
School of Computation, Information and Technology
Technical University of Munich

AACPP 2025
Week 5: Graphs

Mateusz Gienieczko, Mykola Morozov

School of Computation, Information and Technology
Technical University of Munich

2025.06.24

AACPP 2025 Mateusz Gienieczko

Third round – survey

AACPP 2025 Mateusz Gienieczko

Fourth round

Deadline – 17.06.2025, 10:00 AM.

10.06 is Pfingstferien

AACPP 2025 Mateusz Gienieczko

TUV – Tunnel Vision

We are given a tree with one distinguished edge.

AACPP 2025 Mateusz Gienieczko

TUV – Tunnel Vision

We are given a tree with one distinguished edge.

We have 𝑔 queries of the form – we put 𝑚𝑔 toys in each leaf and propagate
them through the tree. Propagation follows the rules:
• assume 𝑚 toys enter; if 𝑚 = 0 propagation ends;
• consider edges other than the one we came from; let there be 𝑒 such edges;
• if 𝑒 = 0 propagation ends; otherwise, send ⌊𝑚

𝑒 ⌋ toys through each edge.

AACPP 2025 Mateusz Gienieczko

TUV – Tunnel Vision

We are given a tree with one distinguished edge.

We have 𝑔 queries of the form – we put 𝑚𝑔 toys in each leaf and propagate
them through the tree. Propagation follows the rules:
• assume 𝑚 toys enter; if 𝑚 = 0 propagation ends;
• consider edges other than the one we came from; let there be 𝑒 such edges;
• if 𝑒 = 0 propagation ends; otherwise, send ⌊𝑚

𝑒 ⌋ toys through each edge.

We want to answer how many groups of exactly 𝑘 toys will travel through the
marked edge after all queries.

AACPP 2025 Mateusz Gienieczko

TUV – Tunnel Vision

Straightforward brute force – simulate the propagation.

For each query start at each leaf and propagate the information, e.g. using DFS.

𝒪(𝑛2𝑔)

AACPP 2025 Mateusz Gienieczko

TUV – Tunnel Vision

Let’s try standardising the direction of propagation.

We’re only interested in reaching the marked edge.

Split the marked edge by introducing a virtual vertex 0 and root the tree in it.

Now we start all queries at the leaves and always propagate up, as we’re only
interested in groups that reach 0.

AACPP 2025 Mateusz Gienieczko

TUV – Tunnel Vision

Second observation is that we can compress the tree.

Vertices that have degree exactly two are boring. We can contract them.

After we do that, the toy group always gets at least two times smaller when
being pushed up the tree.

Naive brute-force from before now gets 𝒪(𝑛𝑔 log𝑀), where 𝑀 = max1≤𝑖≤𝑔 𝑚𝑖.

AACPP 2025 Mateusz Gienieczko

TUV – Tunnel Vision

To get a faster solution consider what is the size of the package in a child of the
root in order to count.

If the child has 𝑒 edges then the minimum number of toys is 𝑘(𝑒 − 1).

The maximum is 𝑘(𝑒 − 1) + 𝑒 − 2.

We can DFS from the root to calculate these intervals in the leaves.

AACPP 2025 Mateusz Gienieczko

TUV – Tunnel Vision

Now we have 𝑔 groups and 𝒪(𝑛) intervals [𝑥, 𝑦] and for each group we want to
count in how many intervals it falls.

We can do it the other way around – for each interval count how many groups
it catches.

This is easy to do with a binary-search.

We have 𝒪(𝑛) for DFS, 𝒪(𝑔 log 𝑔) to sort the groups, and 𝒪(𝑛 log 𝑔) for
searches, for a total of 𝒪((𝑛 + 𝑔) log 𝑔).

AACPP 2025 Mateusz Gienieczko

FAL – Falling Cats

Here we are given a graph where each vertex has at most 4 edges.

There can be multiedges.

We remove edges from the graph one by one and need to answer, for each
vertex, at which point it becomes disconnected from 1.

AACPP 2025 Mateusz Gienieczko

FAL – Falling Cats

Simplest idea – remove an edge, for each remaining vertex run any algorithm
that tries to reach 1.

Definitely works, but takes 𝒪(𝑚𝑛2).

AACPP 2025 Mateusz Gienieczko

FAL – Falling Cats

Better – after each edge run a search from 1 to find any reachable vertices.

Down to 𝒪(𝑚𝑛).

AACPP 2025 Mateusz Gienieczko

FAL – Falling Cats

Core idea – reverse time.

It’s easier to detect when something gets connected to 1 than disconnected.

How? Find-union while maintaining time of connection to 1.

AACPP 2025 Mateusz Gienieczko

FAL – Falling Cats

1. Remove all 𝑚 edges.
2. Use remaining edges to Union. Vertices connected to 1 never fall and get

assigned −1.
3. For each removed edge in reverse order use it to Union with correct

timestamp.

AACPP 2025 Mateusz Gienieczko

FAL – Falling Cats

How to maintain timestamps in Find-Union?

Simplest idea – use the worse Find-Union that maintains lists of vertices and
merges shorter lists to larger lists, but also always merge to 1.

Whenever a vertex is moved to 1’s component give it the current timestamp.

𝒪(𝑛 log 𝑛).

AACPP 2025 Mateusz Gienieczko

FAL – Falling Cats

We can augment the standard path-compressing Find-Union as well.

Note that we only need to add the timestamp to the root of the tree being
Unioned.

During path compression we have to copy the first timestamp on the path to
root.

𝒪(𝑛𝛼(𝑛))

AACPP 2025 Mateusz Gienieczko

FAL – Falling Cats

Find(x) {

 if x != P[x] {

 let p = Find(P[x])

 if Ans[x] == GROUND {

 Ans[x] = Ans[P[x]]

 }

 P[x] = p

 }

 return P[x]

}

AACPP 2025 Mateusz Gienieczko

Recall the plan

• Greedy and dynamic programming (DP)
• Trees
• Graphs ← we are here
• Ways to turn graphs into trees (DFS, BFS, Dijkstra, MST) ← we are here
• Ways to run DP on graphs (Toposort)
• Advanced graph algorithms (Matchings, flows)
• Binary Search Trees
• Number theory
• String algorithms (KMP, tries, suffix tables)
• Some problems can’t* even be solved efficiently (NP-completeness)

AACPP 2025 Mateusz Gienieczko

Graphs

Widespread data structure.

𝐺 = (𝑉 , 𝐸)

Network of vertices and edges between them.

Surprisingly many things can be modelled as a graph.

Usually no multiedges (𝐸 is a set).

Most of the time no self-loops ((𝑣 , 𝑣)).

AACPP 2025 Mateusz Gienieczko

Graphs

Multitude of different interpretations:
• travelling between vertices using edges, e.g. a map of cities and connections

between them, road network where vertices are intersections, etc.
• edges are dependencies between vertices, e.g. this task has to be completed

before this one;
• social network, e.g. this person follows this person.

Literally any binary relation can be a graph if you’re brave enough.

AACPP 2025 Mateusz Gienieczko

Graphs – directed/undirected

AACPP 2025 Mateusz Gienieczko

Graphs – directed/undirected

In practice, undirected simply means that (𝑢, 𝑣) ∈ 𝐸 ⇔ (𝑣, 𝑢) ∈ 𝐸.

AACPP 2025 Mateusz Gienieczko

Graphs – input representation

As lists of children.

6 9

1 2

1 3

2 4

3 2

3 5

4 5

6 5

2 5

5 2

AACPP 2025 Mateusz Gienieczko

Graphs – in-memory representation

Lists of lists.

N[𝑣] is a list of all neighbours of 𝑣 .

In C++ a vector<vector<int>>.

In Rust a Vec<Vec<u32>>.

AACPP 2025 Mateusz Gienieczko

Graphs – in-memory representation

Adjacency matrix

N[𝑣][𝑢] is 1 if and only if there is an edge (𝑣 , 𝑢).

In C++ a vector<vector<bool>> (bitset-optimised).

In Rust a Vec<Vec<bool>> (not optimised).

AACPP 2025 Mateusz Gienieczko

Graphs – paths, cycles

Path – sequence of vertices 𝑣1…𝑣𝑛 where there are edges between 𝑣𝑖, 𝑣𝑖+1 and
none of the vertices repeat.

Cycle – sequence of vertices 𝑣1…𝑣𝑛 where there are edges between 𝑣𝑖, 𝑣𝑖+1 where
𝑣1 = 𝑣𝑛 and none of the other vertices repeat.

AACPP 2025 Mateusz Gienieczko

Graphs – connected components

In an undirected graphs two vertices are in the same connected components
when there exists a path between them.

We will assume a graph is connected (contains exactly one connected
component) unless stated otherwise.

Most algorithms that work on a connected graph also work on a general one –
run it on each component independently.

AACPP 2025 Mateusz Gienieczko

Graphs – DFS

The idea is the same as in a tree – visit each of the neighbours.

Difference is we have to keep track of visited vertices.

fn DFS(v)

 pre_process(v)

 for u in N[v]

 if not visited[u]

 visited[u] = true

 DFS(u)

 post_process(v)

AACPP 2025 Mateusz Gienieczko

Finding components

Run DFS once from a vertex – it will visit all vertices in that component.

Repeat it until all components are found.

c = 1

for v in V

 if C[v] == 0

 C[v] = c

 DFS(v)

 c += 1

fn DFS(v)

 for u in N[v]

 if C[u] == 0

 C[u] = C[v]

 DFS(u)

AACPP 2025 Mateusz Gienieczko

DFS tree structure

Tree edges – solid black.

Forward edges – dotted light grey.

Back edges – solid dark grey.

Cross edges – dashed dark grey.

AACPP 2025 Mateusz Gienieczko

Detecting cycles

Cycles are always back edges.

In a directed graph – any edge back to an active vertex.

In an undirected graph – any edge back to any visited vertex.

AACPP 2025 Mateusz Gienieczko

BFS – shortest paths

fn BFS(from)

 queue = Queue::new()

 queue.push(from)

 distance[from] = 0

 while v = queue.pop()

 for child in C[v]

 if distance[child] is None

 distance[child] = distance[v] + 1

 queue.push(child)

AACPP 2025 Mateusz Gienieczko

Graphs – weights

Edges can have weights.

These can have different meanings – cost of travel, time, distance…

AACPP 2025 Mateusz Gienieczko

Graphs – Dijkstra

BFS works when all weights are equal.

Dijkstra gives shortest paths when all weights are non-negative.

Find all paths from a given source 𝑠.

AACPP 2025 Mateusz Gienieczko

Graphs – Dijkstra

Algorithm is greedy.

Take the closest unprocessed vertex and try to extend paths from there.

We find the closest vertex with a priority queue.

AACPP 2025 Mateusz Gienieczko

Graphs – Dijkstra

fn Dijkstra(s)

 q = new MinHeap

 D[s] = 0

 q.push((0, s))

 while (d, v) = q.pop()

 if D[v] != d { continue; }

 for (u, cost) in N[v]

 new_d = d + cost

 if new_d < D[u]

 D[u] = new_d

 q.push((new_d, u))

AACPP 2025 Mateusz Gienieczko

Graphs – Dijkstra

In theory, Dijkstra can be implemented better with a heap that allows a
DecreaseKey operation.

We get 𝒪(𝑚 log 𝑛) time and 𝒪(𝑛) memory then. With Fibonacci heap that has a
fast DecreaseKey one can get 𝒪(𝑚 + 𝑛 log 𝑛).

The implementation we showed before is 𝒪(𝑚 log𝑚) time¹ and 𝒪(𝑚) memory
worst case since we can push the same vertex multiple times, but that’s the best
you can get using a standard library heap.

¹But that’s also equal to 𝒪(𝑚 log 𝑛) since 𝑚 = 𝒪(𝑛2) and log 𝑛2 = 2 log 𝑛 = 𝒪(log 𝑛)
AACPP 2025 Mateusz Gienieczko

Graphs – negative weights

Dijkstra does not work with negative weights.

Correctness relies on the greedy property – once a vertex is popped from the
queue its distance is already optimal and can never decrease.

AACPP 2025 Mateusz Gienieczko

Graphs – negative weights

Dijkstra does not work with negative weights.

Correctness relies on the greedy property – once a vertex is popped from the
queue its distance is already optimal and can never decrease.

AACPP 2025 Mateusz Gienieczko

Graphs – Bellman-Ford

In presence of negative edges – Bellman-Ford.

Very simple idea – just relax all edges 𝑛 − 1 times.

fn BellmanFord(s)

 D[s] = 0

 repeat n - 1 times

 for (v, u, d) in E

 new_d = D[v] + d

 if new_d < D[u]

 D[u] = new_d

Obvious 𝒪(𝑛𝑚) running time.
AACPP 2025 Mateusz Gienieczko

Graphs – Bellman-Ford

Why does this work?

Shortest path cannot have more than 𝑛 − 1 edges.

Unless there is a negative-weight cycle in which case the result is garbage.

for (v, u, d) in E

 new_d = D[v] + d

 if new_d < D[u]

 raise "Negative cycle detected"

AACPP 2025 Mateusz Gienieczko

Graphs – Floyd-Warshall

DP for shortest paths between all pairs of vertices in 𝒪(𝑛3).

We skip it for time, but it’s simple enough you can figure it out as an exercise.

AACPP 2025 Mateusz Gienieczko

Graphs – Minimal Spanning Tree

A spanning tree is a tree using edges from the graph that connects all vertices.

Always exists when graph is connected.

We are interested in the lowest total weight tree.

AACPP 2025 Mateusz Gienieczko

Graphs – Kruskal

Idea – greedily take the cheapest edge that connects two components.

fn Kruskal() {

 fu = new FindUnion

 mst = []

 edges.sort_by_weight()

 for (v, u, d) in E

 if fu.Find(v) != fu.Find(u)

 mst.push((v, u, d))

 fu.Union(v, u)

}

𝒪(𝑚 log𝑚) to sort and 𝒪(𝑚 + 𝑛𝛼(𝑛)) for selection.
AACPP 2025 Mateusz Gienieczko

Graphs – Prim

Idea – maintain a subtree and expand it by picking the cheapest edge that goes
to an unconnected vertex.

AACPP 2025 Mateusz Gienieczko

Graphs – Prim

fn Prim()

 queue = new MinHeap

 W[1] = 0

 visited[1] = true

 queue.push((0, 1))

 while (w, v) = queue.pop()

 visited[v] = true

 if W[v] != w { continue }

 for (c, u) in N[v]

 if not visited[u] and c < W[u]

 W[u] = c

 P[u] = v

 queue.push((c, u))
AACPP 2025 Mateusz Gienieczko

Graphs – Prim

The above implementation is the same as Kruskal, 𝒪(𝑚 log𝑚).

However, in theory using Fibonacci heaps like in Dijkstra gives 𝒪(𝑚 + 𝑛 log 𝑛).

AACPP 2025 Mateusz Gienieczko

Graphs – bridges and articulation points

A bridge is any edge in a connected graph whose removal would disconnect it.

An articulation point is any vertex whose removal would do so.

If (𝑣 , 𝑢) is a bridge then 𝑣 and 𝑢 are articulation points (unless 𝑣 and 𝑢 have no
other edges).

The other direction is not true.

AACPP 2025 Mateusz Gienieczko

Graphs – biconnected components

A biconnected component is a maximal subgraph that has no articulation points.

Any graph can be decomposed into a tree of biconnected components.

Easy to find articulation points and bridges in such a tree.

AACPP 2025 Mateusz Gienieczko

Graphs – biconnected components

fn ArticulationPoints() {

 time = 0;

 for u in V

 if pre[u] is None

 ArtDFS(u, u)

 is_art[u] = dfs_deg[u] > 1

}

AACPP 2025 Mateusz Gienieczko

Graphs – biconnected components

fn ArtDFS(v, p) {

 low[v] = pre[v] = time

 dfs_deg[v] = 0

 time += 1

 for u in N[v] {

 if u == p { continue }

 if pre[u] is None

 dfs_deg[v] += 1

 dfsAP(u, v);

 if pre[v] <= low[u] { is_art[v] = true }

 low[v] = min(low[v], low[u]);

 else

AACPP 2025 Mateusz Gienieczko

 low[v] = min(low[v], pre[u])

}

AACPP 2025 Mateusz Gienieczko

Graphs – biconnected components

How to find bridges?

One line change – the condition is pre[v] < low[u] for (𝑣 , 𝑢) to be a bridge.

The same algorithm works with depth instead of preorder times.

AACPP 2025 Mateusz Gienieczko

Graphs – biconnected components

AACPP 2025 Mateusz Gienieczko

Graphs – biconnected components

Some properties:
• any biconnected component can be decomposed to a cycle and then

additional paths that connect vertices from the cycle or earlier paths;²
• if an articulation point belongs to two biconnected components, any path

between two vertices in different components passes through that vertex;

²This is called an ear decomposition. See: https://en.wikipedia.org/wiki/Ear_decomposition
AACPP 2025 Mateusz Gienieczko

https://en.wikipedia.org/wiki/Ear_decomposition

Graphs – strongly connected components

In a directed graph a connected component is not really coherent.

We define strongly connected components as maximal sets of vertices where
there exists a pair between each pair of vertices (bidirectional).

These are important. We’ll talk about them next time 😉.

AACPP 2025 Mateusz Gienieczko

See you in two weeks

PAW and CAT: 17.06.2025,
10:00 AM

Good luck!

AACPP 2025 Mateusz Gienieczko

	AACPP 2025
	Week 5: Graphs

	Third round – survey
	Fourth round
	TUV – Tunnel Vision
	TUV – Tunnel Vision
	TUV – Tunnel Vision
	TUV – Tunnel Vision
	TUV – Tunnel Vision
	TUV – Tunnel Vision
	FAL – Falling Cats
	FAL – Falling Cats
	FAL – Falling Cats
	FAL – Falling Cats
	FAL – Falling Cats
	FAL – Falling Cats
	FAL – Falling Cats
	FAL – Falling Cats
	Recall the plan
	Graphs
	Graphs
	Graphs – directed/undirected
	Graphs – directed/undirected
	Graphs – input representation
	Graphs – in-memory representation
	Graphs – in-memory representation
	Graphs – paths, cycles
	Graphs – connected components
	Graphs – DFS
	Finding components
	DFS tree structure
	Detecting cycles
	BFS – shortest paths
	Graphs – weights
	Graphs – Dijkstra
	Graphs – Dijkstra
	Graphs – Dijkstra
	Graphs – Dijkstra
	Graphs – negative weights
	Graphs – Bellman-Ford
	Graphs – Bellman-Ford
	Graphs – Floyd-Warshall
	Graphs – Minimal Spanning Tree
	Graphs – Kruskal
	Graphs – Prim
	Graphs – Prim
	Graphs – Prim
	Graphs – bridges and articulation points
	Graphs – biconnected components
	Graphs – biconnected components
	Graphs – biconnected components
	Graphs – biconnected components
	Graphs – biconnected components
	Graphs – biconnected components
	Graphs – strongly connected components
	See you in two weeks

