(iN <src>)

– declare {iN, i1} @llvm.sadd.with.overflow.iN(iN %a, iN %b)

– memcpy, memset, sqrt, returnaddress, . . .

[Slide 115] LLVM-IR: Tools

• clang can emit LLVM-IR bitcode clang -O -emit-llvm -c test.c -o test.bc

• llvm-dis disassembles bitcode to textual LLVM-IR clang -O -emit-llvm -c test.c
-o - | llvm-dis

• llc compiles LLVM-IR (textual or bitcode) to assembly clang -O -emit-llvm -c
test.c -o - | llc clang -O -emit-llvm -c test.c -o - | llvm-dis | llc

Example Listings omitted – they would span several slides

45

4 LLVM-IR

[Slide 116] LLVM-IR: Example

define dso_local <4 x float> @foo2(<4 x float> %0, <4 x float> %1) {
%3 = alloca <4 x float>, align 16
%4 = alloca <4 x float>, align 16
store <4 x float> %0, ptr %3, align 16
store <4 x float> %1, ptr %4, align 16
%5 = load <4 x float>, ptr %3, align 16
%6 = load <4 x float>, ptr %4, align 16
%7 = fadd <4 x float> %5, %6
ret <4 x float> %7

}

[Slide 117] LLVM-IR: Example

define dso_local i32 @foo3(i32 %0, i32 %1) {
%3 = tail call { i32, i1 } @llvm.smul.with.overflow.i32(i32 %0, i32 %1)
%4 = extractvalue { i32, i1 } %3, 1
%5 = extractvalue { i32, i1 } %3, 0
%6 = select i1 %4, i32 -2147483648, i32 %5
ret i32 %6

}

[Slide 118] LLVM-IR: Example

define dso_local i32 @sw(i32 %0) {
switch i32 %0, label %4 [
i32 4, label %5
i32 5, label %2
i32 8, label %3
i32 100, label %5

]
2: ; preds = %1
br label %5

3: ; preds = %1
br label %5

4: ; preds = %1
br label %5

5: ; preds = %1, %1, %4, %3, %2
%6 = phi i32 [%0, %4], [9, %3], [32, %2], [12, %1], [12, %1]
ret i32 %6

}

[Slide 119] LLVM-IR: Example

In-Class Exercise:

@a = private unnamed_addr constant [7 x i32] [i32 12, i32 32, i32 12,
i32 12, i32 9, i32 12, i32 12], align 4

define dso_local i32 @f(i32 %0) {
%2 = add i32 %0, -4
%3 = icmp ult i32 %2, 7
br i1 %3, label %4, label %13

4: ; preds = %1

46

4.3 API

%5 = trunc i32 %2 to i8
%6 = lshr i8 83, %5
%7 = and i8 %6, 1
%8 = icmp eq i8 %7, 0
br i1 %8, label %13, label %9

9: ; preds = %4
%10 = sext i32 %2 to i64
%11 = getelementptr inbounds [7 x i32], ptr @a, i64 0, i64 %10
%12 = load i32, ptr %11, align 4
br label %13

13: ; preds = %1, %4, %9
%14 = phi i32 [%12, %9], [%0, %4], [%0, %1]
ret i32 %14

}

4.3 API

[Slide 120] LLVM-IR API

• LLVM offers two APIs: C++ and C
– C++ is the full API, exposing nearly all internals
– C API is more limited, but more stable

• Nearly all major versions have breaking changes

• Some support for multi-threading:
– All modules/types/... associated with an LLVMContext
– Different contexts may be used in different threads

[Slide 121] LLVM-IR C++ API: Basic Example

#include <llvm/IR/IRBuilder.h>
int main(void) {
llvm::LLVMContext ctx;
auto modUP = std::make_unique<llvm::Module>("mod", ctx);

llvm::Type* i64 = llvm::Type::getInt64Ty(ctx);
llvm::FunctionType* fnTy = llvm::FunctionType::get(i64, {i64}, false);
llvm::Function* fn = llvm::Function::Create(fnTy,

llvm::GlobalValue::ExternalLinkage, "addOne", modUP.get());
llvm::BasicBlock* entryBB = llvm::BasicBlock::Create(ctx, "entry", fn);

llvm::IRBuilder<> irb(entryBB);
llvm::Value* add = irb.CreateAdd(fn->getArg(0), irb.getInt64(1));
irb.CreateRet(add);
modUP->print(llvm::outs(), nullptr);
return 0;

}

47

4 LLVM-IR

[Slide 122] LLVM-IR API: Almost Everything is a Value... (excerpt)

Value Argument
BasicBlock
User Constant ConstantData ConstantInt

ConstantPointerNull
UndefValue PoisonValue
. . .

ConstantExpr . . .
GlobalValue GlobalAlias

GlobalObject Function
GlobalVariable

Instruction PHINode
BranchInst
BinaryOperator
CallBase CallInst IntrinsicInst . . .
StoreInst
UnaryInstruction AllocaInst

CastInst
LoadInst
. . .

. . .

See LLVM Doxygena for a full graph.
ahttps://llvm.org/doxygen/classllvm_1_1Value.html

[Slide 123] LLVM-IR API: Programming Environment

• LLVM implements custom RTTI
– isa<>, cast<>, dyn_cast<>

• LLVM implements a multitude of specialized data structures
– E.g.: SmallVector<T, N> to keep N elements stack-allocated
– Custom vectors, sets, maps; see manual2

• Preferably uses ArrayRef, StringRef, Twine for references
• LLVM implements custom streams instead of std streams

– outs(), errs(), dbgs()

Many of these data types are used for efficiency. Standard C++ RTTI is inefficient
while LLVM’s implementation is very flexible, fast, and has a low memory usage in
data structures.
SmallVector is preferred over std::vector not just because of the inline storage,

but also because (for non-char types) it only uses 32-bit integers for length/capacity
(lower memory usage, often sufficient) and grows more efficiently for trivially movable
data structures.
Twine is a lazily evaluated string. For example, when specifying Twine("foo")

+ 5, on-stack data structures are constructed to represent this sequence, but the
resulting string is constructed only when and if it is actually used. This also allows
constructing strings directly into target buffers.

2https://www.llvm.org/docs/ProgrammersManual.html

48

https://llvm.org/doxygen/classllvm_1_1Value.html
https://www.llvm.org/docs/ProgrammersManual.html

4.4 IR Implementation

Standard C++ streams are not just inefficient, implementations also tend to inject
global constructors in all files. Therefore, LLVM has its own stream implementation.
With raw_svector_ostream and raw_string_ostream, a raw_ostream can be used
to write into a SmallVector or std::string.

[Slide 124] LLVM-IR API: Use Tracking

• Values track their users
llvm::Value* v = /* ... */;
for (llvm::User* u : v->users())
if (auto i = llvm::dyn_cast<llvm::Instruction>(u))
// ...

• Simplifies implementation of analyses
• Allows for easy replacement:

– inst->replaceAllUsesWith(replVal);

4.4 IR Implementation

[Slide 125] LLVM IR Implementation: Value/User

llvm::Value Type
Type*

UseList
Use*

subclassID
unsigned

flags. . .
unsigned

llvm::User
intrusive operands
fixed at allocation

Value Fields of
subclasses

Op 0
Use

Op 1
Use

. . .

llvm::User
hung-off operands
dynamic number

Value Fields of
subclasses

Operands
Use*

Op 0
Use

Op 1
Use

Op 2
Use

PHINode additionally stores n BasicBlock* after the operands, but aren’t users of blocks.

Every LLVM Instruction is a separate heap allocation. As the number of operands
is typically known when constructing the instruction, they are allocated after the
instruction data structure (this is implemented by User).

It can happen that the number of operands increases beyond the allocated storage,
for example, when a PHINode gets more operands than initially expected. In such
cases, the operand list gets hung off into a separate allocation.

As a special case, PHINode needs to store the associated BasicBlocks in addition
to the merged values. The blocks are stored after the operands, but are not operands
themselves.

49

4 LLVM-IR

[Slide 126] LLVM IR Implementation: Use

Type
Type*

UseList
Use*

. . .

Operand (llvm::Use)

Type
Type*

UseList
Use*

. . . Value
Value*

Next
Use*

Prev
Use**

Parent
User*

. . .

null

null

Type
Type*

UseList
Use*

. . . Value
Value*

Next
Use*

Prev
Use**

Parent
User*

. . .

null

The use list is a doubly-linked list. Starting from Value::UseList, one can find all
used by following the Use::Next pointer. The Use::Prev pointer does not point to
the previous Use, but the previous Use::Next pointer or the Value::UseList — this
way, unlinking does not need to distinguish the special case of the beginning of the
use list.

A Use also has a pointer to the actual Value, so that when inspecting an operand
one can actually find the operand itself.

There is also a Parent pointer, which points to the User which owns the operand:
when iterating over the use list, this is the only way to find out which instruction
(User) uses the value.

In sum, an LLVM-IR operand is quite large, using 32 bytes on a 64-bit system.
In addition to every instruction being a separate heap allocation and every operand
update requires updating the use list (less data locality), the IR data structures are
(in absolute terms) not very efficient — despite being fairly optimized for the use
cases they serve.

[Slide 127] LLVM IR Implementation: Instructions/Blocks

• Instruction and BasicBlock have pointers to parent and next/prev
– Linked list updated on changes and used for iteration
– Instructions have cached order (integer) for fast “comes before”

• BasicBlock successors: blocks used by terminator
• BasicBlock predecessors:

– Iterate over users of block – these are terminators (and blockaddress)
– Ignore non-terminators, parent of using terminator is predecessor
– Same predecessor might be duplicated (⇝ getUniquePredecessor())

• Finding first non-ϕ requires iterating over ϕ-nodes

50

4.5 IR Design

4.5 IR Design

[Slide 128] LLVM and IR Design

• LLVM provides a decent general-purpose IR for compilers
• But: not ideal for all purposes

– High-level optimizations difficult, e.g. due to lost semantics
– Several low-level operations only exposed as intrinsics
– IR rather complex, high code complexity
– High compilation times, not very efficient data structures

• Thus: heavy trend towards custom IRs

[Slide 129] IR Design: High-level Considerations

• Define purpose!
• Structure: SSA vs. something else; control flow

– Control flow: basic blocks/CFG vs. structured control flow
– Remember: SSA can be considered as a DAG, too
– SSA is easy to analyse, but non-trivial to construct/leave

• Broader integration: keep multiple stages in single IR?
– Example: create IR with high-level operations, then incrementally lower
– Model machine instructions in same IR?
– Can avoid costly transformations, but adds complexity

[Slide 130] IR Design: Operations

• Data types
– Simple type structure vs. complex/aggregate types?
– Keep relation to high-level types vs. low-level only?
– Virtual data types, e.g. for flags/memory?

• Instruction format
– Single vs. multiple results?
– Strongly typed vs. more generic result/operand types?
– Operand number – fixed vs. dynamic?

[Slide 131] IR Design: Operations

• Allow instruction side effects?
– E.g.: memory, floating-point arithmetic, implicit control flow

• Operation complexity and abstraction
– E.g.: CheckBounds, GetStackPtr, HashInt128
– E.g.: load vs. MOVQconstidx4

• Extensibility for new operations (e.g., new targets, high-level ops)

51

4 LLVM-IR

[Slide 132] IR Design: Implementation

• Maintain user lists?
– Simplifies optimizations, but adds considerable overhead
– Replacement can use copy and lazy canonicalization
– User count might be sufficient alternative

• Storage layout: operation size and locations
– For performance: reduce heap allocations, small data structures

• Special handling for arguments vs. all-instructions?
• Metadata for source location, register allocation, etc.
• SSA: ϕ nodes vs. block arguments?

[Slide 133] IR Example: Go SSA

• Strongly typed
– Structured types decomposed

• Explicit memory side-effects
• Also High-level operations

– IsInBounds, VarDef
• Only one type of value/instruction

– Const64, Arg, Phi
• No user list, but user count
• Also used for arch-specific repr.

env GOSSAFUNC=fac go build test.go
b1:

v1 (?) = InitMem <mem>
v2 (?) = SP <uintptr>
v5 (?) = LocalAddr <*int> {~r1} v2 v1
v6 (7) = Arg <int> {n} (n[int])
v8 (?) = Const64 <int> [1] (res[int])
v9 (?) = Const64 <int> [2] (i[int])

Plain -> b2 (+9)
b2: <- b1 b4

v10 (9) = Phi <int> v9 v17 (i[int])
v23 (12) = Phi <int> v8 v15 (res[int])
v12 (+9) = Less64 <bool> v10 v6

If v12 -> b4 b5 (likely) (9)
b4: <- b2

v15 (+10) = Mul64 <int> v23 v10 (res[int])
v17 (+9) = Add64 <int> v10 v8 (i[int])

Plain -> b2 (9)
b5: <- b2

v20 (12) = VarDef <mem> {~r1} v1
v21 (+12) = Store <mem> {int} v5 v23 v20

Ret v21 (+12)

[Slide 134] LLVM-IR – Summary

• LLVM is a modular compiler framework
• Extremely popular and high-quality compiler back-end

52

4.5 IR Design

• Primarily provides optimizations and a code generator
• Main interface is the SSA-based LLVM-IR

– Easy to generate, friendly for writing front-ends/optimizations
• IR design depends on purpose and integration constraints

[Slide 135] LLVM-IR – Questions

• What is the structure of an LLVM-IR module/function?
• Which LLVM-IR data types exist? How do they relate to the target architecture?
• How do semantically invalid operations in LLVM-IR behave?
• What is special about intrinsic functions?
• How to derive LLVM-IR from C code using Clang?
• How does LLVM’s replaceAllUsesWith work? How could this work without

building/maintaining user lists?
• How can an SSA-based IR make side effects explicit?
• How would you design an IR for optimizing Brainfuck?

53

5 Analyses and Transformations

5.1 Motivation

[Slide 137] Program Transformation: Motivation

• “User code” is often not very efficient
• Also: no need to, compiler can (often?) optimize better

– More knowledge: e.g., data layout, constants after inlining, etc.
• Allows for more pragmatic/simple code
• Generating “better” IR code on first attempt is expensive

– What parts are actually used? How to find out?
• Transformation to “better” code must be done somewhere

• Optimization is a misnomer: we don’t know whether it improves code!
– Many transformations are driven by heuristics

• Many types of optimizations are well-known1

5.2 Dead Code Elimination

[Slide 138] Dead Block Elimination

• CFG not necessarily connected
• E.g., consequence of optimization

– Conditional branch → unconditional branch
• Removing dead blocks is trivial

1. DFS traversal of CFG from entry, mark visited blocks

2. Remove unmarked blocks

[Slide 139] Optimization Example 1

define i32 @fac(i32 %0) {
br label %for.header

for.header: ; preds = %for.body, %1
%a = phi i32 [1, %1], [%a.new, %for.body]
%b = phi i32 [0, %1], [%b.new, %for.body]
%i = phi i32 [0, %1], [%i.new, %for.body]

1FE Allen and J Cocke. A catalogue of optimizing transformations. 1971. url: https://www.clear.
rice.edu/comp512/Lectures/Papers/1971-allen-catalog.pdf.

55

https://www.clear.rice.edu/comp512/Lectures/Papers/1971-allen-catalog.pdf
https://www.clear.rice.edu/comp512/Lectures/Papers/1971-allen-catalog.pdf

5 Analyses and Transformations

%cond = icmp sle i32 %i, %0
br i1 %cond, label %for.body, label %exit

for.body: ; preds = %for.header
%a.new = mul i32 %a, %i
%b.new = add i32 %b, %i
%i.new = add i32 %i, 1
br label %for.header

exit: ; preds = %for.header
%absum = add i32 %a, %b
ret i32 %a

}

[Slide 140] Simple Dead Code Elimination (DCE)

• Look for trivially dead instructions
– No users or side-effects
– Calls might be removed

1. Add all instructions to work queue

2. While work queue not empty:

a) Check for deadness (zero users, no side-effects)

b) If dead, remove and add all operands to work queue

Warning: Don’t implement it this naively, this is inefficient

[Slide 141] Applying Simple DCE

define i32 @fac(i32 %0) {
eff.: cf br label %for.header

for.header: ; preds = %for.body, %1
users: 2 %a = phi i32 [1, %1], [%a.new, %for.body]
users: 2 %b = phi i32 [0, %1], [%b.new, %for.body]
users: 4 %i = phi i32 [0, %1], [%i.new, %for.body]
users: 1 %cond = icmp sle i32 %i, %0
eff.: cf br i1 %cond, label %for.body, label %exit

for.body: ; preds = %for.header
users: 1 %a.new = mul i32 %a, %i
users: 1 %b.new = add i32 %b, %i
users: 1 %i.new = add i32 %i, 1
eff.: cf br label %for.header

exit: ; preds = %for.header
users: 0 %absum = add i32 %a, %b
eff.: cf ret i32 %a

}

In this example, the instruction %abssum can be removed. This reduces the number
of users of %a and %b by 1. As no other instructions have a user count of 0 after this
change, the algorithm terminates.

56

5.2 Dead Code Elimination

[Slide 142] Dead Code Elimination

• Problem: unused value cycles
• Idea: find “value sinks” and mark all needed values as live unmarked values can be

removed
– Sink: instruction with side effects (e.g., store, control flow)

1. Only mark instrs. with side effects as live

2. Populate work list with newly added live instrs.

3. While work list not empty:

a) Mark dead operand instructions as live and add to work list

4. Remove instructions not marked as live

[Slide 143] Applying Liveness-based DCE

define i32 @fac(i32 %0) {
live br1 label %for.header
for.header: ; preds = %for.body, %1
live %a = phi i32 [1, %1], [%a.new, %for.body]

live %i = phi i32 [0, %1], [%i.new, %for.body]
live %cond = icmp sle i32 %i, %0
live br2 i1 %cond, label %for.body, label %exit
for.body: ; preds = %for.header
live %a.new = mul i32 %a, %i

live %i.new = add i32 %i, 1
live br3 label %for.header
exit: ; preds = %for.header

live ret i32 %a
}

Work list (stack)

This algorithm finds the dead value cycle pf %b from the previous example. (Refer
to the slide deck for the animated version.)

[Slide 144] Liveness-based DCE: Work List Implementation

In-Class Exercise:

• What operations are performed on a work list?
– Insert instruction
– Remove any instruction
– Test whether instruction is contained
– Get and remove next instruction to handle

57

5 Analyses and Transformations

• How to implement an efficient work list?

[Slide 145] Optimization Example 2

define i32 @foo(i32 %0, ptr %1, ptr %2) {
%4 = zext i32 %0 to i64
%5 = getelementptr inbounds i32, ptr %1, i64 %4
%6 = load i32, ptr %5, align 4
%7 = zext i32 %0 to i64
%8 = getelementptr inbounds i32, ptr %2, i64 %7
%9 = load i32, ptr %8, align 4
%10 = add nsw i32 %6, %9
ret i32 %10

}

[Slide 146] Common Subexpression Elimination (CSE) – Attempt 1

• Idea: find/eliminate redundant computation of same value
• Keep track of previously seen values in hash map
• Iterate over all instructions

– If found in map, remove and replace references
– Otherwise add to map

• Easy, right?

[Slide 147] CSE Attempt 1 – Example 1

define i32 @foo(i32 %0, ptr %1, ptr %2) {
→ ht %4 = zext i32 %0 to i64
→ ht %5 = getelementptr inbounds i32, ptr %1, i64 %4
→ ht %6 = load i32, ptr %5, align 4
dup %4 %7 = zext i32 %0 to i64
→ ht %8 = getelementptr inbounds i32, ptr %2, i64 %7%4
→ ht %9 = load i32, ptr %8, align 4
→ ht %10 = add nsw i32 %6, %9
→ ht ret i32 %10

}

• Obsolete instr. can be killed immediately, or in a later DCE

[Slide 148] CSE Attempt 1 – Example 2

define i32 @square(i32 %a, i32 %b) {
entry:

→ ht %cmp = icmp slt i32 %a, %b
→ ht br i1 %cmp, label %if.then, label %if.end

if.then: ; preds = %entry
→ ht %add1 = add i32 %a, %b
→ ht br label %if.end

if.end: ; preds = %if.then, %entry
→ ht %condvar = phi i32 [%add1, %if.then], [%a, %entry]
dup %add1 %add2 = add i32 %a, %b
→ ht %res = add i32 %condvar, %add2%add1

58

5.3 Dominator Tree

→ ht ret i32 %res
}

Instruction does not dominate all uses! error: input module is broken!

5.3 Dominator Tree

[Slide 149] Domination

• Remember: CFG G = (N,E, s) with digraph (N,E) and entry s ∈ N
• Dominate: d dom n iff every path from s to n contains d

– Dominators of n: DOM(n) = {d|d dom n}
• Strictly dominate: d sdom n⇔ d dom n ∧ d ̸= n
• Immediate dominator: idom (n) = d : d sdom n ∧ ̸ ∃d′.d sdom d′ ∧ d′ sdom n

⇒ All strict dominators are always executed before the block
⇒ All values from dominators available/usable
⇒ All values not from dominators not usable

[Slide 150] Dominator Tree

• Tree of immediate dominators
• Allows to iterate over blocks in pre-order/post-order
• Answer a sdom b quickly

Control Flow Graph
a

b

c d

e

fg

Dominator Tree
a

b

c d

e

f

g

[Slide 151] Dominator Tree – Example

In-Class Exercise:

Construct the dominator tree for the following CFGs (entry at a):

59

5 Analyses and Transformations

a

b

c

d e

f

g h

a

b

c

d

e f

g

h

i

[Slide 152] Dominator Tree: Construction

• Naive: inefficient (but reasonably simple)2

– For each block: find a path from the root – superset of dominators
– Remove last block on path and check for alternative path
– If no alternative path exists, last block is idom

• Lengauer–Tarjan: more efficient methods3

– Simple method in O(m log n); sophisticated method in O(m ·α(m,n)) (α(m,n)

is the inverse Ackermann function, grows extremely slowly)

– Used in some compilers4

• Semi-NCA: O(n2), but lower constant factors5

Most notable, LLVM doesn’t use the Lengauer–Tarjan algorithm. Instead, they use
the Semi-NCA algorithm, which has O(n2) runtime, but lower constant factors and
is therefore substantially faster for certain (typical) inputsa.
aJ Kuderski. “Dominator Trees and incremental updates that transcend times”. In: LLVM Dev

Meeting. Oct. 2017. url: https://llvm.org/devmtg/2017-10/slides/Kuderski-Dominator_
Trees.pdf.

[Slide 153] Dominator Tree: Implementation

• Per node store: idom, idom-children, DFS pre-order/post-order number
• Get immediate dominator: ...lookup idom
• Iterate over all dominators/dominated by: ...trivial

2ES Lowry and CW Medlock. “Object code optimization”. In: CACM 12.1 (1969), pp. 13–22. url:
https://dl.acm.org/doi/pdf/10.1145/362835.362838.

3T Lengauer and RE Tarjan. “A fast algorithm for finding dominators in a flowgraph”. In: TOPLAS
1.1 (1979), pp. 121–141. url: https://dl.acm.org/doi/pdf/10.1145/357062.357071

4Example: https://github.com/WebKit/WebKit/blob/aabfacb/Source/WTF/wtf/Dominators.h
5L Georgiadis. “Linear-Time Algorithms for Dominators and Related Problems”. PhD thesis. Princeton

University, Nov. 2005

60

https://llvm.org/devmtg/2017-10/slides/Kuderski-Dominator_Trees.pdf
https://llvm.org/devmtg/2017-10/slides/Kuderski-Dominator_Trees.pdf
https://dl.acm.org/doi/pdf/10.1145/362835.362838
https://dl.acm.org/doi/pdf/10.1145/357062.357071
https://github.com/WebKit/WebKit/blob/aabfacb/Source/WTF/wtf/Dominators.h

5.4 Common Subexpression Elimination

• Check whether a sdom b6

– a.preNum < b.preNum ∧ a.postNum > b.postNum
– After updates, numbers might be invalid: recompute or walk tree

• Problem: dominance of unreachable blocks ill-defined ⇝ special handling

5.4 Common Subexpression Elimination

[Slide 154] CSE Attempt 2

• Option 1:
– For identical instructions, store all
– Add dominance check before replacing
– Visit nodes in reverse post-order (i.e., topological order)

• Option 2:7

– Do a DFS over dominator tree
– Use scoped hashmap to track available values

Does this work? Yes.

[Slide 155] CSE: Hashing an Instruction (and Beyond)

• Needs hash function and “relaxed” equality
• Idea: combine opcode and operands/constants into hash value

– Use pointer or index for instruction result operands
• Canonicalize commutative operations

– Order operands deterministically, e.g., by address
• Identities: a+(b+c) vs. (a+b)+c

[Slide 156] Global Value Numbering – or: advanced CSE

• Hash-based approach only catches trivially removable duplicates
• Alternative: partition values into congruence classes

– Congruent values are guaranteed to always have the same value
• Optimistic approach: values are congruent unless proven otherwise
• Pessimistic approach: values are not congruent unless proven
• Combinable with: reassociation, DCE, constant folding
• Rather complex, but can be highly beneficial8

6PF Dietz. “Maintaining order in a linked list”. In: STOC. 1982, pp. 122–127. url: https://dl.acm.
org/doi/pdf/10.1145/800070.802184.

7P Briggs, KD Cooper, and LT Simpson. Value numbering. Tech. rep. CRPC-TR94517-S. Rice Univer-
sity, 1997. url: https://www.cs.rice.edu/~keith/Promo/CRPC-TR94517.pdf.gz.

8K Gargi. “A sparse algorithm for predicated global value numbering”. In: PLDI. 2002, pp. 45–56.

61

https://dl.acm.org/doi/pdf/10.1145/800070.802184
https://dl.acm.org/doi/pdf/10.1145/800070.802184
https://www.cs.rice.edu/~keith/Promo/CRPC-TR94517.pdf.gz

5 Analyses and Transformations

5.5 Simple Transformations

[Slide 157] Simple Transformations: Inlining

• Estimate whether inlining is beneficial
– Savings of avoided call/computations/branches; cost of increased size

• Copy original function in place of the call
– Split basic block containing function call

• Replace returns with branches and ϕ-node to/at continuation point
• Move alloca to beginning or save stack pointer

– Prevent unbounded stack growth in loops
– LLVM provides stacksave/stackrestore intrinsics

• Exceptions may need special treatment

[Slide 158] Simple Transformations: Mem2Reg and SROA

• Mem2reg: promote alloca to SSA values/phis
– Condition: only load/store, no address taken
– Essentially just SSA construction
– Not run in default pipeline, subsumed by SROA

• SROA: scalar replacement of aggregate
– Separate structure fields into separate variables
– Also promote them to SSA

5.6 Loop Analysis

[Slide 159] What is a Loop?

void func() {
while (a()) {
if (b()) {
d();
break;

}
c();

}
e();

}

a

b

c d

e

Blocks executed
more than once • Loops in source code

̸= loops in CFG
• d is not part of loop:

executed at most once
⇝ Need algorithm to find

loops in CFG

[Slide 160] Loops

• Loop: maximal SCC L with at least one internal edge9 (strongly connected component

(SCC): all blocks reachable from each other)

9P Havlak. “Nesting of reducible and irreducible loops”. In: TOPLAS 19.4 (1997), pp. 557–567. url:
https://dl.acm.org/doi/pdf/10.1145/262004.262005.

62

https://dl.acm.org/doi/pdf/10.1145/262004.262005

5.6 Loop Analysis

– Entry: block with an edge from outside of L
– Header h: first entry found (might be ambiguous)

• Loop nested in L: loop in subgraph L \ {h}

Entry +
Header

a

b

cd Note: {b, c} alone is
no loop, not maximal

a

b

c d

e

Entry +
Header

a

b

d

cEntry +
Header

Entry

[Slide 161] Natural Loops

• Natural Loop: loop with single entry
⇒ Header is unique
⇒ Header dominates all block
⇒ Loop is reducible

• Backedge: edge from block to header
• Predecessor: block with edge into loop
• Preheader: unique predecessor

Formal Definition
Loop L is reducible iff ∃h ∈ L . ∀n ∈ L . h dom n

CFG is reducible iff all loops are reducible

preheader

header

exiting

exit

latch

backedge backedge

[Slide 162] Finding Natural Loops

• Modified version10 of Tarjan’s algorithm11

• Iterate over dominator tree in post order
• Each block: find predecessors dominated by the block

– None ⇝ no loop header, continue
– Any ⇝ loop header, these edges must be backedges

• Walk through predecessors until reaching header again
– All blocks on the way must be part of the loop body
– Might encounter nested loops, update loop parent

10G Ramalingam. “Identifying loops in almost linear time”. In: TOPLAS 21.2 (1999), pp. 175–188. url:
https://dl.acm.org/doi/pdf/10.1145/316686.316687.

11R Tarjan. “Testing flow graph reducibility”. In: STOC. 1973, pp. 96–107. url: https://dl.acm.org/
doi/pdf/10.1145/800125.804040.

63

https://dl.acm.org/doi/pdf/10.1145/316686.316687
https://dl.acm.org/doi/pdf/10.1145/800125.804040
https://dl.acm.org/doi/pdf/10.1145/800125.804040

5 Analyses and Transformations

[Slide 163] Finding Natural Loops: Example

Control Flow Graph

a

b

c

d

e

f

g

Dominator Tree

a

b

c

d

e

f

g

Loop Info

Loop A : {c}
header: c; parent: D
Loop B : {f,g}
header: f; parent: C
Loop C : {b,f,g}
header: b; parent: D
Loop D : {a,b,c,d,e,f,g}
header: a; parent: NULL

[Slide 164] Loop Analysis – Example

In-Class Exercise:

Apply the previous algorithm to find loops in the following CFGs (entry at a):

a

b

c

d e

f

g h

a

b

c

d

e f

g

h

i

[Slide 165] Loop Invariant Code Motion (LICM)

• Analyze loops, iterate over loop tree in post-order
– I.e., visit inner loops first

↑ Hoist:12 iterate over blocks of loop in reverse post-order
– For each movable inst., check for loop-defined operands
– If not, move to preheader (create one, if not existent)
– Otherwise, add inst. to set of values defined inside loop

↓ Sink: Iterate over blocks of loop in post-order
12https://github.com/bytecodealliance/wasmtime/blob/bd6fe11/cranelift/codegen/src/licm.rs

64

https://github.com/bytecodealliance/wasmtime/blob/bd6fe11/cranelift/codegen/src/licm.rs

5.7 LLVM Passes

– For each movable inst., check for users inside loop
– If none, move to unique exit (if existent)

5.7 LLVM Passes

[Slide 166] Transformations and Analyses in LLVM: Passes

• Transformations and analyses organized in passes
• Pass can operate on Module/(CGSCC)/Function/Loop
• Analysis pass: takes input IR and returns analysis result

– May also use results of other analyses; results are cached
• Transformation pass: takes input IR and returns preserved analyses

– Can use analyses, which are re-run when outdated
• Pass manager executes passes on same granularity

– Otherwise, use adaptor: createFunctionToLoopPassAdaptor (and preferably
combine multiple smaller passes into a separate pass manager)

[Slide 167] Using LLVM (New) Pass Manager

void optimize(llvm::Function* fn) {
llvm::PassBuilder pb;
llvm::LoopAnalysisManager lam{};
llvm::FunctionAnalysisManager fam{};
llvm::CGSCCAnalysisManager cgam{};
llvm::ModuleAnalysisManager mam{};
pb.registerModuleAnalyses(mam);
pb.registerCGSCCAnalyses(cgam);
pb.registerFunctionAnalyses(fam);
pb.registerLoopAnalyses(lam);
pb.crossRegisterProxies(lam, fam, cgam, mam);

llvm::FunctionPassManager fpm{};
fpm.addPass(llvm::DCEPass());
fpm.addPass(llvm::createFunctionToLoopPassAdaptor(llvm::LoopRotatePass()));
fpm.run(*fn, fam);

}

[Slide 168] Writing a Pass for LLVM’s New PM – Part 1

#include "llvm/IR/PassManager.h"
#include "llvm/Passes/PassBuilder.h"
#include "llvm/Passes/PassPlugin.h"

class TestPass : public llvm::PassInfoMixin<TestPass> {
public:
llvm::PreservedAnalyses run(llvm::Function &F,

llvm::FunctionAnalysisManager &AM) {
// Do some magic
llvm::DominatorTree *DT = &AM.getResult<llvm::DominatorTreeAnalysis>(F);
// ...

65

5 Analyses and Transformations

llvm::errs() << F.getName() << "\n";
return llvm::PreservedAnalyses::all();

}
};
// ...

[Slide 169] Writing a Pass for LLVM’s New PM – Part 2

extern "C" ::llvm::PassPluginLibraryInfo LLVM_ATTRIBUTE_WEAK
llvmGetPassPluginInfo() {
return { LLVM_PLUGIN_API_VERSION, "TestPass", "v1",
[] (llvm::PassBuilder &PB) {
PB.registerPipelineParsingCallback(
[] (llvm::StringRef Name, llvm::FunctionPassManager &FPM,

llvm::ArrayRef<llvm::PassBuilder::PipelineElement>) {
if (Name == "testpass") {
FPM.addPass(TestPass());
return true;

}
return false;

});
} };

}
c++ -shared -o testpass.so testpass.cc -lLLVM -fPIC

opt -S -load-pass-plugin=$PWD/testpass.so -passes=testpass input.ll

[Slide 170] Analyses and Transformations – Summary

• Program Transformation critical for performance improvement
• Code not necessarily better
• Analyses are important to drive transformations

– Dominator tree, loop detection, value liveness
• Important optimizations

– Dead code elimination, common sub-expression elimination, loop-invariant
code motion

• Compilers often implement transformations as passes
• Analyses may be invalidated by transformations, needs tracking

[Slide 171] Analyses and Transformations – Questions

• Why is “optimization” a misleading name for a transformation?
• How to find unused code sections in a function’s CFG?
• Why is a liveness-based DCE better than a simple, user-based DCE?
• What is a dominator tree useful for?
• What is the difference between an irreducible and a natural loop?
• How to find natural loops in a CFG?
• How does the algorithm handle irreducible loops?
• Why is sinking a loop-invariant inst. harder than hoisting?

66

	Introduction and Interpretation
	Organization
	Overview
	High-Level Structure of Compilers
	Interpretation
	Context of Compilation

	Compiler Front-end
	Lexing
	Parsing
	Semantic Analysis
	Miscellaneous

	Intermediate Representations
	LLVM-IR
	Overview
	LLVM-IR
	API
	IR Implementation
	IR Design

	Analyses and Transformations
	Motivation
	Dead Code Elimination
	Dominator Tree
	Common Subexpression Elimination
	Simple Transformations
	Loop Analysis
	LLVM Passes

