
1

Cloud-Based Data Processing

Distributed Data: Replication

Jana Giceva

 Why distribute data across multiple machines?

Distributed Data

2

Scalability

If data volume, or the read

and write load grows bigger

than what a single node can

sustain, spread it across

different machines

Fault Tolerance

If a machine (or DC /

network) fails, you can use

redundancy. When one fails,

another one can take over.

?

Tail Latency

If you have users across the

world, you want data to be in

a DC that is geographically

close to the users reduce

the response time.

 There are two common ways data is distributed across multiple nodes.

 Replication

 Keeps a copy of the same data on different nodes (potentially different locations).

 Provides redundancy – If some nodes are unavailable, others can continue serving requests.

 Reduces latency especially for high load or wide distribution of users across the globe.

 Partitioning

 Split the big dataset into smaller subsets called partitions.

 Each partition placed on a separate node.

 Reduces latency for analytical jobs

 Can improve availability

 One can combine both replication and partitioning!

Replication vs. Partitioning

3

Replication

 Replication – keeping a copy of the same data on multiple machines that are connected via network.

 Benefits of replication:

 Keep data geographically close to users – reduce the access latency

 Ensure the system continues working even in case of failures – increase availability

 Scale out the number of machines used that can serve read queries – increase read throughput

 For read-only workload, data replication is easy and always beneficial.

 Replication is an old topic, that was extensively studied in the 1970s, but has been popularized recently.

Replication

5

 How to handle data that changes in a replicated system?

 Should there be a leader replica and if yes, how many?

 Should one use a synchronous or asynchronous propagation of the updates among the replicas?

 How to handle a failed replica if it is the follower?

 What if the leader failed?

 How does a resurrected replica catch up with the leader?

Challenges of Replication

6

 Each node that stores a copy of the dataset is called a replica.

 Every write needs to be processed by every replica; otherwise, the nodes will not hold the same data.

 The most common solution is leader-based replication.

 Leader – when clients write to

the database, they must send

their request to the leader.

 Other replicas are known as

followers, which are updated

by applying the replication log from the leader.

 A client can read from anywhere (the leader or any follower).

PostgreSQL (since v9.0), MySQL, Oracle Data Guard, SQL Server’s AlwaysOn Availability Groups, MongoDB, RethinkDB, Espresso, Kafka,

RabbitMQ, some networked FS and replicated block devices.

Leaders and Followers

7

Synchronous vs. asynchronous Replication

8

 Synchronous if the leader waits until the follower(s)

have confirmed that they applied the write before

reporting success to the user.

 e.g., the replication to follower 1 is synchronous.

 Asynchronous if the leader sends the update

message to its follower(s), but does not wait for a

response before answering success to the user.

 e.g., the replication to follower 2 is asynchronous.

 What are the advantages and disadvantages of each?

 Advantages of synchronous is that the follower is guaranteed to have an up-to-date version of the data.

 But, if a synchronous follower does not respond – the system will not be able to support writes.

 Fully-asynchronous replication trades availability at the cost of weakened durability

 How to ensure that the new follower has an accurate copy of the leader’s data without downtime?

 Simply copying data files from one node to another is not sufficient as clients are constantly writing.

 The process needs a few steps:

1. Take a consistent snapshot of the leader’s database (the same one used for back-up).

2. Copy the snapshot to the follower node.

3. The follower gets the leader’s replication log since the snapshot.

4. Once the follower has processed the backlog, we say it has caught up.

Setting up new Followers

9

 Any node in the system can go down.

 Goal is high availability with leader-based replication

 i.e., how to reboot individual nodes without downtime.

 Follower failure

 → catch-up recovery

 Keep a log of the data changes already applied on a local disk

 After a reboot, apply the outstanding changes before re-connecting to the leader

 Leader failure

 → failover

 Detect that the leader has failed.

 Promote one of the followers as a new leader.

 Reconfigure the system to use the new leader

Handling node outages/failures

10

 Statement based replication

 The leader logs every write request (statement) that it executes

 Write-ahead log (WAL) based replication – physical log

 Use WAL to build and maintain the followers.

 But, the log is very low level and replication is coupled to the storage engine

 Change data capture (CDC) based replication – logical log

 Sequence of records that describe the change to database tables at the granularity of rows.

 Replicas can run on different versions or storage engines.

 Easier to parse for external applications.

 Trigger-based replication (done in application layer)

Implementation of Replication Logs

11

 In Leader-based replication all writes go to the leader, but read-only queries can go to any replica.

 This makes it attractive also for scalability and latency, in addition to fault-tolerance.

 For read-mainly workloads: have many followers and distribute the reads across those followers.

 Removes load from the leader, allows read requests to be served by nearby replicas.

 But, only realistic for asynchronous replication otherwise the system will not be available.

 If an application reads from an asynchronous follower, it may see outdated information.

 Running the same query on the leader and a follower at the same time may get inconsistent results.

 The effect is known as eventual consistency.

 The term eventually is deliberately vague – there is no limit how far a replica can fall behind.

Problems with Replication Lag

12

Example problems with eventual consistency

13

 Reading you own writes

 Requires read-after-write consistency

 Makes no promises to other users

 e.g., (always or for some time after a write) read

from the leader, read based on timestamp

 Cross-device read-after-write consistency

 Monotonic reads

 Avoid a user to see things as moving back in time.

 If one user makes several reads in sequence,

they will not read older data after previously

reading newer data.

 e.g., by enforcing that each user always makes

their reads from the same replica.

 Leader-based replication has a single bottleneck – the leader.

 All writes must go through it. If there is a network interruption between the user and the leader, then no

writes are allowed.

 Alternative approach is multi-leader based

replication.

 Multi-datacenter operation

 advantages to single-leader replication

for performance, tolerance to DC and

network outages.

 Clients with offline operations

 Every device has a local database that

acts as a leader.

 Collaborative editing

Multi-leader Replication

14

What problems do you anticipate here?

15

 A problem with multi-leader replication is that

write conflicts can occur.

 Handling write conflicts:

 Synchronous vs asynchronous

make the conflict detection synchronous.

 Conflict avoidance: make all writes for a particular record go through the same leader

 Converging to a consistent state:

 last writer wins (LWW): each write has a unique ID, pick the write with the highest ID as the winner

and throw away all other writes → prone to data loss.

 let the application decide on the custom conflict resolution logic (on read or write).

Conflict resolution

16

 Abandon the concept of a leader, and allow any replica to directly accept writes from clients.

 Some of the earliest replicated data systems were leaderless (from the 1970s), but the idea was

resurrected by Amazon’s Dynamo.

 Riak, Cassandra, and Voldemort are open source datastores with leaderless replication models,

inspired by Dynamo. Also known as Dynamo-style replication.

 In a leaderless replication, there

is no failover when a node fails.

 A client both writes to and reads from

multiple nodes in the system.

 Version numbers are used to determine

which value is newer in case of different

read values.

Leaderless Replication

17

 The replication system should ensure that eventually all the data is copied to every replica.

 After an unavailable node comes back online, how does it catch up on the writes it missed?

 Two mechanisms are often used:

 Read repair: the client can detect a stale response, and can write a newer value back to the replica.

 Works well for values that are frequently read.

 Anti-entropy process: a background process that checks for inconsistencies and fixes them.

 Unlike the replication log in the leader-based replication mechanisms, here the order is not preserved.

How does a node catch up the writes it missed

18

So, what is the truth in a leaderless system?

19

 If there are 𝒏 replicas, every write must be

confirmed by w nodes to be considered

successful, and we must query at least r

nodes for each read.

 As long as 𝑤 + 𝑟 > 𝑛, we expect to get an

up-to-date value when reading.

 Reads and writes that obey these r and w values are called quorum reads and writes.

 The quorum conditions, allows the system to tolerate unavailable nodes as follows:

 If w<n, we can still process writes if a node is unavailable.

 If r<n, we can still process reads, if a node is unavailable.

 With (3,2,2) we can tolerate 1 node failure, with (5,3,3) we can tolerate 2 nodes.

 Normally, reads and writes are sent to all n replicas in parallel; w and r determine how many nodes we

wait for before we consider the read or write to be successful.

Quorums for reading and writing

20

 Even with w+r > n, there are likely to be edge-cases where stale values are returned.

 E.g., with sloppy quorum;

 if two writes occur simultaneously;

 if a write happens at the same time as a read;

 if a write succeeded on some replicas but failed on others and overall succeeded on less than w nodes;

 if a node carrying a new value fails, and its data is restored from a replica carrying an old value.

 Monitoring staleness and quantifying “eventual”.

 There is no fixed order in which writes are applied – making monitoring of data staleness difficult.

 It would be good to include staleness measurement in the standard set of metrics to quantify “eventual”.

Limitations of Quorum Consistency

21

 Quorums are not as fault-tolerant as they could be.

 A network interruption can cut off a client from a large number of database nodes.

 A sloppy quorum: used in case of network partitioning. The writes and reads still require w and r

successful responses, but those may be by nodes that are not the designated “home” nodes for a value.

 Once the network interruption is fixed, any writes that one node temporarily accepted on behalf of

another node are sent to the appropriate “home” nodes. This is called the hinted handoff.

 Particularly good to increase write availability

 Note that it is not a quorum in the traditional sense, it is only an assurance of durability.

Sloppy quorum and hinted handoff

22

 Replication is used for high availability, disconnected operation, latency and scalability.

 Three main approaches to replication:

 Single-leader replication

 Multi-leader replication

 Leaderless replication

 Replication can be synchronous or asynchronous. Follower replicas apply the replication log.

 Different ways to keep replicas in sync, or recover when a replica fails, etc.

 Replication lag can lead to eventual consistency. Some other consistency models that may be helpful:

 Read-after-write consistency

 Monotonic reads

 Consistent prefix reads

Summary

23

The material covered in this class is mainly based on:

 The book “Designing Data-Intensive Applications – The Big Ideas Behind Reliable, Scalable, and

Maintainable Systems” by Martin Kleppmann (Chapters 5 and 6) (link)

References

42

https://www.oreilly.com/library/view/designing-data-intensive-applications/9781491903063/

