

Einsatz und Realisierung von Datenbanksystemen

ERDB Übungsleitung i3erdb@in.tum.de

Folien erstellt von Maximilian Bandle & Alexander Beischl

Organisatorisches Disclaimer

Die Folien werden von der Übungsleitung allen Tutoren zur Verfügung gestellt.

Sollte es Unstimmigkeiten zu den Vorlesungsfolien von Prof. Kemper geben, so sind die Folien aus der Vorlesung ausschlaggebend.

Falls Ihr einen Fehler oder eine Unstimmigkeit findet, schreibt an i3erdb@in.tum.de mit Angabe der Foliennummer.

Quorum-Consensus Verfahren

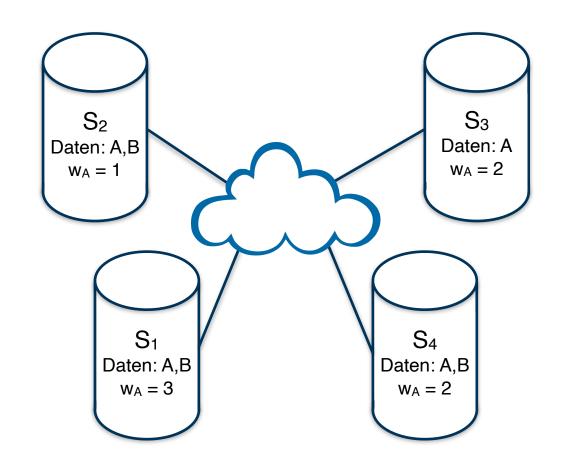
- Ausgleich der Leistungsfähigkeit zwischen Lese- und Änderungstransaktionen
- → Teilweise Verlagerung des Overheads von Änderungs- zu Lesetransaktionen:
 - Kopien A_i von A werden individuelle Gewichte zugeordnet
- Lesequorum Q_r(A)
- Schreibquorum $Q_w(A)$

Folgende Bedingungen müssen gelten:

1.
$$Q_w(A) + Q_w(A) > W(A)$$

2.
$$Q_r(A) + Q_w(A) > W(A)$$

Quorum-Consensus Verfahren

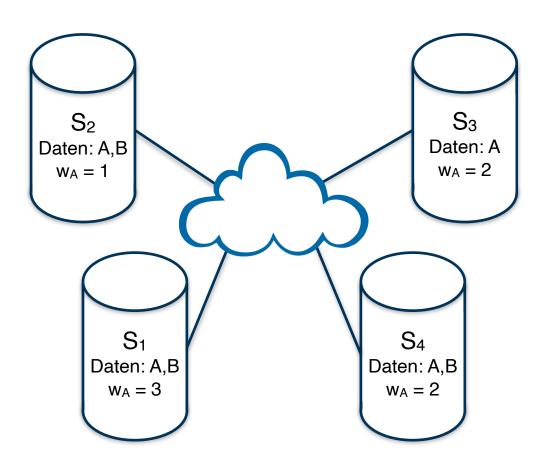

Berechne das Schreib- Q_w und Lesequorum Q_r für A und B.

$$W(A) = \sum_{i=1}^{n} w_i(A)$$

1.
$$Q_w(A) + Q_w(A) >$$

$$W(A)$$

2.
$$Q_r(A) + Q_w(A) > W(A)$$


Quorum-Consensus Verfahren

Berechne das Schreib- Q_w und Lesequorum Q_r für A und B.

Für A:

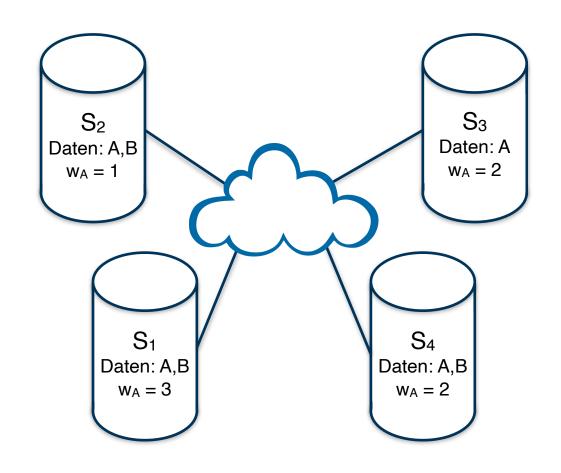
1. Gesamtgewicht berechnen:

$$W(A) = 3+1+2+2 = 8$$

Quorum-Consensus Verfahren

Berechne das Schreib- Q_w und Lesequorum Q_r für A und B.

Für A:


2. Schreibquorum berechnen

$$Q_w(A) + Q_w(A) > W(A)$$

$$=> 2 * Q_w(A) > 8 1:2$$

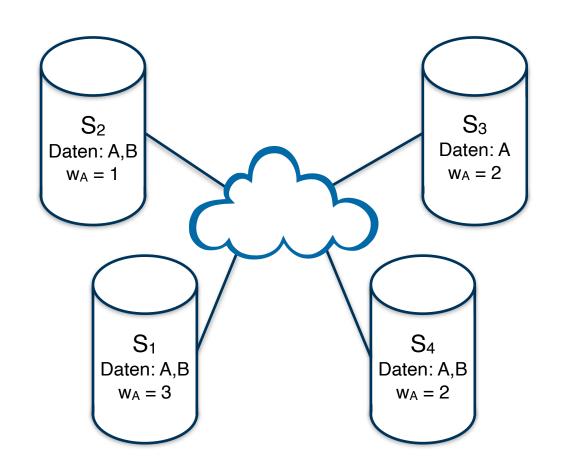
$$=> Q_w(A) > 4$$

$$=> Q_w(A) = 5$$

Quorum-Consensus Verfahren

Berechne das Schreib- Q_w und Lesequorum Q_r für A und B.

Für A:

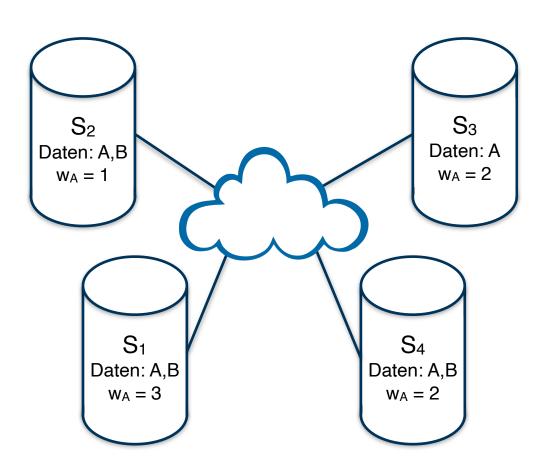

2. Lesequorum berechnen

$$Q_r(A) + Q_w(A) > W(A)$$

$$=> Q_r(A) + 5 > 8 \ l-5$$

$$=> Q_r(A) > 3$$

$$=> Q_r(A) = 4$$


Quorum-Consensus Verfahren

Berechne das Schreib- Q_w und Lesequorum Q_r für A und B.

Für B:

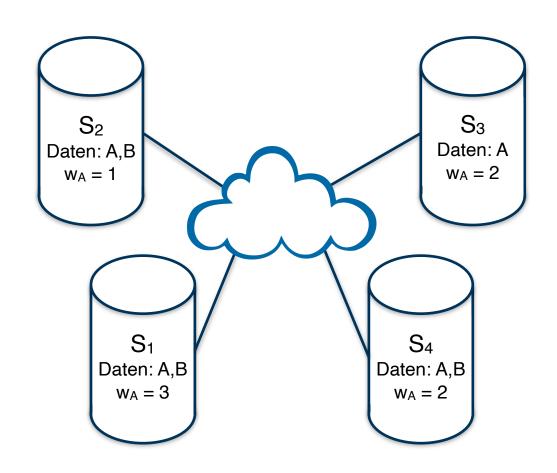
1. Gesamtgewicht berechnen:

$$W(B) = 2+1+3 = 6$$

Quorum-Consensus Verfahren

Berechne das Schreib- Q_w und Lesequorum Q_r für A und B.

Für B:


2. Schreibquorum berechnen

$$Q_w(B) + Q_w(B) > W(B)$$

$$=> 2 * Q_w(B) > 6 1:2$$

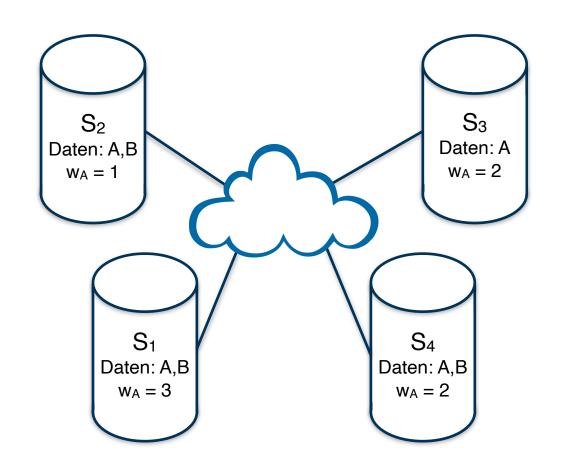
$$=> Q_w(B) > 3$$

$$=> Q_w(B) = 4$$

Quorum-Consensus Verfahren

Berechne das Schreib- Q_w und Lesequorum Q_r für A und B.

Für B:

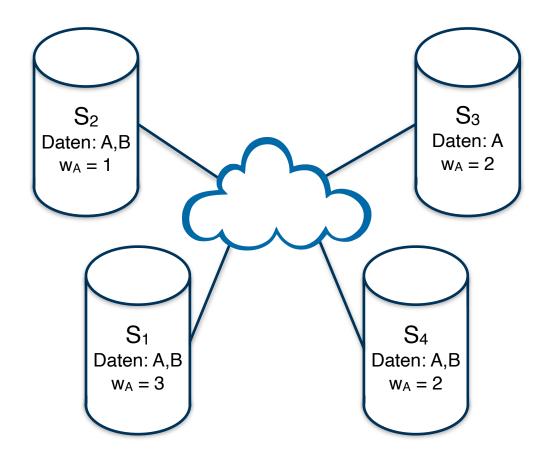

2. Lesequorum berechnen

$$Q_r(B) + Q_w(B) > W(B)$$

$$=> Q_r(B) + 4 > 6$$
 1-4

$$=> Q_r(B) > 2$$

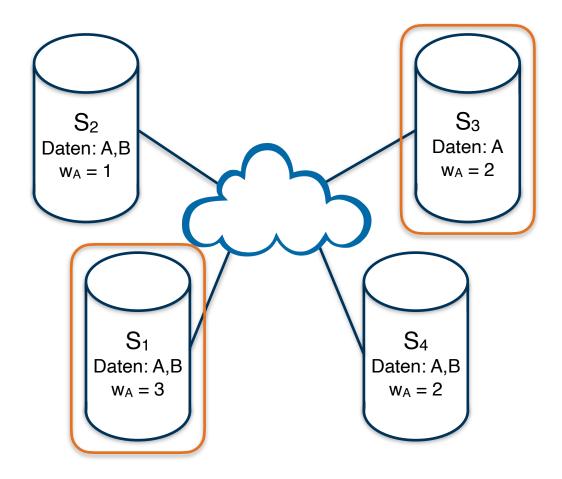
$$=> Q_r(B) = 3$$



Quorum-Consensus Verfahren

- A-= 5
- B+=2

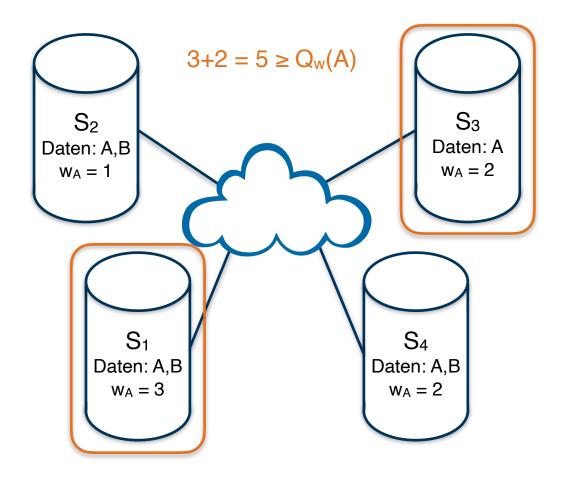
Station	Daten	Gewichte	Version
S ₁	A =22	$w_A = 3$	A ₁
	B = 7	$w_B = 2$	B ₁
S ₂	A =22	$w_A = 1$	A ₁
	B = 7	$w_B = 1$	B ₁
S ₃	A =22	$w_A = 2$	A ₁
S ₄	A =22	$w_A = 2$	A ₁
	B = 7	$w_B = 3$	B ₁



Quorum-Consensus Verfahren

- A-= 5
- B+=2

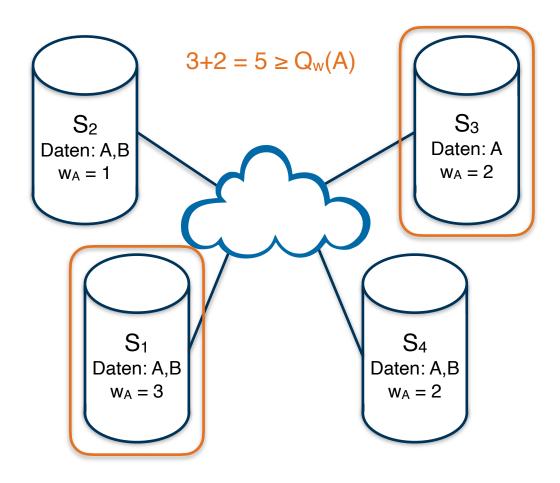
Station	Daten	Gewichte	Version
S ₁	A =22	$w_A = 3$	A ₁
	B = 7	$w_B = 2$	B ₁
S ₂	A =22	$w_A = 1$	A ₁
	B = 7	$w_B = 1$	B ₁
S ₃	A =22	$w_A = 2$	A ₁
S ₄	A =22	$w_A = 2$	A ₁
	B = 7	$w_B = 3$	B ₁



Quorum-Consensus Verfahren

- A-= 5
- B+=2

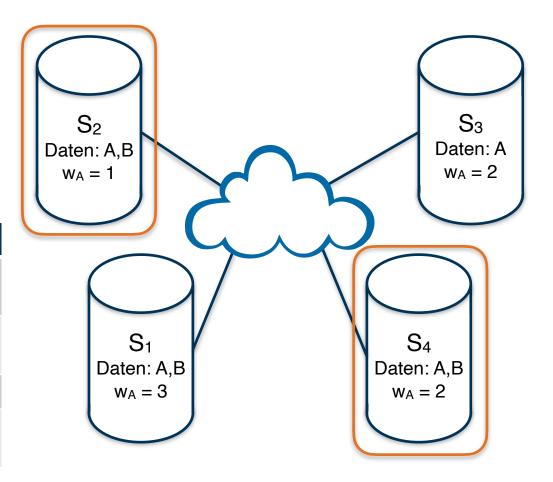
Station	Daten	Gewichte	Version
S ₁	A =22	$w_A = 3$	A ₁
	B = 7	$w_B = 2$	B ₁
S ₂	A =22	$w_A = 1$	A ₁
	B = 7	$w_B = 1$	B ₁
S ₃	A =22	$w_A = 2$	A ₁
S ₄	A =22	$w_A = 2$	A ₁
	B = 7	$w_B = 3$	B ₁



Quorum-Consensus Verfahren

- A-= 5
- B+=2

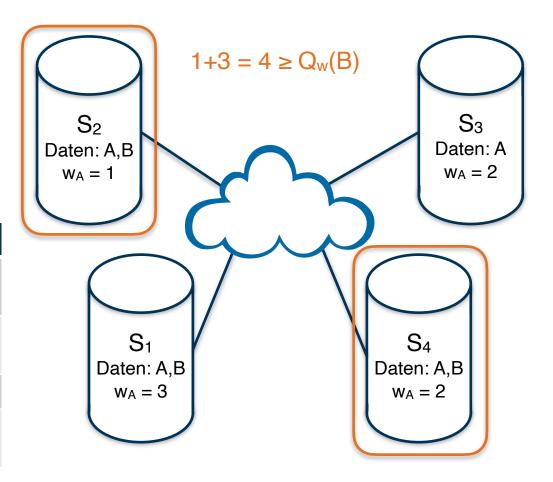
Station	Daten	Gewichte	Version
S ₁	A =17 B = 7	$w_A = 3$ $w_B = 2$	A ₂ B ₁
S ₂	A =22 B = 7	$w_A = 1$ $w_B = 1$	A ₁ B ₁
S ₃	A =17	$w_A = 2$	A ₂
S ₄	A =22 B = 7	$w_A = 2$ $w_B = 3$	A ₁ B ₁



Quorum-Consensus Verfahren

- A-= 5
- B+=2

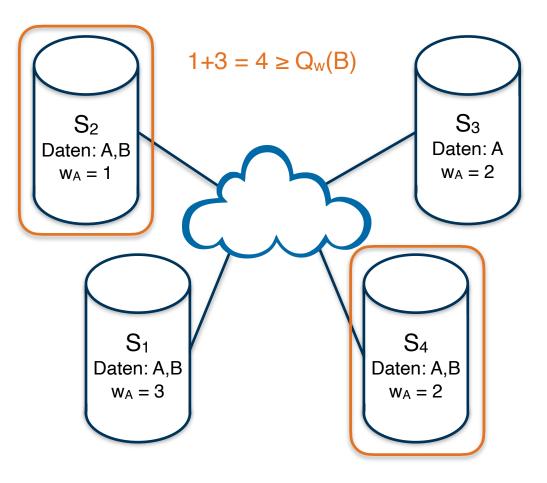
Station	Daten	Gewichte	Version
S ₁	A =17	$w_A = 3$	A ₂
	B = 7	$w_B = 2$	B ₁
S ₂	A =22	$w_A = 1$	A ₁
	B = 7	$w_B = 1$	B ₁
S ₃	A =17	$w_A = 2$	A_2
S ₄	A =22	$w_A = 2$	A ₁
	B = 7	$w_B = 3$	B ₁



Quorum-Consensus Verfahren

- A-= 5
- B+=2

Station	Daten	Gewichte	Version
S ₁	A =17	$w_A = 3$	A ₂
	B = 7	$w_B = 2$	B ₁
S ₂	A =22	$w_A = 1$	A ₁
	B = 7	$w_B = 1$	B ₁
S ₃	A =17	$w_A = 2$	A_2
S ₄	A =22	$w_A = 2$	A ₁
	B = 7	$w_B = 3$	B ₁



Quorum-Consensus Verfahren

- A-= 5
- B+=2

Station	Daten	Gewichte	Version
S ₁	A =17	$w_A = 3$	A ₂
	B = 7	$w_B = 2$	B ₁
S ₂	A =22	$w_A = 1$	A ₁
	B = 9	$w_B = 1$	B ₂
S ₃	A =17	$w_A = 2$	A_2
S ₄	A =22	$w_A = 2$	A ₁
	B = 9	$w_B = 3$	B ₂

Zeigen Sie, dass die write-all/read-any Methode zur Synchronisation replizierter Daten einen Spezialfall der Quorum-Consensus-Methode darstellt.

- Für welche Art von Workloads eignet sich dieses Verfahren besonders gut?
- Wie werden Stimmen zugeordnet um write-all/read-any zu simulieren?
- Wie müssen die Quoren Q_w und Q_r vergeben werden?

Um Ausfallsicherheit zu garantieren ist ein Datenwert 'A' auf vier Rechnern verteilt. Jeder Rechner hält dabei eine vollständige Kopie von 'A'. Um Konsistenz zu garantieren wird das Quorum-Consensus-Verfahren eingesetzt. Dabei ist jedem Rechner ein Gewicht $w_i(A)$ wie folgt zugewiesen:

Rechner	Kopie	Gewicht
R_1	A_1	3
R_2	A_2	1
R_3	A_3	2
R_4	A_4	2

Das Lesequorum ist $Q_r(A) = 4$ und das Schreibquorum is $Q_w(A) = 5$.

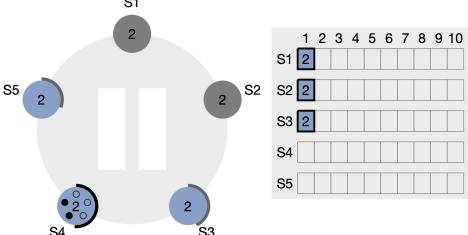
- a) Geben Sie **alle** Lesemöglichkeiten für eine Transaktion auf dem Datum 'A' nach dem Quorum-Consensus-Protokoll an.
- b) Geben Sie **alle** Schreibmöglichkeiten für eine Transaktion auf dem Datum 'A' nach dem Quorum-Consensus-Protokoll an.
- c) Zeigen Sie für dieses Beispiel, dass während eine Transaktion T_1 ein Schreibquorum auf A hält es für andere Transaktionen T_x nicht möglich ist ein Lesequorum für A zu bekommen.

Verteilte Datenbanksysteme Raft Konsensalgorithmus

- Server innerhalb eines Clusters können Follower, Candidate oder Leader sein
- Zu Beginn sind alle Knoten Follower
- Es gibt immer nur ein Leader
 - Leader sendet "Heartbeats" zu den Follower-Servern, damit diese wissen, dass der Leader noch existiert und nicht abgestürzt ist
 - Write & Read requests von außerhalb laufen über den Leader
- Jeder Server schreibt Log Einträge ("log replication")
 - Leader triggered die Log updates aller Server
- Zur Bestimmung des Leaders wird mit randomisierten Timeouts gearbeitet.
 Die Knoten die zuerst einen Timeout erreichen, werden zu Candidates. Sollte die Mehrheit der Server im Cluster für einen bestimmten Candidate stimmen, wird dieser der neue Leader

Verteilte Datenbanksysteme Raft Konsensalgorithmus

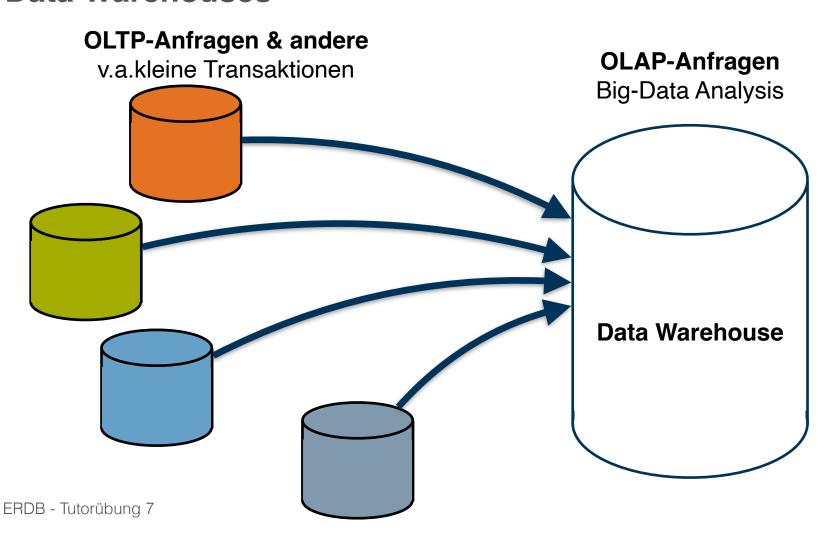
http://thesecretlivesofdata.com/raft/



Beantworten Sie folgende Fragen zum RAFT Protokoll. Verwenden Sie *RaftScope* unter https://raft.github.io/ um Ihre Vermutungen zu bestätigen.

- 1. Wie viele Server müssen ausfallen, dass in einem Cluster mit n Servern kein neuer Leader bestimmt werden kann?
- 2. Wie können Sie mit restart und time-out in RaftScope einen bestimmten Knoten als neuen Leader erzwingen? Geben Sie die Schritte an.

3. Wie verläuft das Beispiel in Abbildung 1 weiter? Wie kann sicher gestellt werden, dass der neu gewählte Leader den neuesten Logeintrag hält? Beschreiben Sie in Stichpunkten.



Data Warehouses

Online Transaction Processing

- Realisiert "operationale" Tagesgeschäfte ("mission-critical")
- Charakterisierung
 - Hoher Parallelitätsgrad
 - Viele kurze TA (Tausende pro Sekunde)
 - Begrenzte Datenmenge pro TA
 - Operieren auf jüngsten, aktuell gültigen Zustand der DB
 - Hohe Verfügbarkeit muss gewährleistet sein
- Normalisierte Relationen (möglichst geringe Update-Kosten)
- · Wenige Indexe (Fortschreibungskosten)

Online Analytical Processing

- Zur strategischen Unternehmensplanung
- Große Datenmengen
- Greift auf historische Daten zu
- → Gewährt Rückschlüsse auf Entwicklungen
- → Bestandteil von Decision-Support-Systeme/Management-Informationssysteme

SQLWindow Functions

- Sehr vielseitig und geeignet für
 - Zeitliche Analysen
 - Rangbasierte Anfragen
 - Top-K
 - Gleitender Durchschnitt
 - Kumulative Summe
- Window Functions werden nach group by und vor order by ausgewertet

Window Funktionen

erdb			
name	übung	punkte	
Thuy	1	1	
Anna	1	1	
Domi	1	2	
Tobi	2	1	
Thuy	2	1	
Thuy	3	2	
Anna	3	1	
Domi	3	1	
Thuy	4	3	
Tobi	5	2	
Domi	5	1	
Anna	5	1	
Tobi	6	2	
Thuy	6	1	

SELECT name, übung, (100.0*punkte)/ sum(punkte)

over (partition by übung) as prozent FROM erdb

Betriebliche AnwendungenSELECT name, übung, (100.0*punkte)/ sum(punkte)

Window Funktionen

erdb		
name	übung	punkte
Thuy	1	1
Anna	1	1
Domi	1	2
Tobi	2	1
Thuy	2	1
Thuy	3	2
Anna	3	1
Domi	3	1
Thuy	4	3
Tobi	5	2
Domi	5	1
Anna	5	1
Tobi	6	2
Thuy	6	1

over (partition by übung) as prozent FROM erdb

Ergebnis			
name	übung	prozent	
Thuy	1	25.0	
Anna	1	25.0	
Domi	1	50.0	
Tobi	2	50.0	
Thuy	2	50.0	
Thuy	3	50.0	
Anna	3	25.0	
Domi	3	25.0	
Thuy	4	100.0	
Tobi	5	50.0	
Domi	5	25.0	
Anna	5	25.0	
Tobi	6	66.7	
Thuy	6	33.3	

Betriebliche Anwendungen Window Funktionen

erdb			
name	übung	punkte	
Anna	1	1	
Anna	3	1	
Anna	5	1	
Domi	1	2	
Domi	3	1	
Domi	5	1	
Thuy	1	1	
Thuy	2	1	
Thuy	3	2	
Thuy	4	3	
Thuy	6	1	
Tobi	2	1	
Tobi	5	2	
Tobi	6	2	

SELECT name, übung, sum(punkte)
over (partition by name
order by übung)

FROM erdb

Ergebnis		
name	übung	sum
Anna	1	1
Anna	3	2
Anna	5	3
Thuy	1	1
Thuy	2	2
Thuy	3	4
Thuy	4	7
Thuy	6	8
Domi	1	2
Domi	3	3
Domi	5	4
Tobi	2	1
Tobi	5	3
Tobi	6	5

Window Funktionen

erdb		
name	übung	punkte
Anna	1	1
Anna	3	1
Anna	5	1
Domi	1	2
Domi	3	1
Domi	5	1
Thuy	1	1
Thuy	2	1
Thuy	3	2
Thuy	4	3
Thuy	6	1
Tobi	2	1
Tobi	5	2
Tobi	6	2

SELECT name, übung, sum(punkte)
over (partition by name
order by übung
range between unbounded
preceding and current row)

FROM erdb

Ergebnis		
name	übung	sum
Anna	1	1
Anna	3	2
Anna	5	3
Thuy	1	1
Thuy	2	2
Thuy	3	4
Thuy	4	7
Thuy	6	8
Domi	1	2
Domi	3	3
Domi	5	4
Tobi	2	1
Tobi	5	3
Tobi	6	5

Window Funktionen

erdb		
name	übung	punkte
Anna	1	1
Anna	3	1
Anna	5	1
Domi	1	2
Domi	3	1
Domi	5	1
Thuy	1	1
Thuy	2	1
Thuy	3	2
Thuy	4	3
Thuy	6	1
Tobi	2	1
Tobi	5	2
Tobi	6	2

SELECT name, übung, sum(punkte)
over (partition by name
order by übung
range between 1 preceding
and 1 following)

FROM erdb

Ergebnis		
name	übung	sum
Anna	1	1
Anna	3	1
Anna	5	1
Thuy	1	2
Thuy	2	4
Thuy	3	6
Thuy	4	5
Thuy	6	1
Domi	1	2
Domi	3	1
Domi	5	1
Tobi	2	1
Tobi	5	4
Tobi	6	4

Window Funktionen

erdb		
name	übung	punkte
Anna	1	1
Anna	3	1
Anna	5	1
Domi	1	2
Domi	3	1
Domi	5	1
Thuy	1	1
Thuy	2	1
Thuy	3	2
Thuy	4	3
Thuy	6	1
Tobi	2	1
Tobi	5	2
Tobi	6	2

SELECT name, übung, sum(punkte)
over (partition by name
order by übung
rows between 1 preceding
and 1 following)

FROM erdb

Ergebnis		
name	übung	sum
Anna	1	2
Anna	3	3
Anna	5	2
Thuy	1	2
Thuy	2	4
Thuy	3	6
Thuy	4	6
Thuy	6	4
Domi	1	3
Domi	3	4
Domi	5	2
Tobi	2	3
Tobi	5	5
Tobi	6	4

Window Funktionen

erdb		
name	übung	punkte
Anna	1	1
Anna	3	1
Anna	5	1
Domi	1	2
Domi	3	1
Domi	5	1
Thuy	1	1
Thuy	2	1
Thuy	3	2
Thuy	4	3
Thuy	6	1
Tobi	2	1
Tobi	5	2
Tobi	6	2

SELECT name, sum(punkte) as gesamt FROM erdb
GROUP BY name
ORDER BY gesamt desc

erdb nach group		
name	gesamt	
Thuy	8	
Tobi	5	
Domi	4	
Anna	3	

Window Funktionen

erdb nach group		
name	gesamt	
Thuy	8	
Tobi	5	
Domi	4	
Anna	3	

SELECT name, gesamt,

rank() over (order by gesamt desc)

FROM (
SELECT name, sum(punkte) as

gesamt

FROM erdb

GROUP BY name desc)

Ergebnis		
name	gesamt	rank
Thuy	8	1
Tobi	5	2
Domi	4	3
Anna	3	4

Window Funktionen

erdb nach group		
name	gesamt	
Thuy	8	
Tobi	5	
Domi	4	
Anna	3	

SELECT name,

lag(name) over(order by gesamt desc)
as mehr,
lead(name) over(order by gesamt desc)
as weniger

FROM (
SELECT name, sum(punkte) as gesamt
FROM erdb
GROUP BY name desc)

Ergebnis			
name	mehr	weniger	
Thuy	null	Tobi	
Tobi	Thuy	Domi	
Domi	Tobi	Anna	
Anna	Domi	null	

Analysieren wir die Gehälter von Professoren mittels Windowfunctions und führen Sie die Abfragen unter hyper-db.de aus. Dazu orientieren wir uns an der Relation *Professoren* des erweiterten Universitätsschemas:

- 1. Ermitteln Sie zu jedem Professor das Durchschnittsgehalt aller Professoren.
- 2. Ermitteln Sie zu jedem Professor das Durchschnittsgehalt aller Professoren partitioniert nach Rang.
- 3. Ermitteln Sie nun die wachsende Summe (das Quantil) des Gehaltes aller Professoren partitioniert nach Rang und absteigend sortiert nach ihrem Gehalt. Gleich verdienende Professoren sind im selben Quartil.
- 4. Ermitteln Sie nun die wachsende Summe des Gehaltes aller Professoren partitioniert nach Rang und absteigend (total) sortiert nach ihrem Gehalt (reihenweise, nicht als Range-Query).

Analysieren wir die Gehälter von Professoren mittels Windowfunctions und führen Sie die Abfragen unter hyper-db.de aus. Dazu orientieren wir uns an der Relation *Professoren* des erweiterten Universitätsschemas:

- 5. Ermitteln Sie nun das gleitende Durchschnittsgehalt aus genau zwei mehr bzw. weniger verdienenden Professoren sortiert nach Gehalt und partitioniert nach Rang.
- 6. Ermitteln Sie nun das gleitende Durchschnittsgehalt aus den 500 Einheiten mehr bzw. weniger verdienenden Professoren sortiert nach Gehalt und partitioniert nach Rang. (weder in PostgreSQL noch in HyPer implementiert, fragen Sie Ihren Tutor)
- 7. Geben sie zu jedem Professor das Gehalt des eins besser wie eins schlechter verdienenden.
- 8. Ermitteln Sie die drei bestverdienendsten Professoren einmal mit und einmal ohne Windowfunctions.

Betrachten wir das bekannte Uni-Schema mit den Faktentabellen hoeren und pruefen.

- 1. Ermitteln Sie in SQL mittels Fensterfunktionen (Windowfunctions) die Top-3 Studenten pro Vorlesung und geben Sie deren Namen aus.
- 2. Ermitteln Sie mittels SQL-92, um wieviele Notenstufen Studenten, die die Vorlesung gehört haben, in der Prüfung besser abgeschnitten haben.

Betrachten Sie die folgende Tabelle Waren mit verkauften Produkten in einem Supermarkt. Die Spalte verkauft besagt, wieviele Einheiten des jeweiligen Produktes verkauft worden sind.

Name	Preis	Kategorie	Verkauft
Brot	1.00	Backwaren	8128
Butter	0.80	Kühlwaren	496
Grill	60.00	Haushalt	6
Steak	8.00	Kühlwaren	28
			• • •

- 1 Ermitteln Sie in SQL mittels Fensterfunktionen (Windowfunctions) den prozentualen Umsatzanteil jedes Produktes innerhalb seiner Kategorie.
- 2 Ermitteln Sie in SQL mittels Fensterfunktionen (Windowfunctions) für jedes Produkt das Mittel der Verkaufszahlen aus den 5 besser verkauften (höhere Verkaufszahlen) Produkten geordnet nach Verkaufszahlen.
- 3 Ermitteln Sie in SQL mittels Fensterfunktionen (Windowfunctions) die drei Produkte mit dem meisten Umsatz pro Kategorie.

Fragen?