
TECHNISCHE UNIVERSITÄT MÜNCHEN

Fakultät für Informatik

Lehrstuhl III - Datenbanksysteme

Incremental Ontology-Based Integration for
Translational Medical Research

Diplom-Informatiker Univ.
Fabian Praßer

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender:

Prüfer der Dissertation:
1.
2.
3.

Die Dissertation wurde am bei der Technische Universität München
eingereicht und durch die Fakultät für Informatik am angenommen.

Abstract
Translational medical research is an emerging concept that aims at transforming discov-
eries from basic sciences into diagnostic and therapeutic applications. In the opposite
direction, clinical data are needed for feedback and as stimuli for the generation of
new research hypotheses. This process is highly data-intensive and centered around
the idea of integrating data from basic biomedical sciences, clinical sciences and pa-
tient care. Therefore collaboration and information exchange is needed between previ-
ously separated domains, many of which are themselves fragmented. The complexity
and heterogeneity of the involved data is constantly growing with increasing scientific
progress and related biomedical structures and processes are subject to rapid change.
For this reason, structured domain knowledge, e.g., from knowledge bases, is often
required in order to adequately understand and interpret results. Furthermore, inte-
gration solutions have to be robust and flexible enough to handle changes in data and
metadata. Security and privacy aspects are highly relevant and require the incorpora-
tion of complex access control mechanisms as well as concepts for data anonymization
and pseudonymization.

In this thesis, first an ontology-based methodology for integrating heterogeneous
biomedical datasets in a distributed environment is proposed. It advocates an incre-
mental approach that builds upon data coexistence and aims at carrying out seman-
tic integration in a demand oriented and flexible manner. The importance of struc-
tured domain knowledge is addressed by blurring the boundaries between primary data
and metadata. Data federation allows researchers to maintain control over their local
datasets and is also utilized to model a fine-grained access control mechanism. Ro-
bustness is achieved by designing the system as a set of loosely coupled components,
which can be added, altered and removed independently of each other.

Second, an implementation based on a large distributed graph of uniquely identi-
fiable nodes is presented. The groundwork is laid by novel techniques for mapping
biomedical data sources into the graph. As all further components require an inte-
grated access to the global data, several compile-time and and run-time optimization
techniques for the efficient distributed execution of queries are presented. Manual se-
mantic integration is supported by concepts for browsing, annotating and mapping
data items. Automated semantic integration and data transformation is supported via
a flexible workflow engine, which builds upon the querying interface. Here, result sets
can be post-processed with a scripting language that provides domain-specific opera-
tors, such as semantic reasoning and data anonymization. The resulting transformed
data can be re-integrated into the graph.

Finally, a prototypical implementation is presented which integrates the individual
components into a comprehensive data integration solution. It provides a querying
interface for applications and allows to administer the data space via a unified graphical
user interface for data integrators.

Contents

1 Introduction 1
1.1 Problem statement . 1
1.2 Contributions . 3
1.3 Outline . 5

2 The Challenge: Integrating Data for Translational Medical Research 7
2.1 Use Cases . 7

2.1.1 Data Retrieval and Integration of Knowledge Bases 7
2.1.2 IT-Support for Patient Recruitment 8

2.2 Challenges and Requirements . 9
2.2.1 Distribution, Autonomy, Heterogeneity 9
2.2.2 Continuous Evolution . 11
2.2.3 Data Privacy and Security . 11

2.3 Related Work . 12

3 The Solution Concept: Incremental Ontology-based Integration 15
3.1 Related Work . 15

3.1.1 Ontology-based Integration . 15
3.1.2 Dataspaces . 17

3.2 Incremental Ontology-based Integration 18
3.2.1 Basic Ideas . 18
3.2.2 Semantic Web Technologies . 20
3.2.3 Important Properties of RDF and SPARQL 22
3.2.4 Technical Requirements . 22

3.3 Concluding Remarks . 26

4 Laying the Groundwork: Accessing Biomedical Data Sources 27
4.1 Related Work . 27
4.2 Challenges and Requirements . 30
4.3 Relational DBMS . 31

4.3.1 Transformation Operators . 32
4.3.2 Transformation Process . 36
4.3.3 Evaluation . 40

4.4 HL7 Message Streams . 43
4.4.1 Transformation Process . 43
4.4.2 Evaluation . 45

4.5 RDF Databases . 46
4.6 Conclusions and Suggestions for Further Work 48

i

CONTENTS

5 Maintaining Local Autonomies: Distributed Query Processing 49
5.1 Related Work . 50
5.2 Indexing . 54

5.2.1 Type Information . 55
5.2.2 Index Organization . 56
5.2.3 Partition Trees . 57

5.3 Query Optimization . 57
5.3.1 Plan Simplification . 59
5.3.2 Post-processing . 63

5.4 Query Execution . 64
5.4.1 Reducing the Volume of Intermediate Results 64
5.4.2 System Architecture . 68

5.5 Evaluation . 69
5.5.1 Evaluation of Scalability . 70
5.5.2 Evaluation with FedBench . 77

5.6 Conclusions and Suggestions for Further Work 79

6 Bridging the Gaps: Semantic Integration and Data Transformation 81
6.1 Manual Annotation and Mapping . 81

6.1.1 Related Work . 81
6.1.2 Navigating the Dataspace . 82
6.1.3 Editing Low-Volume Data . 84

6.2 Automated Data Transformation . 84
6.2.1 Related Work . 85
6.2.2 Basic Concepts . 86
6.2.3 Optimizations . 88
6.2.4 Evaluation . 93

6.3 Semantic Reasoning . 99
6.3.1 Vocabularies . 100
6.3.2 Evaluation . 102

6.4 Data De-Identification . 108
6.4.1 Related Work . 109
6.4.2 Implementation Framework . 113
6.4.3 The FLASH Algorithm . 118
6.4.4 Evaluation . 122

6.5 Conclusions and Suggestions for Further Work 127

7 Putting It All Together: A Prototypical Implementation 129
7.1 Implementation Details . 129

7.1.1 Data Architecture . 129
7.1.2 Permission Model . 130
7.1.3 System Architecture . 131
7.1.4 Network Protocol . 134

7.2 A Graphical User Interface . 135
7.3 Conclusions and Suggestions for Further Work 139

8 Summary and Outlook 141

ii CONTENTS

List of Figures

1.1 Network medicine [Bar07] . 2

2.1 Graph structured biomedical data [LMM+05,KG00] 8
2.2 Continuous evolution within the biomedical domain [MZV+09] 10

3.1 Incremental vs. schema-first in a volatile domain [WLP+09] 17
3.2 Incremental ontology-based integration workflow 18
3.3 Layered representation of explicit and implicit knowledge 19
3.4 Example RDF triples and graph . 20
3.5 Example SPARQL query and Basic Graph Pattern 20
3.6 Distributed RDF databases . 23
3.7 A simplified scenario implemented with Semantic Web technologies . . 24

4.1 Techniques for mapping biomedical databases to RDF 27
4.2 Relational data and RDF representations 30
4.3 Generic relational data and RDF representations 31
4.4 Relational many-to-many relationship and RDF representations 31
4.5 A set of RDF data items . 33
4.6 Example for the produce operator . 34
4.7 Transforming relational data . 39
4.8 Relational schema for the LUBM dataset 41
4.9 RDF schema for the LUBM dataset . 42
4.10 (1) Execution times and (2) result sizes for the LUBM dataset 42
4.11 Example HL7 V2 message of type ADT-A01 43
4.12 Architecture of the HL7 to RDF transformer 44
4.13 Excerpt of the representation of the message from Figure 4.11 44
4.14 Processing (1) a batch of messages and (2) an individual message . . . 45
4.15 Execution times with (1) an empty dataset, (2) 200k triples 46

5.1 Techniques for querying distributed RDF repositories 50
5.2 A two-dimensional Q-Tree . 54
5.3 Join of two MBBs over the subject-dimension 54
5.4 Local and global prefix trees . 55
5.5 Partition trees, partition table and system table 56
5.6 Initial plan for the example query . 58
5.7 Sideways information passing in the example query 62
5.8 Simplified query execution plan . 63
5.9 Reorganization and pushdown of operators 64
5.10 Subqueries for the example query . 64
5.11 Example for applying a reducer . 65
5.12 Example query with an unselective subquery 66

iii

LIST OF FIGURES

5.13 System architecture . 69
5.14 Query patterns . 72
5.15 Index size in case of natural partitioning 73
5.16 Time needed for query optimization . 74
5.17 Time needed for query execution . 74
5.18 Average execution times for the different query classes 75
5.19 Transferred data volumes for the different query classes 76
5.20 FedBench query LS-4 . 77

6.1 Index structure for navigating an RDF graph 84
6.2 Example data transformation script . 85
6.3 Example set of transformation scripts 88
6.4 Optimization of data transformation scripts - Step 1 89
6.5 Optimization of data transformation scripts - Step 2 89
6.6 Dependencies between the example transformation scripts 90
6.7 Example execution plan as a UML activity diagram 90
6.8 Example scenario . 94
6.9 Example execution plan . 95
6.10 FIFO scheduling without local parallelism and local execution 95
6.11 FIFO scheduling with local parallelism and local execution 96
6.12 Windowed scheduling with local parallelism and local execution 97
6.13 Windowed scheduling with local parallelism and global execution 98
6.14 Transformation script including OWL reasoning 99
6.15 Materializing implicit knowledge for an ABox of increasing size 104
6.16 Materializing implicit knowledge for a TBox of increasing size 106
6.17 Transformation script including data de-identification 109
6.18 Generalization hierarchies . 110
6.19 Lattice and predictive tagging . 111
6.20 Example for the Incognito algorithm 112
6.21 Example for the OLA algorithm . 113
6.22 Example data representation . 114
6.23 Roll-up and Projection . 115
6.24 Example for the FLASH algorithm . 121
6.25 Effectiveness of optimization levels . 122
6.26 Comparison of average execution times 123
6.27 Execution times for 2 ≤ k ≤ 10 . 125
6.28 Distribution of the execution times of OLA for 2 ≤ k ≤ 10 126

7.1 UML class diagram of the data architecture 130
7.2 UML class diagram of the permission model 131
7.3 Mediator and wrapper architecture . 132
7.4 Conceptual architecture . 133
7.5 Important message types of the network protocol 134
7.6 Editing data elements . 136
7.7 Browsing and editing the dataspace . 137
7.8 Extracting data from a SQL database 138
7.9 Browsing the index structure . 139

iv LIST OF FIGURES

List of Tables

4.1 Mapping SQL to XML Schema data types 34
4.2 Example datasets from the Linked Open Data cloud 47
4.3 Links between the example datasets . 47

5.1 Characteristics of the evaluation datasets 70
5.2 Result cardinalities . 72
5.3 Characteristics of the FedBench datasets and queries 77
5.4 Execution times [s] and reduction factors [%] for the FedBench benchmark 78
5.5 Comparison with FedX [SHH+11] and SPLENDID [GS11] 78

6.1 Overview over the IO interface provided for scripting 86
6.2 Overview over the TF interface provided for scripting 88
6.3 Static and dynamic parameters for load distribution 91
6.4 Comparison to the theoretical optimum (1882 s) 98
6.5 Datasets utilized for ABox reasoning 103
6.6 Datasets utilized for TBox reasoning 106
6.7 Example dataset . 108
6.8 Tabular generalization hierarchy . 114
6.9 Possible transitions . 117
6.10 Evaluation datasets . 121
6.11 Execution times of the FLASH algorithm [s] 124
6.12 Performance of Incognito and OLA compared to FLASH [factor] 124
6.13 Memory consumption [MB] . 125

v

CHAPTER 1

Introduction1

Scientific discoveries in medicine often begin at „the bench”, i.e. in the laboratory,
where foundational scientists study disease at a molecular or cellular level. Their dis-
coveries need to be transformed into diagnostic and therapeutic applications at the
patients’ „bedside” [NIH]. This process is complex and time-consuming, comprising
successful tests in clinical studies. The literature usually identifies two „Translational
Gaps” between the different areas involved: from basic biomedical research to clinical
research and from clinical research to (community) practice [Zer05]. In the oppo-
site direction, clinical observations are needed at the bench. The former director of
the U.S. National Institutes of Health (NIH) has characterized this by stating: „At
no other time has the need for a robust, bidirectional information flow between ba-
sic and translational scientists been so necessary“ [Zer05]. While basic researchers
provide the clinicians with new knowledge for treating their patients, they need a
clinical assessment of their suggestions. Clinical trials and epidemiological registries
(population and patient oriented disease-specific data collections [Fei01, Van08]) are
substantial examples for this feedback. Moreover, trials and registries are valuable for
the generation of hypotheses from observations. In this field, biobanks (storage facili-
ties for biomaterial samples with annotating data) play an important role, as analyses
of biosamples provide insights into cellular mechanisms at fine grained levels includ-
ing genetic information. Improving the connection between observations and findings
from basic and clinical research not only accelerates the translational process but also
helps to understand complex multifactorial correlations and close numerous knowledge
gaps [Woo08]. As the described processes are highly complex and have to be applied
at a broad scale, information technology is one of the key enablers for translational
medical research [PES09,Sar10,But08].

1.1 Problem statement
Translational medical research aims at integrating diverse scientific areas (biochem-
istry, molecular biology, medicine, statistics, epidemiology and others). An example
for such an interdisciplinary research process is network medicine. The basic idea is to
investigate disease mechanisms by building and correlating networks. As is shown in
Figure 1.1, cellular components are related by regulatory, protein-protein and metabolic
interactions. On a social level, individuals are, e.g., related by their social intercon-
nections. The diseases themselves can be organized in a network according to similar

1Parts of the work presented in this chapter appeared in [PWL+11b] and [PWL+11a]

1

CHAPTER 1: Introduction

genetic origins. The correlations between these individual networks give new insights
into the classification and understanding of diseases [Bar07].

Figure 1.1: Network medicine [Bar07]

Already this example shows that translational research is highly data intensive; it
requires patient-centric phenotype data (electronic patient records, data from clini-
cal studies) as well as information from molecular biology. These data need to be
linked to each other, which requires highly complex integration efforts. Furthermore,
the complexity and heterogeneity of relevant data is constantly growing with increas-
ing scientific process. Modern datasets include up to millions of different variables.
Analytical methods like genomic, transcriptomic, proteomic or metabolomic analyses
(„omics“) produce large amounts of data, which are stored in data or knowledge bases
throughout the world (e.g. [UNI,KEG,OMI]). At the same time trials or registries also
continuously generate data at high volumes. This leads to a situation in which neither a
single researcher nor a group of researchers is able to possess enough domain knowledge
to adequately understand and interpret results. The required contextual knowledge is
distributed among diverse sources, such as public knowledge bases, terminologies, on-
tologies or scientific publications [PES09]. Typical use cases for integration solutions
include the linkage and mapping of phenotypes and genotypes from research or clinical
systems, IT support for clinical trials, the provision of data for statistical analyses and
the integration of knowledge bases [EKP09]. An integration solution therefore needs
to not only integrate data from patient care, clinical research and basic sciences, but
also comprehensive metadata and domain knowledge.

There are several further domain-specific challenges such as data privacy, security
and the fact that relevant data is complex, distributed, heterogeneous and constantly

2 Problem statement

CHAPTER 1: Introduction

changing. For example, information about biomolecular pathways often resembles
graph structures, which lead to unique challenges for data management. The separa-
tion of domains (i.e., health-care, clinical science, basic sciences), which are themselves
fragmented (e.g., into practitioners, clinical care, ambulatory care), has lead to a land-
scape of distributed, autonomous information systems managing very heterogeneous
datasets. Furthermore, legacy-systems and ad-hoc solutions without adequate integra-
tion concepts are in widespread use [AAT08]. To a restricted extent, well-understood
integration architectures, such as data warehouses or federated solutions are being de-
ployed to provide integrated views on distributed sources of information. Standards
for the exchange of medical data exist (e.g. HL7 and DICOM), but inter-institutional
communication is still mainly administrative and billing oriented. As structures and
processes in the biomedical domain are subject to rapid change, e.g., caused by the
introduction of new diagnostic or therapeutic procedures [LK04], the developed con-
cepts have to be robust and adoptable at the same time. As the different domains
and groups are focusing on their specific research goals, based on latest and adapted
domain knowledge, it is very difficult to effectively standardize or adopt commonly
needed data models and structures [KB09].

Security and privacy aspects are highly relevant and related to complex ethical,
legal, and socio-political questions. Access rights are dynamic and, especially in col-
laborative structures, may be complex: In health care, access to patient data is re-
stricted to the context of treatment whereas in research, the informed consent is a
key principle. The latter requires the documentation of the willingness of a subject
to participate in a study, after having been informed about all relevant aspects of the
research project [GCP]. Integration systems have to provide solutions which allow
to balance between the freedom of research, the rights of patients and the usability
of data [AAT08]. On the one hand, researchers in the biomedical domain are will-
ing to share their data but, on the other hand, they are not willing to give up full
control [WMM+09]. It is therefore often necessary to implement distributed systems,
which access data sources in conformance with local authentication models.

1.2 Contributions
Within the context of these domain-specific challenges and requirements, previous in-
tegration solutions are not flexible enough (e.g., [Wyn08,WWS+10] or require a huge
amount of time and effort (e.g., [ZRGD10]). The aim of this work is to investigate to
which extend modern methods from information management can be utilized to effi-
ciently provide and integrate data, information and knowledge for translational medical
research. Particular attention is paid to aspects of heterogeneity, volatility and auton-
omy. The groundwork of this thesis is laid by an integration methodology which allows
to utilize the expressiveness of ontologies in an incremental manner within a distributed
environment. Second, an implementation concept is presented and associated techni-
cal challenges are identified. Finally, solutions for these challenges are proposed and
a prototypical implementation is presented which provides a comprehensive graphical
interface. In detail, the contributions of this thesis are as follows:

Incremental ontology-based integration: This novel integration
methodology is oriented towards the requirements and challenges of the application
domain. It utilizes the expressiveness of ontologies to bridge semantic heterogeneity

Contributions 3

CHAPTER 1: Introduction

that originates from the distributed and autonomous manner in which data is col-
lected throughout the domain. As the deployment and maintenance of ontology-based
solutions often requires a large amount of time and effort, the concept proposes an in-
cremental approach. The basic idea is that an integrated access to co-existing datasets
is already useful for researchers. As requirements and datasets in translational re-
search are subject to constant change, further semantic integration efforts are carried
out in an incremental and demand-oriented manner. A concept is presented which
implements this methodology within a distributed environment based on Semantic
Web technologies, i.e., the Resource Description Framework (RDF) data model and
the SPARQL query language. The resulting system is flexible and built upon loosely
coupled components. It avoids unnecessary work and is able to quickly reflect changes.

Access to biomedical data sources: The implementation concept is based on
the graph-structured RDF data model. We therefore propose different concepts for
transforming biomedical datasets into RDF. Because relational database systems are
the dominant storage solution within the domain, the thesis focusses on a novel ap-
proach for this data model. In conformance with the overall goals of the methodology,
it is centered around flexibility and usability and is solely based within the RDF world.
To this end, the approach provides means to apply meaningful transformations to the
data which still preserve the original context of the data items. Furthermore, a generic
approach for integrating messages which conform to the HL7 standard for information
exchange between information systems in patient care is presented. It makes use of the
fact that the syntax of HL7 is standardized and utilizes a third-party machine-readable
representation of its specification to transform messages into an RDF representation.
None of the developed techniques requires any upfront knowledge of the schema or
semantics of the underlying systems and initial mappings can be generated automat-
ically. RDF databases, such as publicly available knowledge bases and vocabularies,
can be directly integrated into the system.

Distributed query processing for RDF databases: Querying a set of dis-
tributed RDF databases is one of the key functionalities of our approach. It is not
only the primary interface available to applications or end users, but also forms the
backbone of the developed concepts for further semantic integration. Therefore, several
compile-time and and run-time optimization techniques for the distributed execution
of SPARQL queries are proposed. The concept aims at integrating a very diverse set of
data sources without the need for upfront schema-level knowledge. To this end, query
processing is based on a purely syntactical synopsis which is generated automatically.
One of the basic ideas of our approach is to implement loose coupling by spreading
the data over several distributed repositories. This separation is also utilized to im-
plement a fine grained permission model, while the ability of the RDF data model to
cross-reference other datasets is utilized to "glue" the repositories together. As this in-
herent distribution strongly increases the complexity of join processing, the presented
optimization techniques are specifically targeted on this problem.

Semantic integration and data transformation: Following the incremental
and demand-oriented process advocated by the methodology, several approaches for
annotating, mapping and transforming data items are presented. This includes an
approach for manual data editing, which is feasible within a challenging environment
consisting of a large graph structure with millions of nodes. Based on the primary data

4 Contributions

CHAPTER 1: Introduction

and user-provided annotations, a comprehensive mechanism for semantic integration
is proposed. The basic idea is to provide a scripting language, which can access the
underlying data space in an integrated manner via a SPARQL interface. The individual
scripts are executed by a workflow engine, which tries to maximize parallelism and
to spread the load equally amongst the available computing nodes. The scripting
environment provides several operators to post-process the results of these queries
and to persist newly generated and transformed data. The provided operators include
domain-independent functions (e.g., semantic reasoning) and domain-specific functions
(e.g., data anonymization). As privacy is a central requirement within the application
domain, we focus on an efficient implementation of a data de-identification operator.

Prototypical implementation: Finally, the feasibility of the approach is shown
by presenting a prototype which integrates the previously described components into
a comprehensive data integration solution for translational medical research. This
includes the description of an overall system architecture which is build upon a data
architecture consisting of primitives that are utilized to compose the system and to
implement a fine-grained permission model. The prototype includes a graphical user
interface for data integrators. This workbench allows to manage all aspects of the
solution, to perform annotating- and mapping-tasks, to define data transformation
and integration scripts as well as to monitor the overall state of the system.

1.3 Outline
The remainder of this thesis is organized as follows:

• Chapter 2 gives an overview over information integration efforts within the do-
main of translational medical research. It describes major use-cases as well as
challenges and discusses related work. 2

• Chapter 3 presents the methodology of incremental ontology-based integration,
which is solely oriented towards the application domain. It further presents an
implementation concept, which forms the groundwork for the approaches and
techniques presented in this thesis. 1

• Chapter 4 describes different approaches for exporting common biomedical data
sources into the graph-structured data model underlying the implementation
concept. 3

• Chapter 5 covers distributed query processing and presents a novel index struc-
ture as well as various compile-time and run-time optimization techniques. 4

• Chapter 6 presents a comprehensive approach to semantic integration and data
transformation, which builds upon a dedicated workflow engine. The chapter
focusses on the de-identification of biomedical datasets. 5

2Parts of the work presented in this chapter appeared in [PWL+11b] and [PWL+11a]
3Parts of the work presented in this chapter appeared in [PWL+11a] and [PKKK12]
4Parts of the work presented in this chapter appeared in [PWL+11a] and [PKK12]
5Parts of the work presented in this chapter appeared in [KPE+12b] and [KPE+12a]

Outline 5

CHAPTER 1: Introduction

• Chapter 7 describes a prototype implementation, which unifies the developed
techniques and provides an integrated graphical user interface oriented towards
data integrators.

• Chapter 8 concludes the thesis.

6 Outline

CHAPTER 2

The Challenge: Integrating Data for Translational Medical
Research

This section provides an overview over information integration efforts for translational
medical research. It describes common use cases and covers domain-specific challenges
and requirements. Finally, an overview over related work is presented, which includes
important infrastructure projects, approaches oriented towards clinical data and solu-
tions from the area of bioinformatics.

2.1 Use Cases
There are several ways in which a comprehensive domain-specific information integra-
tion solution can support translational medical research processes. Typical use cases
include the annotation, linkage and mapping of phenotypes and genotypes from re-
search or clinical systems, the provision of data for statistical analyses and the integra-
tion of knowledge bases. Clinical trials can be supported by assessing their feasibility
through estimating the potential number of patients with a predefined profile, which
attend an institution during a certain time period. In the following, these important
use cases will be explained in more detail.

2.1.1 Data Retrieval and Integration of Knowledge Bases
Due to the complexity of relevant data and processes, knowledge-based methods are of
high relevance for translational medical research. Therefore, the provision and integra-
tion of knowledge from different domains and scientific areas is an important require-
ment for several applications. Major data sources of interest comprise knowledge bases
with biomolecular knowledge, domain models and ontologies, as well as (cross-domain)
metadata and terminologies. Many of these data are graph-structured, including, e.g.,
metabolic pathways or interaction networks (e.g., gene-gene-, gene-protein- or protein-
protein-interactions) from molecular biology. Figure 2.1 presents two examples for
such graph-structured datasets. It shows an excerpt of RxNorm [LMM+05], which is
a standardized nomenclature for pharmacology, as well as a subgraph of a metabolic
pathway from KEGG (Kyoto Encyclopedia of Genes and Genomes) [KG00], which is
a knowledge base for the systematic analysis of gene functions.

A domain-specific integration solution must be able to integrate a very diverse set of
knowledge bases. Furthermore, it needs to provide means to define mappings and link
the knowledge to data from other contexts, such as research databases, biobanks or
clinical systems. In this area, the important role of modern data management concepts

7

CHAPTER 2: The Challenge: Integrating Data for Translational Medical Research

has been widely understood. For example, in [Sar10] the author states that „[the] need
to identify relevant information from multiple heterogeneous data sources is inherent
in translational medicine [...]. [...] information retrieval systems could be built on
existing and emerging approaches from within the biomedical informatics community,
including [...] Semantic Web technologies”.

Figure 2.1: Graph structured biomedical data [LMM+05,KG00]

These individual building blocks ultimately aim at the provision of integrated in-
formation for conducting statistical analyses. Here, an integration solution also needs
to support research-specific, highly structured data collections. These research data-
bases are often built by reusing (i.e., transferring and annotating) data which has
been collected in the context of patient care (secondary use). After a data collection
phase, hypotheses are generated and tested based on complex relationships between
demographic, phenotypic and biomolecular parameters. This requires the provision of
a querying language and data transformation mechanisms, which allow to represent
complex relationships and to evaluate complex expressions.

2.1.2 IT-Support for Patient Recruitment
Patient recruitment is a well-known bottleneck when conducting clinical trials that
can lead to significant delays [CSF+07]. There are different ways to support clinical
trails in this context. First, the feasibility of conducting a trial at a specific location
can be evaluated by estimating whether the required number of suitable trial subjects
will be available within a predefined timeframe. Second, patient recruitment can be
supported actively by providing means to query for potential study participants based
on structured information or to implement an alert mechanism as, e.g., demonstrated
in [EJC+05,Mil06,WBHF03].

Patient recruitment is based upon a catalog of inclusion and exclusion criteria,
which have to hold for any potential participant. Suitable candidates have to fulfil all
inclusion and none of the exclusion criteria. These criteria are normally provided in an
unstructured manner (i.e., text) and are part of a trial’s study protocol, which defines
the process of conducting the study. Clinical trials are classified according to their
phase. The purpose of a phase-1 trial is to investigate the tolerability, absorption and
mode of action of a substance with a small number of study participants. A phase-2
trial investigates the efficacy of a substance for the treatment of specific diseases as

8 Use Cases

CHAPTER 2: The Challenge: Integrating Data for Translational Medical Research

well as the optimal dose and side effects. The goal of a phase-3 trial is to statistically
prove the efficacy and tolerability of a substance with a larger cohort of thousands
of voluntary participants including a control group (placebo). Finally, a phase-4 trial
investigates the broader application of a substance and tries to confirm risk-benefit
analyses and find rare side effects.

The feasibility of estimating patient accrual rates and performing cohort selec-
tion based on electronic information has been confirmed in several publications, e.g.,
[DLMT+10,OK07]. The authors of [DMM09] analyzed relevant queries issued by re-
searchers within a timeframe of three years and determined the most important cate-
gories of information. The most important types of data were demographics, diagnoses,
procedures, laboratory results and medication. This shows that clinical trials can be
successfully supported by utilizing structured electronic information from an ADT sys-
tem, Clinical Trial Management Systems, Electronic Medical Records and further data
from Laboratory and Pathology Information Systems. As eligibility criteria are often
very complex [RTCS10], a patient cohort selection tool can benefit from providing a
highly expressive querying mechanism on semantically rich data. Furthermore, the sys-
tem needs to provide means for complex data transformations, access to metadata and
the ability to model temporal constraints [DMM09]. For the automated evaluation of
eligibility criteria, models for computable criteria as well as transformation techniques
for free-text criteria are being developed [TPC+11].

2.2 Challenges and Requirements
There are several domain-specific challenges and requirements, which need to be con-
sidered when implementing the described use cases. Firstly, there are well-known
challenges for integration solutions themselves, which are particularly prevalent in the
biomedical domain. Secondly, the continuous evolution within the domain demands
for robust and flexible approaches. Finally, privacy and security aspects are of central
importance.

2.2.1 Distribution, Autonomy, Heterogeneity
Distribution and autonomy as well as the resulting heterogeneity are well-known chal-
lenges for information integration systems and solutions are often characterized along
these orthogonal axes [SL90]. As translational medical research requires to integrate
data across domain and institution boundaries, these challenges are particularly preva-
lent. The different domains, some of which are themselves fragmented, collect and
manage data in different ways, e.g., due to different operational procedures, cultures
or legal and regulatory requirements. Therefore, relevant data is highly heterogeneous
in terms of their underlying data models, structure, vocabularies and semantics.

Throughout the domain, controlled vocabularies are only in limited use. While
in the area of bioinformatics standard terminologies are more wide-spread, they are
mostly used for billing purposes in patient care. Furthermore, in the clinical context,
essential findings are often represented in free text, which, although following a certain
organization, only implicitly represents structure and vocabularies. If structured forms
are being used, they are often not harmonized between different departments. In re-
search, structured forms and standardized terminologies are more prevalent, but still
the integration of data collected in different studies tends to need substantial efforts

Challenges and Requirements 9

CHAPTER 2: The Challenge: Integrating Data for Translational Medical Research

and harmonization [WLP+09,FBR+10]. A reliable and secure management of patient
identities across different institutions is often missing. Even to attribute all existing
data to a specific patient within one institution is often a problem. Modern analytical
biomolecular methods like genomic, transcriptomic, proteomic, or metabolomic anal-
yses produce large volumes of highly complex data. Scientific progress has reached a
point at which background knowledge is essential to effectively understand and inter-
pret results [PES09]. The relational model is well suited for representing structured
data from health care and clinical research, but other data models are also relevant,
e.g., for managing biomolecular data or ontologies.

Figure 2.2: Continuous evolution within the biomedical domain [MZV+09]

These challenges show that an information integration solution for translational
medical research must be based upon a highly flexible data model which is able to
represent heterogeneous data with different degrees of structure. The integration of
knowledge has to be enabled by providing means to enrich data with semantics and
integrate them with knowledge bases [Sar10]. The integration of diverse types of data
requires an expressive data model which is able to represent complex semantic relation-
ships amongst primary data, knowledge bases, ontologies, metadata and terminologies.
To this end, it is also necessary to implement powerful techniques for semantic inte-
gration which allow to bridge semantic gaps. On an architectural level, a solution has
to be able to integrate data sources, which are distributed amongst different technical
and organizational structures. Researchers in the biomedical domain are often willing
to share their data but, on the other hand, they are not willing to give up full control
over their datasets [WMM+09]. Therefore, the access autonomy of local data sources
must not be compromised, which requires distributed systems that access the local
data sources only on demand and in conformance with local authorization models.

10 Challenges and Requirements

CHAPTER 2: The Challenge: Integrating Data for Translational Medical Research

2.2.2 Continuous Evolution
System requirements in the biomedical domain are subject to rapid change. Already
in health care environments, medical structures and processes are continuously evolv-
ing due to new diagnostic or therapeutic procedures [LK04]. Complexity is increased
by the descriptive nature of life sciences, especially biology, which lack an underly-
ing mathematical model [KB09,Laz02]. This situation leads to unique challenges for
software development [KB09]. Even fundamental definitions of the discipline, e.g. the
definition of „gene”, can change, making long-term assumptions for data structures un-
reliable. Therefore the question is often what to implement, not how to implement it
and research in life sciences has even been called „by nature, borderline chaotic” [KB09].

In the medical domain, the fact that experts are typically inept to describe the
processes and requirements of their own work, leads to difficulties in software engineer-
ing [WB05,ADB04,FW97]. This is further aggravated by the well-known circumstance
of interdependence between social and technical aspects, in which the introduction of
IT solutions changes workflows and therefore requirements [WB05,LK04]. Researchers
tend to exclusively focus on their specific biomedical research projects, with very little
understanding of technical aspects and IT concepts. Activities with immediate visibil-
ity are prioritized over sustainability, especially in a domain where time to publication
is of utmost importance [KB09]. Therefore „even a software considered a failure by
developers can be considered a success by scientists” [KB09] and the other way around.

Figure 2.2 shows an overview over six different axes, which influence the require-
ments for integration solutions in the biomedical domain. The presented aspects are
continuously changing over time. For example, standards and frameworks are being
updated, the required data is changing due to new hypotheses, information systems
are undergoing frequent schema updates and legal as well as regulatory requirements
are constantly evolving. Therefore, integration solutions have to be very flexible and
robust in order to adopt to new requirements.

2.2.3 Data Privacy and Security
Privacy and security are key non-functional requirements in translational medical re-
search, which lead to challenges at the ethical, legal and socio-political level. For in-
formation management, anonymization and pseudonymization based on the informed
consent of the patient are central concepts for data protection. This includes the pa-
tient’s right to withdraw the consent at any time without consequences for treatment,
possibly leading to the need for the deletion of data. According to the German Federal
Data Protection Act, anonymization means „[...] the alteration of personal data in
a way that information concerning personal or material circumstances cannot be at-
tributed to an identified or identifiable natural person or that such attribution would
require a disproportionate amount of time, expense and effort” [DPA]. Pseudonymiza-
tion is defined as „[...] replacing the data subject’s name and other identifying features
with another identifier in order to render it impossible or extremely difficult to identify
the data subject.” [DPA].

It is important to realize that it is often not sufficient to only remove directly
identifying information, such as name or address. In [Swe02] the author purchased the
voter registration list for Cambridge, MA and linked it with presumably anonymous
medical data released by the Group Insurance Commission of Massachusetts. While

Challenges and Requirements 11

CHAPTER 2: The Challenge: Integrating Data for Translational Medical Research

the voter list contained name, address, zip code, date of birth and gender of the voters,
the medical data covered visit dates, diagnoses, procedures, zip code, date of birth, and
gender. By linking the latter three attributes, she was able to re-identify the medical
record of the current governor of Massachusetts. In an earlier study the author had
shown that the attributes zip code, date of birth and gender uniquely identify about
87% of the U.S. population. This problem becomes even more prevalent when different
data from diverse sources is being integrated [HSR+08].

The dynamic and cooperative structure of access rights also poses challenges for
new and innovative solutions. Without informed consent, access to patient data is only
allowed in the context of treatment, which changes frequently. This complex situation
of permissions and roles, as well as the researchers’ intellectual property rights have to
be considered in any integration solution. The regulatory landscape as well as local,
national and international laws and regulations have to be reflected.

For integration systems these challenges require to implement complex authoriza-
tion concepts, which ensure that all regulatory requirements are fulfilled and that
researchers maintain full control over their local datasets. To balance the individual’s
privacy and the researchers’ needs for high-quality data, techniques need to be incor-
porated which allow to anonymize the integrated datasets with minimal information
loss. Pseudonymization concepts are required to ensure a maximum-degree of data
protection and to implement fine-grained authorization methods, which allow to sepa-
rate access to different types of data, but preserve the option of putting data back into
its original context.

2.3 Related Work
For the retrospective integration of distributed, heterogeneous data collections several
architectural solutions have been developed over the past decades. Most of these are
also being applied in the biomedical domain [LMMS+07]. This includes data warehous-
ing approaches as well as virtual information integration systems, some of which are
built on top of object-oriented middleware solutions. Major research programs have led
to an application and a refinement of these concepts. One of the research programs, the
Clinical and Translational Science Awards (CTSA) program of the NIH/NCRR, aims at
building environments for clinical and translational research [CTS]. Thus, centers with
sophisticated biomedical informatics infrastructures have been established throughout
the US. Projects with objectives similar to those of CTSA are being funded in the EU,
e.g., [MPL07,SIM].

The „cancer Biomedical Informatics Grid“ (caBIG) is an intiative of the US Na-
tional Cancer Institute (NCI) [Wor07]. Its goal is to provide tools for communica-
tion and colaboration in translational cancer research. The project is separated into
different domain-specific and cross-domain workspaces. Amongst others, the domain-
specific workspaces include clinical trial management systems (CTMS), biobanks and
tools for pathology (TBPT) and integrative cancer research (ICR). The cross-domain
workspaces include data standards and vocabularies (VCDE), standards for software
architectures (ARCH) and strategic planning (SP). Some of the components developed
in the context of caBIG are frequently re-used in other projects, such as caDSR (a meta-
data repository for common data elements) or caGrid (a grid-middleware designed for
data exchange and distributed query processing).

12 Related Work

CHAPTER 2: The Challenge: Integrating Data for Translational Medical Research

At Harvard Medical School, cooperating with Partners HealthCare, physical repos-
itories exist for intra-institutional integration of data for patient care, quality assur-
ance and research. The „Research Patient Data Repository” (RPDR) implements a
data warehouse and stores data of 4.6 million patients consisting of 1.2 billion di-
agnoses, procedures and laboratory results. To ensure the patients’ privacy, these
data are de-identified and access is controlled by an institutional review board (IRB,
an independent committee which is responsible for the protection of human subjects
in research [GCP]). After a preliminary enquiry which allows access to aggregated
data only, the review board can also grant access to the complete result set of a
query [Wur11]. Further tools for data processing and analysis are offered based on
„Informatics for Integrating Biology and the Bedside” (i2b2) [MWM+10]. i2b2 allows
researchers to import de-identified patient data into their own repository where they
are allowed to alter it in any way they wish without interfering with other analysis
and cleansing processes. Heterogeneity and change is addressed by building upon a
flexible star schema that reflects properties of the generic EAV (entity-attribute-value)
schema approach [NMC+99]. Concepts can be represented by referencing vocabularies,
terminologies or ontologies. In [DMM09] it has been shown that i2b2 still suffers from
some limitations when used for patient cohort selection, such as querying for temporal
conditions. An integrated view over three i2b2 instances at the different the Harvard
clinics is provided by a federated query tool, called SHRINE [WMM+09].

Vanderbilt University in Nashville TN is also pursuing a typical replication ap-
proach for intra-institutional integration. For this purpose, data originating from the
electronic medical record (EMR) system of the clinic are replicated and linked with
a biobank (BioVU). For privacy reasons the contained clinical data is de-identified.
De-identification is achieved by shifting all dates within patient records, removing po-
tentially identifying attributes and applying a one-way hash to patient identifiers. The
date shift is different between records but constant within one patient’s record. The
removal of the potentially identifying attributes is in compliance with the HIPAA pri-
vacy rules. HIPAA is the US Health Insurance Portability and Accountability Act
from 1996 which contains a section listing 17 attributes that should be removed from
a patient record for de-identification. The removal is automatically performed using
a NLP (Natural Language Processing) tool. The one way hash is used for linking the
research data with biosamples from BioVU and prospectively enables the addition of
follow-up data from the EMR-system without the danger of re-identification [RPB+08].

An example for virtual information integration built on-top of an object-oriented
middleware can be found at the University of Utah. The Federated Utah Research and
Translational Health e-Repository (FURTHeR) implements inter-institutional integra-
tion by spanning an object-oriented logical data model over disparate data sources.
Federated query processing is implemented based on a global in-memory database. It
integrates Utah’s largest patient data repositories (University of Utah, Intermountain
Healthcare, Salt Lake City Veterans Administration Medical Center), public health
resources from the Utah Department of Health as well as genealogic and demographic
data from the Utah Population Database [BML+09]. Local permission models are not
compromised as FURTHeR is integrated with local electronic IRB systems [HHBN10].

There are several other projects, which are often more oriented towards bioin-
formatics use-cases. Some of them utilize components from caBIG or i2b2. Slim-
Prim implements a central repository for the integration of de-identified clinical and

Related Work 13

CHAPTER 2: The Challenge: Integrating Data for Translational Medical Research

biomedical data [VBS+09, VBV+09]. Anduril is a bioinformatics tool which imple-
ments a central repository that is able to execute data analysis workflows, which inte-
grate external components and databases [OLHP+10]. TranSMART is a translational
data warehouse which is implemented on top of i2b2 and runs in a cloud comput-
ing environment [SKKP10, PVS10]. Triton is a data integration solution that has
been evaluated for chronic lymphocytic leukemia research and builds upon the caBIG
toolchain [PBS+10]. Galaxy is a web-based workbench for analyzing and integration
genomic data and provides a workflow engine [GNTT10]. iDASH is a tool for shar-
ing data in a privacy preserving manner [OMBB+12]. Atlas is a bioinformatics data
warehouse which integrates different biomolecular datasets [SHX+05].

Ontology-based approaches for information integration in the context of transla-
tional medical research are a promising new development [Qua07, RCB+07]. Exam-
ples can be found at the Health Science Center at the University of Texas in Hous-
ton [MZV+09] and at the University of California, San Francisco [Wyn08]. Further
projects integrate i2b2 and caBIG with ontology-based concepts [MPB+09, SCT+10]
or are based upon the RDF data model [NBHH08,SCY+07]. As the solution presented
in this thesis is also ontology-based, this related work is covered in more detail in
Section 3.1.

In addition to distribution, integration architectures have to deal with structural and
semantic heterogeneity. This is implemented based on canonical or standardized data
formats and common data models. Already Payne et al. have characterized semantic
interoperability as the fundamental challenge for informatics in the context of clinical
and translational sciences [PES09]. Although many competing standards have been
developed over time, standards that enable the sharing of information between basic
sciences, clinical science and clinical practice have yet to be developed [EP09]. In this
context current research- and development projects are mainly focusing on extensive
data exchange between information systems in the context of treatment and clinical re-
search. Various standards, which partially build upon each other, have been developed
for clinical data, such as the HL7 V3 Reference Information Model (RIM), the HL7
Clinical Document Architecture (CDA), the Continuity of Care Record (CCR) [CCR]
and the Continuity of Care Document (CCD). Further standards exist for informa-
tion exchange in the context of clinical trials, such as the Operational Data Model
(ODM) [CDI]. Under the umbrella of the caBIG a standardization of data elements
(Common Data Elements, CDEs) for capturing and exchanging information in trans-
lational research is being developed [Wor07]. It follows the rules of the ISO / IEC
11179 standard for metadata repositories and aims at covering the complete spectrum
from patient treatment to clinical and basic sciences. The "Biomedical Research In-
tegrated Domain Group" (BRIDG) is an ambitious effort to harmonize various data
standards from healthcare as well as clinical research and has been set up as a joined
collaboration [FEHM08].

14 Related Work

CHAPTER 3

The Solution Concept: Incremental Ontology-based Integration

Ontology-based approaches implement data integration based upon highly expressive
data models with well-defined explicit semantics. A relatively new development in the
context of translational research, they carry a huge potential for the integration of
heterogeneous biomedical data. This chapter presents an abstract integration method-
ology, which utilizes the flexibility of this approach to incrementally integrate heteroge-
neous datasets within a distributed environment. It further presents an implementation
concept which aims at leveraging its inherent flexibility to easily adjust to changes in
data, metadata, use-cases and surrounding conditions.

3.1 Related Work
The proposed integration methodology is built upon key ideas from two different re-
search areas. First, ontology-based integration provides means to integrate highly het-
erogeneous datasets. Second, the dataspaces concept envisions integration solutions
which are centered around the idea of data co-existence and implement an incremental
approach to semantic integration. The ultimate goal is the ability to integrate many,
highly heterogeneous data sources within a constantly evolving environment. This
section presents related work from both of these areas.

3.1.1 Ontology-based Integration
In computer science an ontology is normally defined as an „explicit formal specification
of a conceptualization” [Gru93]. This means that it is a formally defined system of
concepts and their relationships. The statements within an ontology can contain infor-
mation on meta- or type-level (terminological component, or TBox) as well as instance-
level information (assertion component, or ABox). As these different information are
tightly coupled, an ontology can often – depending on its specific implementation – be
represented as a network of objects, i.e., a directed labeled graph. An ontology is also
allowed to contain instance-level information that is not related to the contained meta-
level data items. In information integration, ontologies are traditionally utilized as a
supportive resource for specific aspects of semantic integration (e.g., schema matching).
In contrast, ontology-based integration is a more holistic concept in which ontologies
are utilized to overcome many different types of semantic heterogeneity on data and
schema level, i.e., structural conflicts, data model conflicts, naming conflicts and to
some extend even syntactical conflicts. To this end, primary data is represented in a
common ontological system, e.g., a large directed graph, which means that the sep-
aration of data and metadata (type- and instance-level) disappears. Ontology-based

15

CHAPTER 3: The Solution Concept: Incremental Ontology-based Integration

integration is mostly understood as a top-down process: First, a context-specific on-
tology is designed which takes the role of a global schema. Second, the heterogeneous
datasets (i.e., its data items and concepts) are related (i.e., mapped) to this global
ontology. Further semantic relationships between the data from the different systems
can then be discovered by applying subsumption or inference algorithms. Alterna-
tively, the local datasets can be mapped to their own local ontologies, which are then
harmonized in a further ontology alignment step. A hybrid approach would combine
the use of local ontologies and a global ontology. A comprehensive overview of the
different conceptual design alternatives is given in [WVV+01].

At the Health Science Center of the University of Texas in Houston an infrastructure
has been developed in which different integration tasks as well as further requirements
are solved by utilizing one single ontology [MZV+09]. The solution includes concepts
for authentication, rights management, concept-based navigation and a workflow for
designing Case Report Forms (CRFs). To this end, the explicit semantics of ontologies
is utilized to implement the described functionality based on a single data represen-
tation. The developed ontology is structured into different layers which have been
built on top of each other. Each model covers a specific set of aspects of the appli-
cation domain. For example, the „Integrated Vocabulary Model” harmonizes different
knowledge representation systems (e.g., UMLS) by transforming them into a SKOS
representation. SKOS (RDF: Simple Knowledge Organization System) is a schema for
the definition of controlled vocabularies. The resulting global ontology is then pro-
cessed by a reasoner which is able to infer correspondences between concepts from the
different data sources. Although the separation into individual layers simplifies the
management of ontologies, ontology-based integration remains work-intensive.

Another ontology-based approach has been developed at the University of California,
San Francisco. Here, the basic idea is that an ontology-based system is able to react to
constant change, to integrate highly heterogeneous data and to provide different views
on the integrated data to different groups of users [Wyn08]. Again, its expressiveness
and its ability to integrate highly heterogeneous datasets in a flexible manner motivates
the use of an ontology-centric approach. The system aims at integrating more than 50
complex data sources from different disciplines. Due to the high effort, a comprehensive
mapping onto a global ontology is avoided. Instead, the original data is processed by
an expert system, which performs semantic integration on-demand. This allows to
provide different relationships between the data elements to different users at runtime.
This methodology has been implemented in [WWS+10] and is related to the concept
that is presented within this work (see Section 3.2).

In [MPB+09] a system has been implemented which integrates solutions provided
by the caBIG project by mapping the underlying UML model to an ontology formu-
lated in the Web Ontology Language (OWL) [OWLa]. OWL is a vocabulary for the
graph-structured Resource Description Framework (RDF) data model [MM04], which
forms the basis of many ontology-based applications (see Section 3.2.2 for more de-
tails). In [SCT+10] data federation is implemented over human study databases based
upon caBIG tools, i2b2 and a research-related OWL ontology. TIM is an ontology-
based application for the management and specification of metadata items in clinical
research [MKM09]. Highly specialized approaches include [ABB+07,CVF+06,BEF10].
Some solutions are not explicitly ontology-based but utilize the RDF data model.
BioMANTA implements a central RDF triple store for biomedical data based upon

16 Related Work

CHAPTER 3: The Solution Concept: Incremental Ontology-based Integration

cloud computing technologies [NBHH08]. LinkHub integrates different RDF graphs
and is oriented towards genomic research [SCY+07].

3.1.2 Dataspaces
Dataspaces [FHM05] have been proposed for the integration of many, highly heteroge-
neous data sources without the need for large upfront efforts such as schema integra-
tion. Instead, the integrated access to coexisting data is the central concept. Further
semantic integration is carried out in a demand-oriented and incremental manner („pay-
as-you-go” integration). This stands in contrast to established integration approaches
which require an initial schema integration. Dataspaces have been designed for the
efficient integration of data sources with different degrees of structure. An additional
advantage is that the incremental methodology also increases the ability to react to
changing requirements [WLP+09]. This is shown in Figure 3.1, which presents a con-
ceptual comparison of the incremental and the schema-first approach. The schema-first
approach is characterized by an initial ramp-up phase in which the data is being seman-
tically integrated. In contrast, the incremental approach already provides some initial
functionality, which is then incrementally extended to better meet the requirements.
Within a volatile and rapidly evolving domain, it is necessary to repeatedly adjust
the schema-first approach to prevent a decrease in functionality. As the incremental
approach has been designed to evolve constantly, it has the potential to better adjust
to this conditions.

V
a

lu
e

0%

100%

Investment (time, costs)

offtime

Schema-first

Dataspaces

Figure 3.1: Incremental vs. schema-first in a volatile domain [WLP+09]

The idea of dataspaces is only an abstract concept. Therefore, it has been imple-
mented in many different ways and for different application scenarios. What stands out
is that many implementations are based upon a graph-structured data model. This is
because graphs are highly flexible and well suited for representing data with different
degrees of structure. For example, the system described in [DS06] implements a generic
transformation of all data sources into a large, directed graph structure. Incremental
semantic integration is implemented by defining type- and instance-level rules which
describe dependencies among the nodes and edges in the graph. Further examples for
approaches which implement the dataspace paradigm based upon graph-structures can
be found in [Biz09] and [WLP+09].

Further research has been carried out along the principle design axes of dataspace
systems, which have been presented in [HFM06]. This includes dedicated index struc-
tures [DH07, HMRR08, ND08], metadata models [JB04, CCSS07,Mus08], probabilis-
tic and best-effort services [Don07,DDH08], utilizing user feedback [JFH08,BPE+10,

Related Work 17

CHAPTER 3: The Solution Concept: Incremental Ontology-based Integration

BPF+11] and systems oriented towards web data [TWH09,MJC+07,CRS+07,JDG07,
TWH09]. For translational medical research, a data extraction system has been pro-
posed which focusses on preserving local access autonomies [WLP+09]. Incremental
semantic integration is implemented to better handle the continuously evolving ap-
plication domain and access autonomies are preserved by implementing a distributed
mediator/wrapper architecture. The wrappers are designed to leverage local authenti-
cation and authorization mechanisms via suitable system interfaces and directly access
the underlying databases [Wur11]. The system is oriented towards exchanging patient-
centric information to support the re-use of clinical data for research.

3.2 Incremental Ontology-based Integration
This section first presents a generic concept which unifies ontology-based integration
and the dataspace paradigm. The goal is to define a methodology which is able to
integrate diverse datasets by utilizing ontology-based concepts in an incremental man-
ner. Second, an implementation concept is proposed which is solely oriented towards
the specific requirements and challenges of the application domain. This concept is
based upon the graph-structured Resource Description Framework (RDF) data model.
Therefore, RDF and its most relevant properties will be described in detail.

3.2.1 Basic Ideas
Implementing ontology-based concepts for translational medical research is a challeng-
ing task. This is mainly due to the need to provide comprehensive structural and
semantic integration within a constantly evolving domain. The tight coupling of the
layers involved (data sources, local ontologies, global ontology) leads to a fragile sys-
tem, which is not robust against constantly changing data and metadata and thus
requires frequent adjustments by domain experts. Furthermore, ontology-based so-
lutions generally require a schematic description of each data source, which makes
integrating data with an unknown, unpredictable or unreliable structure impossible.
On the other hand, the fact that the underlying data models are often schema-free
makes them especially suitable for such data. In order to overcome these limitations,
ontology-based concepts can be combined with the dataspace paradigm.

Integrated

View

Extraction

Local

Annotation

Local

Transfor-

mation

Global

Annotation

Global

Transfor-

mation

Datasources

Annotations

WorkflowsAnnotations

Workflows

Figure 3.2: Incremental ontology-based integration workflow

18 Incremental Ontology-based Integration

CHAPTER 3: The Solution Concept: Incremental Ontology-based Integration

Incremental ontology-based integration defines a concept in which ontology-based
integration is carried out iteratively without a static top-down or bottom-up method-
ology. Data sources are transformed into a (probably less meaningful) graph structure
in a (semi-) automatic manner. Initially, a meta-level description does only exist as
far as it can be derived automatically. The resulting global ontology covers type- and
instance-level information, but is characterized by heterogeneity as it lacks semantic
integration. On the other hand, it already contains all of the required primary data.
In a second step, the resulting semantic graph structure is integrated in an iterative
and demand-oriented manner by manually defining local and global annotations as
well as data transformation workflows. These workflows can either integrate local data
items (i.e., define relationships between data items within a single dataset) or global
information (i.e., generate relationships between data items from different sources).
Because of the generic data model, differently structured datasets can be mapped into
the global dataspace and integrated incrementally. As a result, the individual data
sources and metadata are only loosely coupled; changes within one data source might
affect small parts of the dataspace, but the rest remains unchanged within the global
ontology. As can be seen in Figure 3.2 these individual steps can be interwoven and
repeated in an arbitrary manner. If relevant data is too heterogeneous for a certain
use case, it is possible to evolve the ontology accordingly without affecting any of the
previous applications. The system remains robust to changes.

Data Source A Data Source B Data Source C Data Source D

Materialized implicit

knowledge 1

User-defined

annotations

Primary data and

meta data

Materialized implicit

knowledge 2

Figure 3.3: Layered representation of explicit and implicit knowledge
The loose coupling within the system is supported by its distribution. This also

allows to transparently integrate domain-specific integration primitives, such as a
Master-Patient-Index (MPI), terminologies or thesauri, as separate „data sources” into
the dataspace. Data transformation workflows are not only able to represent clas-
sical relationships, such as the transitive closure of class inheritances, but can also
implement domain-specific tasks. For example, a workflow can materialize the equiv-
alence relationship for local patient entities, which are mapped onto a common global
identifier by the master patient index. Transformation workflows are used to define
statements about a set of objects, whereas annotations are utilized to add individual
data items to the global ontology. Transformations as well as annotations are always
managed separately from the primary data. Therefore, the individual components can
(to a large extend) be added and altered independently of each other. Furthermore,
different workflows, annotations and metadata can be defined for different systems,

Incremental Ontology-based Integration 19

CHAPTER 3: The Solution Concept: Incremental Ontology-based Integration

groups of users or projects. Due to this loose coupling and separation, the resulting
dataspace can be seen as a set of layers as shown in Figure 3.3. Here, the primary
data exported by the data sources is shown on layer 1. The additional layers represent
user-defined annotations or implicit knowledge which is materialized by executing data
transformation workflows. This is similar to intensional associations, a concept which
has been proposed for dataspace applications in [SDB10]. All layers can be developed
incrementally and independent of each other.

3.2.2 Semantic Web Technologies
The Semantic Web technology stack of the World Wide Web Consortium (W3C) forms
the backbone of many ontology-based applications. It basically consists of the Resource
Description Framework (RDF) data model [MM04] and related technologies such as
the query language SPARQL Protocol and RDF Query Language (SPARQL) [PS08].
RDF is a graph-structured data model in which information is modelled as a set of
triples. Each triple defines an atomic statement of the form (Subject, Predicate, Ob-
ject) which states that the Subject has a property Predicate with value Object. RDF
defines two different types of nodes. Subjects and predicates are always resources
whereas objects are either resources or literals. Resources are identified by globally
unique Uniform Resource Identifiers (URIs), which are a proper superset of URLs. In
order to simplify the representation of structures which consist of several triples (such
as lists) RDF allows for anonymous resources whose identifiers are only unique within
the local context. Each object is either a resource or a literal. Literals are atomic
values with optional type information (e.g., integer or string). RDF uses XML Schema
data types, but users are also able to define their own.

Propofol state „Liquid“ .

Propofol formula „C12H18O“ .

Propofol sideEffect Apnea .

Apnea label „Apnea“ .

Propofol contraindication Hypovolemia .

Hypovolemia label „Hypovolemia“ .

labelApnea

Propofol

sideEffect

Hypovolemia

contraindication

state

formula

label

„Apnea“

„Liquid“

„Hypovolemia“

„C12H18O“

Figure 3.4: Example RDF triples and graph1

An RDF graph is a directed labeled graph in which subject and object are labeled
nodes and predicates are directed, labeled edges ranging from the subject to the ob-
ject. Figure 3.4 shows an example set of RDF triples as well as the resulting RDF
graph, which encodes information about drugs and their side effects. RDF is also the
underlying data model of the concepts presented in this thesis. This section therefore
includes a formal definition that follows the work in [PAG09] which has also found its
way into the official W3C documents.

contraindication

formula ?formula

SELECT ?formula ?sideeffect

WHERE {

 ?compound contraindication Hypovolemia .

 ?compound formula ?formula .

 ?compound sideEffect ?sideeffect .

}

?compound

Hypovolemia

?sideeffect

sideEffect

Figure 3.5: Example SPARQL query and Basic Graph Pattern

1Troughout this thesis URIs have been abbreviated for better readability

20 Incremental Ontology-based Integration

CHAPTER 3: The Solution Concept: Incremental Ontology-based Integration

Definition 1 (RDF Node)
The set of RDF Nodes T is defined as I ∪ B ∪ L where

1. I is an infinite set of URIs,
2. B is an infinite set of Blank Node Identifiers,
3. L is an infinite set of Literals and
4. I, B and L are pairwise disjoint.

Definition 2 (RDF Triple)

An RDF Triple T is a tuple (s,p,o) ∈ (I ∪ B) × I × (I ∪ B ∪ L).

Definition 3 (RDF Graph)
An RDF Graph G is a set of RDF triples.

SPARQL is the standard querying language for RDF data. It is centered around the
concept of pattern-matching. The backbone of SPARQL query processing is defined
by matching Basic Graph Patterns (BGPs) against the queried dataset. A basic graph
pattern is defined by a set of Triple Patterns. Each triple pattern is an RDF triple
in which subject, predicate and object can be substituted by variables. Dependencies
between triple patterns are modelled implicitly be utilizing the same variable name.
A query which only consists of one such BGP and no further operators is called a
conjunctive query. Further SPARQL operators allow to unify the the results from
different BGPs (UNION), compute an outer join with another BGP (OPTIONAL) or
define conditions that must hold for the resulting variable bindings (FILTER). Finally,
results can be projected onto a subset of the contained variables (SELECT). As the
basic complexity of SPARQL queries is defined by matching the underlying BGPs
to the queried RDF graph, we focus on conjunctive SPARQL queries throughout the
remainder of this thesis. An example of such a query, which extracts information about
the compound Propofol from the RDF dataset shown in Figure 3.4, is shown in Figure
Figure 3.5. In the following paragraphs we present a formal definition of conjunctive
SPARQL queries.

Definition 4 (SPARQL Variable)
The set of Variables V is an infinite set of strings where I, B, L and V are pairwise
disjoint.

Definition 5 (SPARQL Triple Pattern)

A Triple Pattern TP is a tuple (s,p,o) ∈ (I ∪ B ∪ V) × (I ∪ V) × (I ∪ B ∪ L ∪ V).

Definition 6 (SPARQL Basic Graph Pattern)
A Basic Graph Pattern BGP is a set of triple patterns where for each triple pattern
TP1 ∈ BGP exists another triple pattern TP2 ∈ BGP, which shares at least one
variable v ∈ V with TP1.

Incremental Ontology-based Integration 21

CHAPTER 3: The Solution Concept: Incremental Ontology-based Integration

Definition 7 (Conjunctive SPARQL Query)
A conjunctive SPARQL query Q is a query consisting of exactly one basic graph
pattern and no projection.

3.2.3 Important Properties of RDF and SPARQL
The RDF data model offers several properties that render it interesting for a deploy-
ment in the biomedical domain. First, it combines flexibility with expressiveness. As
data is modeled as a network of objects, RDF is well-suited for the canonical represen-
tation of heterogeneous datasets and structures and therefore fosters interoperability.
Second, RDF provides explicit formal semantics which allow to decompose an RDF
dataset into comprehensible atomary statements, even if there is no thorough under-
standing of the data, e.g., due to missing schema information. Third, RDF enforces
the explicit definition of entities, identifiers and relationships. For this reason, under
the assumption of a suitable naming convention, resources can be uniquely identified
on a global scale and RDF data can be easily combined with information from other
datasets. This supports the development of incremental ontology-based approaches to
information integration. For example, metadata, annotations or lineage information
can be easily added to existing data. Furthermore, new attributes or concepts can be
introduced and added to other datasets. At the same time RDF is characterized by
its consistency, as data, metadata and semantics can be represented within one model.
Although schema information is not necessary for managing RDF data, the RDF Vo-
cabulary Description Language (RDF/S) allows to define schema information at any
point in time (also incrementally) and to represent it within the RDF model [RDF].
Because of this property, RDF has attracted more and more attention within the
bioinformatics domain (e.g., [BNT+08]).

The flexibility of SPARQL is especially useful, if relationships between data items
are relevant for answering a query. Additionally, SPARQL supports incremental inte-
gration as well as an exploratory interaction paradigm by providing various ways to
query semi-structured data or data with an unknown, unpredictable or unreliable struc-
ture. To this end, SPARQL allows to query optional relationships or offers means to
underspecify attributes or resource-identifiers within queries. This also allows to utilize
SPARQL itself (or variuous dialects) for the formulation of simple data transformation
workflows for RDF datasets (e.g., [SPI]). Semantic Web technologies carry a lot of
potential for solving many of the data management challenges in translational medical
research [CFM+09,HCL, SJB+11,Kas11,RCB+07,Qua07]. Until now, Semantic Web
technologies are mainly utilized for metadata, annotations and knowledge bases but
not for primary data, though. One reason for this is that scalable technologies for the
efficient management of very large RDF datasets have only recently been developed.
The goal of this work is to utilize the flexibility, consistency and support for distri-
bution of RDF and SPARQL to implement an integration solution which builds upon
those recent developments.

3.2.4 Technical Requirements
The access to biomedical data (such as data from RDBMSs) as well as the provision
of an integrated view over the distributed sources of information are essential prelimi-
naries for the implementation of the described concept. The utilized methods must be

22 Incremental Ontology-based Integration

CHAPTER 3: The Solution Concept: Incremental Ontology-based Integration

applicable without prior integration, mapping or annotation of the data sources. As
a result, lightweight approaches and tools for further incremental semantic integration
can be implemented. This includes, e.g., the described annotation and transformation
steps, which can be implemented on top of a global ontology-based view on the primary
data sources as well as the results of previous integration steps. The global view also
serves as an interface for users and applications. The implementation concept builds
upon the RDF data model. To incorporate a fine-grained authentication model and
preserve local access autonomies it implements a federated approach. From a querying
perspective an example of the resulting system design is shown in Figure 3.6.

IndexnIndexm

Marketed drugs Adverse effectsPharmaceutical data

Wrapper1 WrappernWrapperm

Mediator

Query Result

Index1

User-provided

annotations

Wrappern

Inferred

drug interactions

Wrappern

Figure 3.6: Distributed RDF databases

Here, the primary data as well as annotations and materialized implicit knowledge
is spread among several distributed databases. The interfaces of those databases are
harmonized by a wrapper component which is accessed by a mediator for implementing
the required functionalities. A global index structure allows the mediator to determine
relevant databases when executing queries or data transformation workflows. In order
to implement this concept, components are required which allow to integrate non-RDF
databases into the resulting global graph, provide efficient distributed query processing
and execute flexible data transformation workflows. These components need to be

• fully functional within a distributed environment and allow to re-model local
authorization models,

• lightweight in terms of deployment and maintenance efforts,

• fully support the described incremental integration process, and

• able to manage large data volumes (several 100 M triples) efficiently.

Example Scenario

An example scenario which can be implemented with the described components is
shown in Figure 3.7. Here, type-level information is provided by an RDF vocabulary
which is oriented towards RDF Schema. Each triple is a result of the integration step
in which its predicate identifier is located. Triples which relate data from different
sources are indicated by dashed lines. The access to the relational data source A is
implemented as a generic database-centric transformation similar to the technique pre-
sented in Chapter 4. The relations Patient and Sample are automatically transformed

Incremental Ontology-based Integration 23

CHAPTER 3: The Solution Concept: Incremental Ontology-based Integration

Patient

ID Birthday PatID

1 13.11.82 238432

2 04.02.45 354632

Type

A:Patient1

1 13.11.82 238432

A:id A:birthdayA:patid

Sample

ID Rack Patient

1 16 1

2 5 2

A:Sample1

1 16 1

A:id
A:rack

A:patient

A:Patient

Class

type

type

A:id A:birthday A:patid

domain
domain

domain

A:Sample

Class

type

A:id A:rack A:patient

domain

domain

domain

type

range

xsd:integer xsd:date xsd:integer

range range range

xsd:integer xsd:integer xsd:integer

range range

A:hasSample

Instances

Local Transformation
Local

Transformation

Type

Instances

Database A

Global Annotation

G:Patient

Class

type

G:globalPatientIdentifier

domain

xsd:integer

B:Subject321

321B:Visit1761238432

B:subjectID
B:hasVisit

B:patient

Local

Annotation

B:Subject

Class

type

type

Global Transformation

sameAs

sameAs
subPropertyOf

subPropertyOf

range

CONSTRUCT {

 ?x A:hasSample ?y

}

WHERE {

 ?x type A:Patient.

 ?x A:id ?z.

 ?y type A:Sample.

 ?y A:patient ?z

}

CONSTRUCT {

 ?x sameAs ?y

}

WHERE {

 ?x ?p1 ?z.

 ?p1 subPropertyOf G:globalPatientIdentifier.

 ?y ?p2 ?z.

 ?p2 subPropertyOf G:globalPatientIdentifier

 FILTER (?x!=?y)

}

Database B

Figure 3.7: A simplified scenario implemented with Semantic Web technologies

into RDF data which covers type- and instance-level. The red dashed lines indicate the
relationship between the relational and the RDF representation of these data items. It
is assumed that the relationship between the relations can not be automatically trans-
formed to the RDF representation, because the according foreign-key constraint is not
defined in the database’s metadata catalog. The relationships are therefore restored by
applying a local data transformation step. An according data transformation technique
will be presented in Chapter 6. Here, it is implemented as a SPARQL construct query.
These types of queries allow to build an RDF graph by instantiating a predefined Basic
Graph Pattern with the results obtained from executing the query. Data source B is
a native RDF dataset without schema information. This information is added in a
local annotation step. Afterwards, a global annotation step can be utilized to insert
links and mappings between the local datasets. In the example, this is performed for
attributes which represent a global patient identifier. Based on these annotations a
global data transformation step can be executed in order to materialize equivalences
between patient identities from different systems.

Schema Evolution

As shown in the previous example, there are several ways in which schema information
can evolve in a system which implements the incremental ontology-based integration
approach. First, the RDF data model is inherently schema-free, which allows to in-
tegrate datasets that do not provide any schema information. Second, the RDF data
model allows to incrementally add and refine schema-level descriptions. The most
commonly used vocabulary for this purpose is RDF Schema, although there are fur-
ther vocabularies, such as OWL, which provide richer semantics. In RDF Schema it
is, e.g., possible to incrementally define classes of resources and state that a resource
is an instance of one or many of these classes. Classes can be structured in a class

24 Incremental Ontology-based Integration

CHAPTER 3: The Solution Concept: Incremental Ontology-based Integration

hierarchy which allows multiple inheritance. An example can be seen in Figure 3.7
where it is defined that the resource <B:Subject321> is an instance of the local class
<B:Subject>. In the same way that a class hierarchy can be built for subjects and
objects, a hierarchy of properties can be built for predicates. Additionally, the seman-
tics of predicates can be refined by incrementally defining valid domains and ranges.
In Figure 3.7 it is, e.g., stated that the property <A:patid> is a sub property of the
global property <G:globalPatientIdentifier>.

Schema-relaxed Querying

A dataspace will probably contain highly heterogeneous data, which is not yet inte-
grated or has an unknown or unreliable structure. It is therefore very important to
provide means for explorative querying, which can be performed without any prior
in-depth knowledge of the queried data. As has already been briefly described in Sec-
tion 3.2.2, RDF and SPARQL are very well suited for this purpose. For example, it
is possible to query for resources (and properties) which have an arbitrary attribute
with a given value by including a triple pattern with a variable subject and predicate
as well as a constant object:

• (?x ?y "value"ˆˆ<datatype>)

Additionally, it is possible to retrieve all resources which have an attribute with values
of a given data type by including a completely unspecified triple as well as a triple
which restricts the range of the variable object:

• (?x ?y ?z)

• (?y <rdfs:range> <datatype>)

It is also possible to query for resources which have an attribute that is a sub property
of a given property:

• (?x ?y ?z)

• (?y <rdfs:subPropertyOf> <property>)

One can query for resources which are instances of a predefined class:

• (?x <rdf:type> <Class>)

It is also possible to query for instances of a subclass of a given class:

• (?x <rdf:type> ?c)

• (?c <rdfs:subClassOf> <Class>)

Note that, when semantic reasoning is applied within the dataspace, most of the ex-
plicit relationships in the example queries will be included automatically. For example,
querying for all instances of a certain class, would also return instances of its subclasses.
These examples show that there are numerous ways in which a schema-relaxed, explo-
rative querying paradigm is supported by RDF and SPARQL. This flexibility is utilized
in many ways by the implementation presented within this thesis. This includes the
extraction of implicit knowledge from the global ontology and a browsing component.
Furthermore, the rich semantics of ontology-languages like RDF/S and OWL are used
for annotations and semantic integration.

Incremental Ontology-based Integration 25

CHAPTER 3: The Solution Concept: Incremental Ontology-based Integration

3.3 Concluding Remarks
The proposed methodology is related to the Semantic Web and Linked Data move-
ments. The basic idea of the Semantic Web is to develop a structured web of data as
opposed to the unstructured content that currently dominates the World Wide Web
(WWW) [BLHL01]. Also building upon the RDF data model, the ultimate goal is to
enrich the WWW with structured data in order to create a machine-readable global
data space and knowledge base. The Linked Data principle is closely connected to
this vision and describes a specific way of publishing RDF data in the WWW [HB11].
It builds upon the following principles: 1) objects are always identified by URIs, 2)
only dereferenceable HTTP URIs are used, and 3) when dereferencing a URI, related
information for the object (including a list of associated objects) is returned in an RDF
format [LIN].

Especially the idea of Linked Data is also driven by the dataspaces paradigm. Here,
the hope is that the flexible way of publishing and accessing data accelerates the
development of a global semantic web. Data publishers are responsible for annotating
their data and integrating it with other datasets from the Linked Data Cloud. In
this way, the required work is spread amongst the different participants of the data
space. Similar to our approach, the concept makes heavy use of the ability of RDF to
reference arbitrary data items that are distributed over separate databases. In some
projects this has also been implemented for the life sciences domain, e.g., in [HKL+09]
a linked data space has been built with publicly available data about clinical trials.

In comparison to these concepts, the approach proposed in this thesis is less generic
and solely oriented towards the requirements of the application domain. It does not
aim at building a flexible global dataspace, but to provide powerful means for inte-
grating highly heterogeneous data in a rather local, constantly evolving environment.
It also implements a very different data access and querying paradigm, which does not
impose any restrictions on the RDF representation of data. In our system, informa-
tion is managed in distributed RDF databases and we provide highly efficient means
for query processing in this environment. This is very hard to achieve for Linked
Data environments due to the underlying data publishing concept. Due to its inher-
ent distribution, the presented techniques are also applicable to some challenges in the
Semantic Web context, though. Similar to Linked Data, our approach also aims at car-
rying out semantic integration in flexible, loosely coupled, robust and demand-oriented
manner. But these data integration efforts, are supported by an integrated workflow
engine which provides common operators and is tightly coupled to the distributed sys-
tem. This, for example, allows to utilize the computing power of all participants for
complex data integration tasks. In contrast to the inherent genericity of the interface
provided by Linked Data, we present a tailored graphical user interface and an overall
system architecture, which integrates all aspects into a single system with common
access control mechanisms.

26 Concluding Remarks

CHAPTER 4

Laying the Groundwork: Accessing Biomedical Data Sources

The access to biomedical data sources which contain important primary data (e.g.,
clinical information systems, research databases, biobanks, biomolecular databases) is
an important requirement in translational medical research. Most of these systems are
implemented on top of relational databases. In patient-care, information systems also
exchange information via standardized HL7 message streams. This section presents
two components, which allow to transform data from these important types of sources
into an RDF representation. This allows to seamlessly integrate biomedical data into
the global ontology.

4.1 Related Work1

Many solutions for accessing differently structured data from within Semantic Web
applications have been proposed. These solutions cover a broad design spectrum, as
has been investigated in [GC07]. Here, the authors distinguish between a database-
or ontology-centric transformation. A database-centric transformation creates an on-
tology from the underlying database schema, e.g., by mapping database tables to
classes, rows to subjects, columns to attributes and cells to objects. In contrast,
an ontology-centric transformation maps a database schema onto an existing local
or global ontology. In general, this requires the formulation of much more complex
mapping definitions. In [ADL+09] it is further distinguished between manual, semi-
automatic and fully-automatic transformation processes, as well as domain-specific and
domain-independent approaches. An overview over these key criteria is shown in Fig-
ure 4.1. Most of the proposed solutions focus on the widespread relational data model,
but approaches for other data models have also been proposed, e.g., XML [Bre09] or
Excel Spreadsheets [LW09b].

Transformation Techniques

Automatization Direction Context

Automatic Semi-Automatic Manual Database-centric Ontology-centric Domain-specific Generic

Figure 4.1: Techniques for mapping biomedical databases to RDF

1Parts of the work presented in this section are based on the student project [Str11]

27

CHAPTER 4: Laying the Groundwork: Accessing Biomedical Data Sources

Database-Centric Transformation: A database-centric transformation process
creates a new ontology from the underlying database schema. Afterwards, an RDF
representation of the database is created by exporting the relational data into RDF
triples. The resulting ontology closely resembles the original database schema and
does therefore not change the semantics and relationships between the data items.
Such transformations normally map database tables onto ontology classes, rows onto
subjects, columns onto predicates and cells onto objects. Because database-centric
transformations often implement a fully- or at most semi-automatic process, the re-
sulting mappings often lack support for fundamental data transformations.

The approach presented in [GC07] implements the database-centric approach. The
mapping creation process builds upon an analysis phase in which existing tables and
foreign key constraints are included into the resulting ontology. Depending on the
information available in the database’s metadata catalog, the tool is able to detect
and export one-to-one, one-to-many and many-to-many relationships. Afterwards, the
relational data is mapped onto the resulting ontology. To this end, a cell value is
transformed to a literal if it is not a foreign key, otherwise it is transformed into a
resource.

In [Biz03] an XML-based, declarative mapping language for relational
databases and OWL ontologies has been proposed. In order to provide a high de-
gree of flexibility, SQL statements are utilized for the selection of record sets for a
certain class or set of classes. Afterwards, the resulting record sets are grouped over
a set of defined columns and mapped to RDF instances. In a succeeding step, the
instances are generated by assigning URIs or blank node identifiers. Finally, attribute
values are attached to the generated resources. This also includes mapping the data
types of the underlying database system to XML schema data types. Due to the in-
corporation of complex SQL statements, the approach allows to handle different types
of relationships and highly normalized data representations. This comes at the costs
of a complex and time-consuming mapping process.

Ontology-Centric Transformation: Ontology-centric approaches have been de-
veloped for cases in which a database needs to be mapped onto an existing ontology.
To this end, the database tables and their attributes need to be related to data items
within the target ontology. As this includes complex transformations, it requires error-
prone, time-consuming manual work.

In [BCGP04] an extension of [Biz03] has been presented, which allows to map rela-
tional schemas to RDF schemas. Graphical tools, such as the one presented in [RGP06],
simplify the creation of suitable mapping definitions. The mapping language can deal
with cases in which the source and destination schema overlap fully, partially or not
at all. The basic functionalities provided include means to map individual tuples from
a relation onto several different instances of a single class or different classes. It also
supports more complex transformations by incorporating SQL statements.

Materialization or Query Rewriting: Some approaches not only allow to phys-
ically transform datasets, but also provide means for on-demand query translation.
In the latter case, SPARQL queries against the virtual RDF dataset are rewritten to
SQL queries against the relational database system. Both approaches have upsides
and downsides. Although query rewriting offers access to an up-to-date database, it
puts a significant additional load onto the underlying database system. Additionally,

28 Related Work

CHAPTER 4: Laying the Groundwork: Accessing Biomedical Data Sources

the different data models and their dedicated query languages implement very diverse
query processing paradigms. Query translation therefore often suffers from severe per-
formance limitations. This can be circumvented by periodically loading the RDF view
into a dedicated RDF database, which comes at the cost of reduced data freshness.

Manual, Semi-Automatic or Automatic Mapping Definition: Transformation
solutions can also be categorized by whether they allow for an automatic or semi-
automatic mapping definition or require a completely manual process. In contrast to
database-centric approaches, ontology-centric solutions always require at least some
manual work due to the complexity of the underlying mapping problem.

Semi-automatic processes require much fewer manual steps. The process can be
divided into two different phases. First, the underlying database schema is analyzed
and a preliminary ontology is created. This also involves representing the data items
in the relational database as instances of classes in the temporary ontology [LDW05].
Second, this model can be refined by the user. To this end, the systems offer interfaces
for the user to examine and manually adjust the automatically generated mapping
definitions.

A fully automatic process only requires the user to define which database should
be transformed. This type of transformation approaches always follow the table-to-
class, row-to-instance, column-to-attribute scheme and try to derive relationships be-
tween classes from database constraints stored in the metadata catalogue. This is only
feasible for rather simple database schemas without resulting in information loss or
inconsistencies.

Domain Dependence: Some approaches are domain-dependent and implement the
ontology-centric concept. They are able to take into account existing domain ontologies
and integrate them into the mapping definition and data transformation process.

An important type of domain-specific data transformation approach is targeted
against HL7 messages. HL7 is a widespread messaging standard for information ex-
change between clinical information systems [HL7]. It is part of an application-level
protocol, which is typically managed via a communication server. This server receives
messages from the individual subsystems and implements a selective broadcast mech-
anism. For translational medical research, HL7 messages contain several important
types of data. A lack of metadata and well-defined semantics is a general problem
in earlier versions of HL7, as it has been designed to be highly flexible and easily
adoptable. In order to overcome these limitations, HL7 V3 has been redeveloped from
scratch utilizing a common domain model, the Reference Information Model (RIM). It
is strongly object-oriented (designed with UML), makes extensive use of wide-spread
terminologies and the data formats (e.g., for messages) are based upon XML. Some pre-
vious work have aimed at bringing HL7 V3 to the Semantic Web. In [HCL] and [PRO]
RDF representations of important parts of HL7 RIM have been developed. Some work
(e.g., [KRA06,GRD]) have utilized XSLT to derive RDF representations of XML-based
HL7 V3 messages and integrate them with the HL7 RIM. As there is currently no com-
prehensive RDF representation of HL7 RIM, these approaches only implement limited
example scenarios. Other work (e.g., [JS12]) aim at the opposite direction and utilize
RDF to simplify the process of mapping clinical data to HL7 V3 to foster interop-
erability. Deriving an RDF representation is rather simple for HL7 V3 messages, as
these are XML-based and contain meaningful metadata. Unfortunately, HL7 V3 is not

Related Work 29

CHAPTER 4: Laying the Groundwork: Accessing Biomedical Data Sources

compatible to previous versions. As a migration is highly complex, HL7 V3 is only
rarely used whereas earlier versions (especially HL7 V2) are widely deployed. Section
4.4 focusses on deriving an RDF representation from HL7 V2 messages.

4.2 Challenges and Requirements
This section presents basic requirements for the transformation of biomedical data
sources into an RDF representation. To this end, it utilizes some exemplary scenarios
for the transformation of relational data. Figure 4.2 shows an example dataset which
associates diagnoses to patients. A table Diagnosis stores patient identifiers and as-
sociated diagnose identifiers. Additionally, it is stored whether the diagnosis has been
made at admission, transfer or discharge. The diagnoses themselves are encoded as
ICD-10 disease codes. A second table, ICD-10, stores a textual description of each
diagnosis code.

Diagnosis

ID Patient Type

1 16 Admission

2 5 Discharge

3 11 Transfer

T17.1

ICD-10

K13.2

I09.2

Text

ICD-10

ID

1 Foreign body in nostril

2 Leukoplakia

3 Rheumatic pericarditis

T17.1

Code

K13.2

I09.2

Diagnosis1

id patient type

AdmissionDiagnosis1

id
patientICD-10

ICD-10

ICD-101

code text

ICD-101

code text

AdmissionDiagnosis1

id
patient

ICD-10-T17.1

ICD-10

code text

AdmissionDiagnosis1

id
patient

ICD-10

Patient16

Diagnosis1

admissionDiagnosis

ICD-10text

DiagnosisT17.1

Patient16

isAdmissionDiagnosisOf

ICD-10text

id

1 16

1 16 1 16

1 16

16

„T17.1"

„T17.1"

„T17.1"„T17.1"„Admission"

„T17.1" „Foreign body in nostril"

„Foreign body in nostril"

„Foreign body in nostril"

„Foreign body in nostril"

„Foreign body in nostril"

„Foreign body in nostril"

Figure 4.2: Relational data and RDF representations

Below the relational data, the figure shows six possible RDF representations of
the first entry in the Diagnosis table as well as the associated ICD-10 description. In
clockwise direction, the first RDF representation shows a simple transformation follow-
ing the table-to-class, row-to-instance, column-to-attribute and cell-to-value (TRCC)
model. There are several potentially reasonable representations of these data items
which do not strictly follow the TRCC model. First, the semantics of the underlying
model might be captured better by defining different types of diagnosis classes, such
as Admission Diagnosis, Transfer Diagnosis or Discharge Diagnosis. Second, the re-
lationship from the diagnosis to the according ICD-10 metadata is only represented
implicitly (both subjects are linked to the same object). It might be desirable to ex-
plicitly define this relationship by including a triple which reaches from one resource
to the other. In some cases it could even make sense to ignore the second resource
and only reference the description of an ICD-10 code. Further potentially meaningful
transformations include replacing the literal representation of the patient identifier by
a resource which represents the patient. This resource could then be connected to the
diagnosis code by either inserting a triple reaching from the patient to the diagnosis,
or from the diagnosis to the patient.

Figure 4.3 shows an example for a generic relational database schema. Related de-
signs are often used by Electronic Data Capture (EDC) systems, which for example

30 Challenges and Requirements

CHAPTER 4: Laying the Groundwork: Accessing Biomedical Data Sources

implement a generic EAV schema. These systems offers means to dynamically spec-
ify the vocabulary which is used for data entry. To this end, terminological control
is imposed by referencing (user- or administrator-defined) vocabularies from within
the database tables. In the example, the system manages biospecimens and stores
metadata about how the samples have been preserved. This information is encoded
in an associated data dictionary. As can be seen in the proposed RDF representa-
tions, a meaningful transformation of these data items might completely leave out the
Vocabulary relation.

Sample

ID Patient Type

1 16 1

2 5 2

3 11 1

Vocabulary

ID

1

2

Cryo

Value

FFPE

Sample1

id
patient

Vocabulary1

type

id value

1 16

1 „Cryo“

Sample1

id
patient

type

1 16 „Cryo“

Figure 4.3: Generic relational data and RDF representations
Figure 4.4 shows a scenario which involves the transformation of a many-to-many

relationship. Analogously to the other two scenarios, a useful transformation beyond
the simple TRCC model would be to explicitly define these relationships. This means
that the information stored in the table AtSite is only implicitly contained in the
resulting dataset.

Site

ID Location

1 München

2 Hamburg

3 Berlin

Subject

ID Firstname Lastname

1 Fritz Bock

2 Alfred Böhm

3 Kathrin Friedrich

AtSite

SubjectID SiteID

1 2

1 1

3 1

Subject1

idfirstname
lastname

Fritz

AtSite

subjectID siteID

1 2Bock

Site2

id
location

Hamburg

Subject1

idfirstname
lastname

Fritz 1 2Bock

Site2

id
location

Hamburg

atSite

Figure 4.4: Relational many-to-many relationship and RDF representations

The general idea behind the concept of incremental ontology-based integration is
to perform a generic transformation of biomedical data sources into an RDF rep-
resentation. On the other hand, there are various transformations which would be
highly useful in real-world scenarios. This includes representing data only implicitly or
modifying the class hierarchy which would be generated by the highly generic TRCC
model. The requirements of simplicity and genericity as well as the ability to ap-
ply complex transformations are at opposite ends of the design space. This section
therefore presents different approaches for different data models which are generic but
allow for a semi-automatic process that supports reasonable transformations. If the
presented extraction process is not able to completely cover the semantics of the under-
lying model, the data transformation techniques presented in Section 6 can be applied
to post-process the results accordingly.

4.3 Relational DBMS 2

In this work, the relational model is the most important data model, because be-
cause relational databases are the dominating data management solution within the
biomedical domain. In conformance to the requirements outlined previously, this sec-
tion proposes a highly flexible, yet easy to use and generic solution for this type of

2Parts of the work presented in this section are based on the student projects [Str11], [Tro11]
and [Vaa11]

Relational DBMS 31

CHAPTER 4: Laying the Groundwork: Accessing Biomedical Data Sources

data. The key idea is to provide the ability to define a directed acyclic graph (DAG)
of operators which can be applied to RDF data items. The bridge between the RDF
world and the relational world is implemented with a special operator (produce) which
generates RDF representations of tuples from a relation following the TRCC model.
In contrast to previous work, there is not need to specify SQL statements or complex
mapping rules. Although it is of course possible to define complex transformations
with the operators presented, this process is supported in numerous ways:

• The data modification operators solely operate on RDF data, which is also the
underlying model of the whole integration system itself. The users are not re-
quired to have any in-depth knowledge about relational databases or SQL. The
produce operator which transforms relational data into RDF data items has well-
defined, easy to understand semantics.

• Building the DAG of transformation operators is fully supported by a graphical
user interface. One of the key ideas behind the approach is that the operators
are designed in a way which allows for explicit immediate visual feedback at each
step in the process.

• Additionally, a semi-automatic process is implemented that automatically pro-
poses an initial mapping by accessing the metadata catalog of the database man-
agement system.

4.3.1 Transformation Operators
There are five different operators which form the backbone of the transformation pro-
cess. Despite the produce operator which does not have a child operator, the binary
and unary operators can be arranged in a directed acyclic graph. The operators process
sets of RDF data items. Upon evaluation, each operator also returns a set of RDF data
items. An RDF data item is basically an arbitrary RDF graph following a predefined
schema.

• The nullary Produce operator returns an RDF representation of the tuples of
a database table. It defines a class for the instances of the table and generates
RDF data items following the TRCC model.

• The unary Project operator removes properties from all instances of a prede-
fined class or alters the definition of their URIs.

• The unary Filter operator removes all instances of a predefined class which do
not conform to a specified expression.

• The binary Relate operator inserts relationships between instances which share
common values for predefined attributes.

• The binary Merge operator merges instances which share common values for
predefined attributes.

The operators can be organized in a directed acyclic graph which consists of distinct,
connected subgraphs that define fragments. The RDF representation of the relational
data is defined as the union over the results of all fragments. The DAG structure

32 Relational DBMS

CHAPTER 4: Laying the Groundwork: Accessing Biomedical Data Sources

allows to reference (i.e., re-use) operators which have been defined in other fragments
which avoids duplicate work. For example, the filter operator might be used to only
transform some tuples stored in a relation (e.g., due to legal reasons). In order to
prevent information leakage it is recommended in this case to explicitly define a single
fragment which only transforms these tuples. This fragment can then be re-used in
any other fragment which references the resulting entities.

Preliminaries: The operators presented in this section work on so called RDF data
items. These consists of RDF entities and RDF relationships.

Definition 8 (RDF Data Item)
A set of RDF data items I is defined as E ∪R where

1. E is a set of RDF entities, and
2. R is a set of RDF relationships.

An RDF entity defines a schema for a set of RDF graphs which describe similar
entities. An entity is defined by a resource which is a subject in several triples which
have literal objects. In the context of RDF entities, each of these triples is called a
property and has a predefined name.

Definition 9 (RDF Entity)
An RDF entity e defines a schema for a set of RDF graphs. It is defined as a tuple
e = (name, I, A) where name is a string which defines the resources’ names, I is a
set of tuples containing attribute names and A is a set of properties. A property a
∈ A is a tuple a = (name, xsd) of a string name that encodes the property’s name
and the URI xsd of a an associated XML Schema data type.

As can be seen from this definition, RDF entities only have properties with literal
values. RDF relationships provide further means to model relationships between the
entities themselves, i.e., to include triples which have resources as subject and object.

Definition 10 (RDF Relationship)
An RDF relationship r defines a relationship between two RDF entities. It is defined
as a tuple r = (subject, name, object) where subject and object are RDF entities and
name is a string which labels the relationship.

An RDF representation of the relational schema from 4.2 is shown in Figure 4.5.
It contains two RDF entities (Diagnosis and ICD-10) and one RDF relationship (icd-
10) which relates the entities. Each of the entities’ attributes has an associated XML
Schema data type.

Diagnosis{ (ID) }

patient type

icd-10

<xsd:integer> <xsd:string>

ICD-10{ (ID) }

code text

<xsd:string> <xsd:string>

Figure 4.5: A set of RDF data items

Relational DBMS 33

CHAPTER 4: Laying the Groundwork: Accessing Biomedical Data Sources

Produce: Given these definitions we are now able to define the transformation oper-
ators. We start by defining the produce operator which is acts as a bridge between the
relational world and the RDF world by returning an RDF entity for a given relation.
Definition 11 (Produce operator)

A produce operator Produce is a tuple (r, n, I, A) where r is the name of a relation
in the database, n is the name of the resulting RDF entity, I is a non-empty totally
ordered set of attributes of the relation and A is a potentially empty set of attributes
of the relation. I and A may overlap.

Upon evaluation, a produce operator returns an RDF entity which is derived from
the underlying relation r and the sets I and A. The entity is named n and the data
types of the entitie’s properties are automatically derived from the SQL data types of
the corresponding attributes. To this end, a mapping table is utilized which defines a
mapping between SQL data types and XML Schema data types. An example mapping
for a subset of the SQL data types is shown in Table 4.1.

SQL XSD
VARCHAR string
INTEGER integer
DOUBLE double
DATE date
TIME time

Table 4.1: Mapping SQL to XML Schema data types

It is important to note that the ability to define an arbitrary name for the resulting
entity allows to generate different entities from the same underlying database table.
This is useful in many ways, e.g. when two different entities which cover different
subsets of the attributes are to be generated from the same relation. The RDF entity
entity = (n, I, A) which is returned by a produce operator produce = (r, n, I, A) is
defined as:
• entity.n = produce.n,
• entity.I = {produce.I},
• entity.A = {a = (n, r)|n ∈ produce.A ∧ r = map(datatype(n))}.

An example definition of a produce operator for the table Diagnosis from Figure
4.2 is shown in Figure 4.6. The operator which can be applied to derive the presented
RDF entity is:
produce = (”Diagnosis”, ”Diagnosis”, (”ID”), {”patient”, ”type”, ”icd− 10”}).

Diagnosis

ID Patient Type

1 16 Admission

2 5 Discharge

3 11 Transfer

T17.1

ICD-10

K13.2

I09.2

Diagnosis{ (ID) }

patient type icd-10

<xsd:integer> <xsd:string><xsd:string>

Figure 4.6: Example for the produce operator
Given the definition of the produce operator, it is now possible to present the trans-

formation operators. Each of these operators consumes one or two sets of connected
RDF data items and returns a set of connected RDF data items. Connected means
that the resulting directed graph structure (as, e.g., shown in Figure 4.6) is weakly
connected.

34 Relational DBMS

CHAPTER 4: Laying the Groundwork: Accessing Biomedical Data Sources

Project and Filter: The project and filter operators manipulate a connected set of
RDF data items. The project operator allows to change an entity’s schema, whereas
the filter operator can be used to drop instances which do not fulfil a given predicate.

Definition 12 (Project operator)

A project operator Project is a tuple (R, e, I’, A’) where R is a connected set of RDF
data items, e ∈ R is an RDF entity and I’ is a set of tuples containing attribute
names and A’ is a set containing attribute names. All attributes in I’ or A’ must
also be contained in any tuple from e.A or in e.I.

The result of the application of a project operator (R, e, I ′, A′) on a set of RDF data
items R is a new set of RDF data items in which the entity
e = (n, I, A) is replaced by a new entity e′ = (n, I ′, A′). A project operator also
allows to exchange an entity’s attributes and identifiers. This means that, e.g., a part
of an identifier can become an attribute or vice versa.

The filter operator can be used to drop all instances of the pattern described by the
set of RDF data items that do not fulfil a given predicate.

Definition 13 (Filter operator)

A filter operator Filter is a tuple (R, p) where R is a connected set of RDF data items
and p is a predicate which is build upon the names of identifiers and attributes of
any RDF entity e ∈ R.

This means that the filter operator does not have any effect on the actual RDF data
items it processes. Therefore an operator (R, p) which operates R also returns R but
only has an effect during the execution of the transformation process. For example, the
operator filter = (R, (type = ”Admission”)) could be utilized to extract all admission
diagnoses from the result the produce operator which produces the RDF entity that is
shown in Figure 4.6.

Relate and Merge: Previous operators produce or manipulate sets of RDF entities.
The relate operator allows to define links between RDF entities and thus to insert RDF
relationships into a set of RDF data items. The merge operator works analogously but
merges two related entities into a single entity.

Definition 14 (Relate operator)

A relate operator Relate is a tuple (name, R1, e1, a1, R2, e2, a2) where name is the
label of the generated relationship, R1 and R2 are two different connected sets of
RDF data items and ei is an entity in Ri and ai is an attribute of ei.

An operator Relate=(name, R1, e1, a1, R2, e2, a2) inserts a relationship between
all instances of e1 and e2 with equal values for the attributes a1 and a2. Therefore,
on schema level, this operator returns a connected set of RDF entities R = R1 ∪
R2 ∪ {(e1, name, e2)}. On instance level, this relationship is only inserted for pairs of
instances (e1, e2) with e1.a1 = e2.a2.

Definition 15 (Merge operator)
A merge operator Merge is a specialization of a relate operator which is defined
analogously but has different semantics.

Relational DBMS 35

CHAPTER 4: Laying the Groundwork: Accessing Biomedical Data Sources

An operator Merge=(name, R1, e1, a1, R2, e2, a2) does not insert a relationship,
but merges all instances e1 and e2 with equal values for the attributes a1 and a2 into
a common instance of the class name. On instance level this merge is performed for
pairs of instances (e1, e2) with e1.a1 = e2.a2. The definition of the result on schema
level is more complex. The two input sets Ri are processed independently and the
entities ei = {namei, Ii, Ai} are replaced with a new entity merged = {name, Ii, Ai}.
Furthermore, all relationships are adjusted accordingly. The set Relationshipsi =
{(e′

1, name
′
, e

′
2)|e

′
1 = ei ∨ e

′
2 = ei} contains all relationships in Ri that range from or

to ei.

1. The original entity is removed: Ri = Ri \ {ei}.

2. The original entity’s relationships are removed: Ri = Ri \Relationshipsi.

3. The new entity is added: Ri = Ri ∪ {merged}.

4. The outgoing relationships of the new entity are added:
Ri = Ri ∪ {(merged, name

′
, e

′
2)|(ei, name

′
, e

′
2) ∈ Relationshipsi}.

5. The incoming relationships of the new entity are added:
Ri = Ri ∪ {(e

′
1, name

′
,merged)|(e′

1, name
′
, ei) ∈ Relationshipsi}.

After this process has been applied to both input sets R1 and R2, the result of
applying the Merge operator is defined as merge(R1, R2). The function merge(R1, R2)
merges two sets of RDF data items and is of general importance because it is also
utilized to combine the results of the individual fragments.
Definition 16 (Merge function)

The function merge(R1, R2) merges two sets of RDF data items R1 and R2. It
returns a new set R in which all entities from R1 and R2 which have the same name
are merged. To this end, a new entity is created whose set of attributes and primary
keys is defined as the union of the two sets of attributes from the entities in the
input sets. All RDF relationships are altered accordingly.

4.3.2 Transformation Process
The transformation process can be executed as soon as a set of operators has been spec-
ified which define the transformation process. It is important to note that by defining
these operators a data integrator has not only defined the structure of the resulting
RDF data, but also how these data are to be generated from the underlying database.
To this end, the DAG of transformation operators is utilized to fully automatically
generate a set of SQL queries. The following example will be used throughout the
remainder of this section. It generates the RDF representation shown in Figure 4.5
from a relational database following the schema from Figure 4.2:

project(relate(produce("ICD-10", "ICD-10", ("ID"), {"code", "text"}),
"ICD-10", "code",
produce("Diagnosis", "Diagnosis", ("ID"), {"patient","type","icd-10"}),
"Diagnosis", "icd-10"),

"Diagnosis, ("ID"), ("patient"), ("type")))

36 Relational DBMS

CHAPTER 4: Laying the Groundwork: Accessing Biomedical Data Sources

The first of the two produce-operators generates RDF entities which represent
the ICD-10 diagnosis codes. It generates entities with a class name ICD-10 whose
primary key is defined by the attribute ID. The entities further have two attributes,
code and text. The second produce-operator generates entities with class name Diag-
nosis, primary key ID and attributes, patient, type and icd-10. The relate-operator
inserts a relationship between instances of these classes if the attribute code matches
the attribute icd-10. Finally, the project-operator is utilized to drop the redundant
attribute icd-10 from the instances of the class Diagnosis.

This operator-tree specifies a single fragment which defines several different aspects
of the transformation process. Firstly, it defines what the schema of the resulting
RDF graph looks like, although the actual export vocabulary can still be redefined.
Secondly, it also defines how the data from the underlying database system needs
to be transformed in order to result in the desired export schema. To this end, the
transformation operators are substituted by SQL expressions:

• The produce operator defines the name of the underlying relation and the at-
tributes to be transformed. When compiled into a SQL query it further defines a
unique identifier which is used to reference tuples that represent instances of the
according entity. In the same way as the project operator the produce operator
also influences the SELECT clause of the resulting SQL query.

• The filter operator defines a predicate which is compiled into theWHERE clause
of the query.

• The project operator does only affect the resulting RDF data items which is
reflected in the SELECT clause of the resulting SQL query.

• The relate and merge operators are compiled into INNER JOIN s over the
relations defined by the produce operators.

According to this process, the SQL query for the example fragment is defined as:

SELECT d1.id, d1.patient, d1.type, i1.id, i1.code, i1.text
FROM Diagnosis AS d1 INNER JOIN ICD-10 AS i1
ON d1.icd-10=i1.code

Executing this query would result in a set of tuples with the following schema:

(Diagnosis.id, Diagnosis.patient, Diagnosis.type, ICD-10.id, ICD-10.code, ICD-10.text)

The resulting RDF data is then generated by production rules which read the queries’
result sets on a tuple per tuple basis and generate triples whenever all input attributes
of a rule are not NULL. The set of production rules for the example transformation is:

// Entity: "Diagnosis"
(d1.id, d1.patient) → (Diagnosis[d1.id], patient, convert(d1.patient, <xsd:integer>))
(d1.id, d1.type) → (Diagnosis[d1.id], type, convert(d1.type, <xsd:string>))
// Relationship
(d1.id, i1.id) → (Diagnosis[d1.id], icd-10, ICD-10[i1.id])

Relational DBMS 37

CHAPTER 4: Laying the Groundwork: Accessing Biomedical Data Sources

// Entity: "ICD-10"
(i1.id, i1.code) → (ICD-10[i1.id], code, convert(i1.code, <xsd:string>))
(i1.id, i1.text) → (ICD-10[i1.id], text, convert(i1.text, <xsd:string>))

In this example, the square brackets indicate that the contained attribute (including
the brackets) is to be replaced by the value defined by a resulting tuple in order to gen-
erate an instance identifier. The function convert generates a valid RDF literal for each
binding to the variable and the defined type, e.g. convert("T17.1", "<xsd:string>")
returns "T17.1"ˆˆ<xsd:string>. In addition to these rules, which instantiate RDF
entities as well as their relationships, additional triples are generated to link the in-
stances to an automatically generated RDF/S schema description. For the example,
the following two additional rules would link each instance of an RDF entity to its
according RDF/S class definition:

(d1.id) → (Diagnosis[d1.id], type, Diagnosis))
(i1.id) → (ICD-10[i1.id], type, ICD-10))

As can be seen, the example transformation results in two class definitions (Diag-
nosis and ICD-10). The way in which the according RDF/S description is generated
from the resulting RDF data items will be explained in more detail in the following
paragraph. In the example all resource identifiers have been abbreviated by leaving
out the prefixes. The production rules also provide means to redefine the vocabulary
of the resulting RDF graph. To this end, the graphical tool (see Section 7) allows
to rename all entities, attributes as well as relationships and to define the associated
namespaces.

The overall process described in this section is shown in Figure 4.7. It can be seen
that the metadata (i.e. the schema) of the underlying database forms the input for
the produce operators in the fragments. For each of these fragments, a SQL query
(Frag1, Frag2 and Frag3) can be generated by compiling the subgraph defined by
the entry point. Furthermore, a set of RDF data items can be generated by applying
all operators to the database schema. It is important to note that a SQL query as
well as a set of associated RDF data items can be derived from every node in the
DAG. This is leveraged by the graphical tool to provide instant visual feedback for
each step in the transformation definition process. The production rules form the glue
between the RDF data items and the SQL queries and utilize the information from
both representations to generate RDF representations of the data in the database. The
RDF/S representation of the resulting RDF data can be generated be interpreting the
resulting RDF data items accordingly. To this end, entities are transformed according
to the following rule:
Definition 17 (RDF/S representation of an RDF Entity)

For an RDF entity e = (Entity, I, A) the following triple is generated:
(Entity, type, Class)
For each Attribute (name, xsd) ∈ A the following triples are generated:
(name, type, Property)
(name, domain, Entity)
(name, range, xsd)

38 Relational DBMS

CHAPTER 4: Laying the Groundwork: Accessing Biomedical Data Sources

RDBMS

SchemaPrimary Data

SQL Queries Operator DAG

RDF Data ItemsProduction Rules

A B

Produce

Produce

Project

 Merge

 Produce

 Relate

 Reference

 Reference

Select A.id, A.a

From A as A

Select B.id, B.a, B.b

From B as B

Select B.id, A.id

From A as A

Inner Join

C as C

On A.id = C.aid

Inner Join

B as B

On B.id = C.bid

RDF RDF/S

A.id à <p:A[A.id]>

B.id à <p:B[B.id]>

A.a à <p:a>

B.a à <p:a>

B.b à <p:b>

...

id a id aid bid
A C

bidaidid id a

id a b

C A

B

Frag1

Frag2

Frag3

Frag3

Frag2

Frag1

Figure 4.7: Transforming relational data

The RDF/S representation of RDF relationships is defined as follows:

Definition 18 (RDF/S representation of an RDF Relationship)

For an RDF relationship r = (Subject, name, Object) the following triples are
generated:
(name, type, Property)
(name, domain, Subject)
(name, range, Object)

The generated RDF/S schema definition does exactly describe the schema of the
resulting RDF graph and is referenced by each instance generated by the transfor-
mation process. In the current implementation, the relate and merge operators are
limited to inner joins. Although it would be possible to also incorporate outer joins,
the resulting semantics are rather complex. With inner joins, each operator returns a
set of connected RDF data items and every instantiation of the items will also result
in a complete and connected graph. When allowing outer joins, parts of the result-
ing instances can have null values (as introduced by null values which result from
executing the underlying SQL query). Although this allows to apply more complex
transformations (e.g., to merge entities only if there is another matching entity and

Relational DBMS 39

CHAPTER 4: Laying the Groundwork: Accessing Biomedical Data Sources

keep the original entity if there isn’t), we currently do not allow outer joins. The RD-
F/S definition which would result from applying the example transformation operators
to the schema shown in Figure 4.2 is:

// Entity: Diagnosis
(Diagnosis, type, Class)
(patient, type, Property) (patient, domain, Diagnosis) (patient, range, Integer)
(type, type, Property) (type, domain, Diagnosis) (type, range, String)
// Entity: ICD-10
(ICD-10, type, Class)
(code, type, Property) (code, domain, ICD-10) (code, range, String)
(text, type, Property) (text, domain, ICD-10) (text, range, String)
// Relationship: icd-10
(icd-10, type, Property) (icd-10, domain, Diagnosis) (icd-10, range, ICD-10)

The RDF instance data resulting from applying the transformation to the relation
from Figure 4.2 is:

(Diagnosis1, type, Diagnosis) (Diagnosis1, patient, "16") (Diagnosis1, type, "Admission")
(Diagnosis1, icd-10, ICD-101)
(ICD-101, text, "Foreign body in nostril") (ICD-101, code, "T17.1")
(Diagnosis2, type, Diagnosis) (Diagnosis2, patient, "5") (Diagnosis2, type, "Discharge")
(Diagnosis2, icd-10, ICD-102)
(ICD-102, text, "Leukoplakia") (ICD-102, code, "K13.2")
(Diagnosis3, type, Diagnosis) (Diagnosis3, patient, "11") (Diagnosis3, type, "Transfer")
(Diagnosis3, icd-10, ICD-103)
(ICD-103, text, "Rheumatic pericarditis") (ICD-103, code, "I09.2")

4.3.3 Evaluation

The evaluation utilizes the Lehigh University BenchMark (LUBM) [GPH04,GPH05].
Although this benchmark does not implement a biomedical scenario, it offers ways to
repeatedly generate datasets of different sizes which implement a realistic scenario. It is
well known and has been utilized for benchmarking many different types of RDF storage
solutions (e.g., [HAR11]). LUBM comes with a data generator which is able to create
differently sized datasets. This allows to evaluate the scalability of our approach for
increasingly complex datasets with the same database schema. The datasets implement
an academic scenario which consists of universities, professors, students, publications
etc. and the relationships between these entities. We have extended the LUBM dataset
generator by a component, which is able to generate a relational representation. The
schema of the resulting databases is shown in Figure 4.8.

The relational representation is different from the RDF representation in several
ways. Although it is being used for different purposes as well, the LUBM benchmark
was initially developed for benchmarking RDF reasoners. It therefore generates entities
following a comprehensive class-hierarchy, such as the class Professor and its subclasses
AssociateProfessor, AssistantProfessor and FullProfessor. A similar hierarchy exists
for the class Student and Course. The attributes generated for instances of these sub-
classes differ slightly. For example, an undergraduate student does not yet have an

40 Relational DBMS

CHAPTER 4: Laying the Groundwork: Accessing Biomedical Data Sources

undergraduate degree. The instances of the different subclasses are also subject to
restrictions on their relationships. For example, UndergraduateStudents can not take
GraduateCourses. In the relational representation these subclasses are merged into
tables for their common superclass, i.e., Student, Professor and Course. The actual
definition of the concrete subclass is achieved by maintaining an additional attribute
type which can be utilized to distinguish between subtypes. Because of this inherent
complexity, a meaningful transformation into RDF includes many of the challenges
presented in Section 4.2. For example, the entities Professor and Student need to
be transformed into different specializations (e.g. GraduateStudent and Undergradu-
ateStudent) depending on the value of certain attributes. Furthermore the auxiliary
tables TakesCourse, AuthorStudent and AuthorProfessor need to be transformed into
relationships between the entities.

AuthorProfessor

publication
professor

Professor

id
name
type
emailAddress
telephone
undergraduateDegreeFrom
worksFor
mastersDegreeFrom
doctoralDegreeFrom
researchInterest

Publication

id
name

AuthorStudent

publication
student

Student

id
name
type
emailAddress
telephone
memberOf
advisor
undergraduateDegreeFrom

Course

id
name
type
teacher
assistant

Department

id
name
university

University

id
name

ResearchGroup

id
department

TakesCourse

student
course

Figure 4.8: Relational schema for the LUBM dataset

An overview over the entities and relationships in the resulting RDF representation
is shown in Figure 4.9. The entities’ attributes have been omitted for better readability.
It can be seen that the resulting RDF dataset contains 11 entities, whereas the original
relational schema contained only 7 relations. Furthermore, all entities extend a specific
subclass such as GraduateCourse and UndergraduateCourse. The mapping definition
consists of 43 fragments with an average of about 6 operators per fragment. The
creation of the mapping definition was carried out with the graphical tool, which will
be presented in more detail in Chapter 7.

We created four relational instances of the LUBM datasets with scale factors of 5,
10, 15 and 20. The total number of tuples in each dataset was ∼274.000 for a scale
factor of 5, ∼693.000 for a scale factor of 10, ∼990.000 for a scale factor of 15 and
∼1.298.000 for a scale factor of 20. In order to systematically evaluate the scalability
of our approach we executed the transformation process for each of these datasets.
The experiments were performed on a Dell laptop with a 4-core 1.6 GHz Intel Core
i7 CPU with 6 MB cache and 4 GB of memory running a 64-bit Linux 2.6.35 kernel.

Relational DBMS 41

CHAPTER 4: Laying the Groundwork: Accessing Biomedical Data Sources

GraduateCourse[id]

ResearchGroup[id]

AssistantProfessor[id]

teacherOf

University[id]

mastersDegreeFrom

doctoralDegreeFrom

undergraduateDegreeFrom

Department[id]

worksFor

Course[id]

teacherOf

Student[id][student]

hasAdvisor
AssociateProfessor[id]

hasAdvisor

takesCourse

FullProfessor[id]

hasAdvisor

Publication[publication][id]

author

author

GraduateStudent[id]

author

teacherOf

doctoralDegreeFrom

undergraduateDegreeFrom

mastersDegreeFrom

worksFor

teacherOf

hasDepartment

hasGroup

teacherOf

mastersDegreeFrom

doctoralDegreeFrom

underGraduateDegreeFrom

worksFor

teacherOf

takesCourse

hasAdvisor

hasAdvisor

assistantOf

hasAdvisor

Figure 4.9: RDF schema for the LUBM dataset

The system is able to perform sequential reads and writes on the local hard disks with
about 100 MB/s. The data was exported from a MySQL database in version 14.14.
All primary keys as well as foreign keys were indexed accordingly. The data from
the relational database system is piped through the transformation component, which
therefore only has a very small memory footprint.

0

5

10

15

20

25

5 10 15 20

E
xe

cu
tio

n
tim

e
[s

]

Scale

0.5

1.0

1.5

2.0

2.5

3.0

3.5

5 10 15 20
 0

 0.1

 0.2

 0.3

 0.4

 0.5

N
um

be
r

of
 tr

ip
le

s
[M

]

P
er

ce
nt

 o
f e

xp
or

te
d

Scale

Exported
Overhead

Figure 4.10: (1) Execution times and (2) result sizes for the LUBM dataset

An overview over the resulting execution times is shown in Figure 4.10. It can
be seen that the execution time scales linearly from an initial 3 seconds for the scale
factor of 5, to 15 seconds for a scale factor of 20. This shows, that the described data
extraction process is well suited for large datasets and complex mapping definitions.
The size of the resulting dataset and the overhead induced by the extraction process
is also shown in Figure 4.10. The number of exported triples follows the same linear
growth as the overall execution time.

The indicated overhead gives insights into a side-effect of the presented transfor-
mation solution. The problem is that metadata (e.g., the references to the according
RDF/S class definitions) needs to be generated for each exported RDF resource. As
the same resources are utilized in different fragments, it is not easily possible to deter-

42 Relational DBMS

CHAPTER 4: Laying the Groundwork: Accessing Biomedical Data Sources

mine whether this metadata has already been generated for a resource. Although this
could be implemented by maintaining (potentially large) in-memory data structures,
we chose a different approach. If a data integrator is willing to reduce this overhead,
the transformation component provides means to export these metadata only for pre-
defined fragments. It is important to note that this definition has to be carried out
carefully because otherwise the resulting dataset could lack some schema definitions. If
the according information is not provided, the transformation component will simply
generate redundant triples. Despite the introduced overhead, this is not a problem as
these triples will be dropped by any RDF database system when importing the data.

4.4 HL7 Message Streams3

HL7 is a widespread messaging standard for information exchange between clinical
information systems [HL7]. It is part of an application-level protocol which is typically
managed via a communication server. This server receives messages from individual
subsystems and passes them on to all systems that have been registered to receive mes-
sages of the according type. The communication server thus implements an interface
between the systems via a selective broadcast mechanism.

For translational medical research, HL7 messages contain several important types of
data. Firstly, it can be easier to extract clinical data (e.g., laboratory data) from HL7
messages than it is to directly access the originating information system (e.g., Labora-
tory Information System (LIS)). Secondly, administrative information often contains
important metadata. An example are reconciliation events, which occur when two
different identifiers have been found for the same patient. In this case, the according
patient identifiers are reconciled and HL7 messages are sent. Clean identifying data is
highly relevant for data integration systems, as it is often required to ensure consis-
tency in replicated data. Even if it is not necessary to alter any data, the availability
of such information might be important prospectively.

MSH|ˆ∼\&|SENDER|099|RECEIVER||20090618122708||ADTˆA01|42513321|P|2.3
EVN|A01
PID|||00048441934||PrasserˆFabianˆHerr|Prasser|29533212|M|||ˆˆˆˆˆD||||D|||||||||||D|||00000000000000
NK1||Prasser||ˆˆˆˆˆD
PV1||ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆNP0100

Figure 4.11: Example HL7 V2 message of type ADT-A01

HL7 defines different message groups each of which again contains different message
types. Each message itself is defined by a set of segments which again consist of different
groups of fields. There is, e.g., a message group for events regarding the admission,
discharge and transfer (ADT) of patients. If a patient is admitted a message of type
ADT-A01 is sent to all subsystems in order to inform them about the admission. In
HL7 V2 messages are encoded in plain text and separator characters are utilized to
encode segments, groups and fields. An example is shown in Figure 4.11.

4.4.1 Transformation Process
This section presents a fully-automatic, domain-dependent transformation approach
for HL7 messages, which implements materialization. The approach is able to auto-
matically transform valid HL7 messages into an RDF representation. It is domain-

3Parts of the work presented in this section are based on the student project [Sch09]

HL7 Message Streams 43

CHAPTER 4: Laying the Groundwork: Accessing Biomedical Data Sources

dependent and implements a concept in-between the design space of database-centric
and ontology-centric solutions. The resulting RDF graph is materialized in a dedi-
cated RDF database system. The resulting system architecture is shown in Figure
4.12. Here, the HL7 Transformer is registered as a receiver at the communication
server. It transforms all incoming messages into an RDF representation and incre-
mentally maintains a definition of the resulting schema by utilizing the RDF Schema
Description Vocabulary (RDF/S).

Data

Schema

HL7

Transformer

Communication

Server

HL7

RDF

RDF/S

Figure 4.12: Architecture of the HL7 to RDF transformer

To this end each message is automatically transformed into an RDF representation.
As HL7 messages in version 2.3. do not contain any metadata such as field names, we
utilize a machine-readable representation of the HL7 specification. Such a machine-
readable specification is provided by the HAPI project [HAP] which implements a
generic Java-based parser for HL7 messages. This parser is automatically generated
from the HL7 specification. We use HAPI to parse each message and then utilize Java
reflection to traverse the resulting object model which is equipped with meaningful
metadata such as field names. An excerpt of the RDF representation of the HL7
message from Figure 4.11 is shown in Figure 4.13.

<HL7:ADT-A01-0>

hasSegment

„SENDER“

<HL7:ADT-A01-0#MSH-0>

sendingApplication

sendingFacility

receivingApplication

dateTime

processingID

„099“

„RECEIVER“

„20090618122708“

„P“

<HL7:ADT-A01-0#EVN-0>

hasSegment

„A01"

eventTypeCode

<HL7:ADT-A01-0#PID-0>

hasSegment

„Praßer“

„29533212"

„M“ „D“

„D“

„00000000000000"

mothersMaidenName

dateOfBirth

sex primaryLanguage
citizenship

patientDeathDateAndTime

<HL7:ADT-A01-0#PatientName-0>

hasGroup

„Praßer“

„Fabian“

„Herr“

familyName

givenName

middleInitialOrName

Figure 4.13: Excerpt of the representation of the message from Figure 4.11 1

In HL7 V2 the semantics of a data item (field name) is defined implicitly by the
message type, the segment and the position of a group or field within the segment. In
order to create meaningful predicates in the RDF representation, a machine-readable
format of the HL7 specification is required. Such a specification is provided by the
HAPI project [HAP] which implements a generic parser for HL7 messages in the Java
programming language. HAPI is utilized to parse each message and Java reflection is

1The schema definition and complete URIs have been omitted for better readability

44 HL7 Message Streams

CHAPTER 4: Laying the Groundwork: Accessing Biomedical Data Sources

used to traverse the resulting object model which provides field names. In this process,
only these segments, groups and fields are transformed for which data exists within
the message. Therefore, the resulting RDF representation is very compact as can be
seen in Figure 4.13. In a real-world scenario, a large number of segments, groups and
fields specified for the different message types are never used. Simply generating an
RDF/S schema definition out of the HL7 specification would therefore result in a large
volume of redundant metadata. In contrast, an incremental approach is implemented
which always updates a global RDF/S schema description after processing a message.

Process Batch

Yes

Transform Msg

More

Msgs?

Update DB

Reorganize DB
No

Parse Message

Yes
Transform Data and Metadata

More

Fields?

No
Traverse Object Model

Figure 4.14: Processing (1) a batch of messages and (2) an individual message

Detailed UML activity diagrams depicting the described approach are shown in
Figure 4.14. Messages are transformed in batches. To this end, the transformation
can either be executed periodically or when a pre-defined number of messages has
been received. When a batch is processed, each message is transformed into an RDF
representation and the resulting data is passed to the underlying RDF database. Af-
terwards, the database is reorganized. This step is specific to the database system
utilized by our implementation and will be explained in more detail in the following
section.

When processing an individual message, it is first parsed into a Java object. The
resulting object model is then traversed utilizing Java reflection. This process is im-
plemented in a highly generic manner. The object model is traversed recursively and
for each method it is checked whether it returns a valid result (e.g., not null). If
it does return a valid primitive value, it is materialized in the resulting RDF graph
by deriving a meaningful predicate identifier from the method name. Otherwise the
returned object is traversed. In order to only retrieve data which is part of the actual
HL7 message, we maintain a blacklist of methods which are excluded from this pro-
cess (e.g., equals(...) or toString(...)). Identifiers for objects (see Figure 4.13) are
generated incrementally, with identifiers for segments, groups and fields being defined
relative to the current message identifier.

4.4.2 Evaluation
In this section we evaluate the performance of our solution with realisitic data char-
acteristics. Because the data is extracted from a continuous message stream, the
bottleneck in this process is the insertion of new data into the underlying database.
The overhead induced by the transformation itself is negligible in this context. The
experiments were performed on the same system as the experiments in the previous
section.

As an RDF database system we used the RDF-3X triple store [NW10] because it
is one of the most efficient open-source RDF database systems available and offers
excellent performance. The transformation component is implemented in Java and ex-
ecuted on a 64-bit Sun JVM in version 1.6.0 with default settings. The transformation
component and the RDF-3X database system communicated via standard input and
output streams. As RDF-3X implements a highly compressed indexing of all possible

HL7 Message Streams 45

CHAPTER 4: Laying the Groundwork: Accessing Biomedical Data Sources

permutations of the triples’ subjects, predicates and objects (as well as all subsets)
updating data in RDF-3X is not straight-forward. The system therefore implements a
two-step process. When data is written to the database (Update) the system creates a
so-called differential index. This means that the data is not directly inserted into the
B+-trees maintained by the system, but added to newly created additional indexes.
As these additional indexes have a negative impact on the size of the index structures
and also decrease the system’s querying performance, RDF-3X implements a reorga-
nization step in which the data from the differential indexes is merged with the main
indexes (Reorg).

0.0

0.5

1.0

1.5

2.0

2.5

3.0

 10 20 30 40 50 60 70 80 90 100

E
xe

cu
tio

n
tim

e
[s

]

Batch

Update(10)
Reorg(10)

Update(100)
Reorg(100)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

 10 20 30 40 50 60 70 80 90 100

Batch

Figure 4.15: Execution times with (1) an empty dataset, (2) 200k triples

Our component receives messages via the FTP protocol. This means that it monitors
a folder in the file system, which contains all received HL7 messages as plain text files.
The experiments consisted of randomly created batches of HL7 ADT messages which
were sent to the transformation component.

The benchmarks were performed on an empty database, as well as on a database
with an initial size of 200.000 triples. Each experiment contained 100 batches with
batch sizes of 10 and 100 messages. On average, each message resulted in about 30
triples. An experiment with the larger batch size corresponds to the volume of ADT
data which is created within a large maximum care hospital in one week. As can be seen
in Figure 4.15, the execution time of the update process mainly depends on the batch
size and grows only slightly with the size of the database. In contrast, the execution
time of the reorganization step clearly increases with the overall data volume. The
solution scales very well and is easily able to handle realistic data volumes.

4.5 RDF Databases
Because RDF is the underlying data model of the developed prototype implementation,
RDF databases can be integrated into the system without any additional efforts such as
data transformation. This enables the inclusion of a large number of publicly available
biomedical knowledge bases and vocabularies into the dataspace. In this section, we
briefly review a few domain-specific datasets, which are important to the presented use
cases. This includes datasets for drug developers and researchers, which, e.g., include
information about proteins, diseases, genes, metabolic pathways, drugs and clinical
trials.

46 RDF Databases

CHAPTER 4: Laying the Groundwork: Accessing Biomedical Data Sources

System Subject Acronym
Infobox Properties6 Various IP
Other Properties6 Various OP
GeneID7 Genes GID
Linked CT5 Clinical trials LCT
HGNC [BNT+08] Unique gene symbols and names HGNC
OMIM1 Disease genes and phenotypes OMIM
Drugbank2 Chemical, pharmacological and pharmaceutical data DB
Dailymed3 Marketed drugs DM
Sider4 Adverse effects SI
Diseasome [GCV+07] Disorders and disease genes DI

Table 4.2: Example datasets from the Linked Open Data cloud

Relevant datasets from the Linked Open Data (LOD) are shown in Table 4.2. The
LOD is a community effort to publish datasets according to the Linked Data princi-
ples. Additionally, significant efforts have been put into linking the datasets to each
other. For example, each of the example datasets contains links to at least three other
datasets, as can be seen in Table 4.3.

IP OP GID LCT HGNC OMIM DB DM SI DI
IP - X X X X X
OP - X X X X X
GID - X X X
LCT X X - X X X
HGNC X - X X X
OMIM X X - X
DB X X X X - X X X
DM X X X X - X X
SI X X X X - X
DI X X X X X X X X X -

Table 4.3: Links between the example datasets

Diseasome [GCV+07] publishes a network of disorders and disease genes that have
been obtained from Online Mendelian Inheritance in Man (OMIM). OMIM is a collec-
tion of human disease genes and their mutations. It furthermore covers phenotypical
information and links to scientific publications. Detailed chemical, pharmacological
and pharmaceutical data is provided by DrugBank. Dailymed contains information
about marketed drugs. Adverse effects are covered by SIDER, which contains infor-
mation on marketed medicines and associated adverse reactions. LinkedCT provides
data about clinical trials that have been obtained from a public clinical trial registry.
DBpedia consists of information derived from Wikipedia which contains a rich collec-
tion of biomedical data. The Bio2RDF [BNT+08] project publishes different datasets,
containing a derivative of Entrez Gene (GeneID) which is a database for gene-specific
information and the Human Genome Nomenclature (HGNC). The content of Entrez
Gene contains data from different NCBI databases and collaborating model organism
databases. HGNC defines a unique and meaningful name for every known human gene
and assigns an abbreviation.

1http://www.ncbi.nlm.nih.gov/omim
2http://www.drugbank.ca/
3http://dailymed.nlm.nih.gov/
4http://sideeffects.embl.de/
5http://linkedct.org/about/
6http://dbpedia.org
7http://www.ncbi.nlm.nih.gov/gene (Relevant subset of about 20M interlinked triples)

RDF Databases 47

CHAPTER 4: Laying the Groundwork: Accessing Biomedical Data Sources

4.6 Conclusions and Suggestions for Further Work
This chapter presented comprehensive techniques for accessing relevant data from
within RDF-based applications. This included a novel approach for accessing rela-
tional database systems, which are the predominant storage solution for clinical data,
research data and other data such as knowledge bases. Compared to previous work,
our approach offers a consistent way of mapping relational data to the RDF model,
by utilizing context-specific operators. This eliminates the need to define mappings as
a mixture of relational and semantic web concepts and facilitates the implementation
of easy-to-use graphical editors. Because any mapping can be compiled into a set of
independent SQL queries, the creation of RDF dumps is highly scalable as the system
leverages the mature querying capabilities of modern database systems. Furthermore,
the approach allows data integrators to solely operate within the RDF world.

Future research in this context could investigate how the proposed techniques are
suited for directly accessing the underlying database by means of query rewriting.
In theory, this could be implemented very efficiently as any SPARQL query could
be translated to a set of independent SQL queries whose results simply need to be
merged. A remaining challenge is how to avoid duplicate results and return correct
cardinalities for the resulting variable bindings. This either requires a fine-grained
user-defined specification of which metadata should be included in which fragment or
an automatic technique to restrict the export of metadata for each RDF class to a
certain fragment by analyzing the extraction rules as well as the dataset. Our current
implementation is not able to automatically detect dependencies between the data if
a databases’ metadata catalog is incomplete and does, e.g., not specify foreign key
constraints. Future work could investigate techniques to detect such dependencies by
analyzing the database [BLNT07].

In addition to relational databases, clinical and administrative data from the con-
text of patient care can also be accessed via HL7 message streams. The presented
approach allows to automatically and scalably materialize a heterogeneous stream of
HL7 messages into an RDF dataset. By utilizing a generic process, which traverses
object models generated by an HL7 parser, the approach is able to transparently in-
tegrate HL7 messages with varying schemas and even different versions of the HL7
standard. We have also shown that modern RDF databases are able to handle HL7
message streams with realistic data volumes. The component is able to support the
cleansing of identifying data, which is an essential requirement for biomedical integra-
tion systems. Furthermore, it implements a lightweight approach for accessing clinical
data in RDF format, as it allows to automatically transform clinical message streams.
Therefore, the component provides access to important data for translational research.

A promising direction for future research would be to investigate, how the ontologi-
cal representation of HL7 V2 messages can be utilized to (at least partially) harmonize
their RDF representation with the HL7 V3 RIM and related ontologies. Such a har-
monization would allow to utilize the rich semantics of HL7 V3 for data integration
and potentially provide means to foster interoperability.

An increasing number of RDF representations of publicly available datasets are
created and linked to each other. These sources of information can be integrated into
the data integration platform without any additional efforts and we have presented a
brief overview over important public RDF-datasets covering our application domain.

48 Conclusions and Suggestions for Further Work

CHAPTER 5

Maintaining Local Autonomies: Distributed Query Processing

The integrated access to different RDF datasets is one of the key components of the
system presented in this thesis. It is not only the primary interface available to applica-
tions or end users but also forms the basis of further concepts for semantic integration.
Our approach implements loose coupling by spreading different data and metadata
over different RDF repositories. This separation can be utilized to implement a fine
grained permission model while the ability of RDF to reference arbitrary data items
within other datasets is utilized to „glue” the data together. It is therefore very im-
portant to provide efficient means for executing queries within this environment. This
chapter focusses on answering conjunctive SPARQL queries over a set of distributed
RDF databases, as these form the backbone of any SPARQL query processor.

According to Chapter 3, T = I ∪ B ∪ L denotes the set of all RDF nodes
(i.e., URIs (I), blank nodes (B) and literals (L)) and V is the set of all variables.
Inspired by [PAG09], we first define a function which executes a conjunctive SPARQL
query Q = {t0, ..., tn | ti ∈ T ∪ V × I ∪ V × T ∪ V } over an RDF graph G. A mapping
m is a partial function V → T . For a triple pattern t ∈ Q, m(t) is the triple g ∈ G
obtained by replacing all variables in t according to m. The domain of m, dom(t), is
the subset of V for which m is defined. Two mappings m1 and m2 are compatible if
for all x ∈ dom(m1)∩ dom(m2) the following holds true: m1(x) = m2(x), i.e., m1 ∪m2

is also a mapping. Let M1 and M2 be sets of mappings. The join M1 on M2 is defined
as {m1 ∪m2 | m1 ∈M1 and m2 ∈M2 are compatible mappings}. Furthermore, var(t)
returns the set of all variables contained in a triple pattern t. The function S(G, Q)
which executes Q over G is defined recursively:

1. S(G, {t}) = {m | dom(m) = var(t) and m(t) ∈ G}

2. S(G, {t0, t1, ..., tn}) = S(G, {t0}) on S(G, {t1,, tn})

Within a distributed environment, the queried RDF graph G consists of several
datasets, i.e., G = G0 ∪ G1 ∪ ... ∪ Gn. This section will describe a novel indexing
technique as well as efficient compile-time and and run-time optimizations for the dis-
tributed execution of SPARQL queries within our environment. Our concept aims
at integrating those potentially diverse datasets without requiring upfront schema-
level knowledge. It is therefore based upon a purely syntactical synopsis which can
be generated automatically. The remainder of this chapter is structured as follows.
Section 5.1 summarizes related work whereas Section 5.2 presents a novel index struc-
ture. Sections 5.3 and 5.4 cover query optimization and execution. The chapter is
concluded by an evaluation in Section 5.5 and a discussion of the results in Section 5.6.

49

CHAPTER 5: Maintaining Local Autonomies: Distributed Query Processing

5.1 Related Work
Only recently, systems have become available that allow for scalable and efficient man-
agement of large RDF graphs. Most notably the RDF-3X system [NW10] achieves very
good performance by utilizing exhaustive indexing of all possible permutations of RDF
triples and fast merge-joins combined with RDF-specific techniques for join-processing
and query optimization [NW09]. Although systems like RDF-3X are well suited for
querying local RDF data sources, the Semantic Web is distributed by nature. Despite
this inherent distribution, systems for querying distributed RDF data sources are still
in their infancy. Some highly specialized solutions (e.g., [BB10,LH10,LT10]) are not
applicable in our context. This section provides a comprehensive overview over generic
approaches for querying distributed RDF repositories. These can be categorized along
different axes, which are shown in Figure 5.1.

Querying Distributed RDF Repositories

Materialization Distributed Query Processing

Named Graphs Dynamic Lookup Views Indexing

Schema Level Instance Level

Figure 5.1: Techniques for querying distributed RDF repositories

Materialization
Materialization-based approaches such as semantic web search engines offer an in-
tegrated view on distributed RDF data sources by crawling the Semantic Web into a
central physical repository, e.g., [HHUD07,ODC+08]. As local query processing is gen-
erally much cheaper than distributed query processing these systems can offer excellent
response times. Typical drawbacks of this approach include outdated information as
collecting and indexing is a time consuming task, and the loss of the data sources’ ac-
cess autonomies. Especially in the biomedical domain the loss of sovereignty is critical,
as restrictions have often to be enforced due to legal and regulatory requirements or
issues of intellectual property rights.

In contrast to materialization-based systems, approaches fordistributed query pro-
cessing offer means to preserve these autonomies as data is still located at its origin
and global queries are evaluated by accessing the remote data sources on demand. The
key idea is to derive local subqueries from the original global query. These subqueries
are then answered by the local data sources and the global result is computed by pro-
cessing the local results. In this context, query optimization techniques aim at deriving
exactly those subqueries, which are needed to actually answer the query and try to
reduce the number of intermediate results by finding of an efficient evaluation strategy.

Named Graphs
A very simple form of distributed query processing can be implemented by utilizing
the RDF notion of named graphs. This has been implemented in [CFM+09] for the life

50 Related Work

CHAPTER 5: Maintaining Local Autonomies: Distributed Query Processing

sciences domain. RDF allows to assign identifiers to datasets (i.e., a named graph),
which can be utilized to explicitly specify which parts of the query are to be evaluated
at which endpoint. Despite the fact that this approach is easy to implement, it has
numerous drawbacks. It does not offer location transparency and queries can only
be defined by domain experts with in-depth knowledge of the available data sources.
Furthermore, the formulation of a query is very error-prone and time-consuming. Due
to the lack of information about the actual content of the data sources, it is almost
impossible to implement any query optimization techniques.

Dynamic Approaches
This category describes systems which do not require any additional information, such
as graph-identifiers, views or indexes, but answer a query dynamically without any
information about the data sources. The dynamic-lookup approach has been proposed
in [HBF09]. It implements a query execution concept, which has been explicitly de-
signed for data sources that implement the Linked Data principles. The direct lookup
approach traverses this network of data elements during query execution and answers
the query based upon the collected information. It starts by dereferencing URIs which
are included in the original query itself. As heuristics are utilized to reduce the number
of expensive HTTP requests, such systems often return incomplete results which is not
acceptable in our context.

In [SHH+11] a federation layer for linked open data and an according benchmark
[SGH+11] has been presented. The system is also oriented towards a volatile linked data
scenario but implements a classical federation approach. Here, query optimization is
performed at runtime and driven by heuristics. Data localization is implemented with
SPARQL ASK-queries that are sent to all endpoints for all triple patterns in advance to
query execution. The system is very well suited for highly dynamic environments, but
it is difficult to incorporate sophisticated query optimization techniques. For reducing
the volume of intermediate results, the approach utilizes the bind join mechanism
which is implemented in a highly parallelized manner to provide optimal performance.
The basic idea of the bind join is to bind a variable in a subsequent subquery to all
values obtained by executing a previous subquery. It is the most important query
execution technique in all state-of-the-art SPARQL query processors for distributed
environments.

A hybrid approach has been presented in [GS11]. It also utilizes SPARQL AKS-
queries for data localization. In addition, it maintains VOID (Vocabulary Of Inter-
linked Datasets) descriptions of the integrated RDF databases. VOID is an RDF vo-
cabulary that has been developed to provide meta-level descriptions of RDF datasets,
mainly for discovering relevant datasets and not for distributed query processing. The
proposed approach utilizes this information for join ordering and more accurate data
localization. The most efficient variant of the system, which extensively utilizes VOID
data, is not able to handle schema-free datasets, though. For query processing, the
system also relies on the bind-join mechanism.

Views
Systems which are based on views implement a concept similar to federated relational
database systems [Kos00]. The schemas of the local data sources are aligned by ei-
ther mapping them to a global schema (local as view), or by building a global schema

Related Work 51

CHAPTER 5: Maintaining Local Autonomies: Distributed Query Processing

out of the local schemas (global as view) [Hal01]. This can, e.g., be implemented via
declarative mapping rules, or by extending the SPARQL query language. Query pro-
cessing can either be implemented by query rewriting (e.g., [MBG+09]) or by inference
and materialization [SS08]. Some approaches implement peer data management sys-
tems (PDMS), which integrate distributed databases by mapping the local schemata
to each other [XC04]. This allows to implement a cascading query execution process.
Although these systems do not only offer distributed query processing but also means
to semantically integrate the datasets, they require an explicit schema definition of
the datasets. This contradicts the schema-free nature of RDF and the incremental
integration process advocated in this work.

Indexing
Indexing-based approaches utilize synopses or statistical information about the data.
Different index structures can further be be categorized by whether they only include
schema-level information (i.e., RDF predicates) or also cover instance-level information.

Schema-level Indexing: In [SVHB04] the authors propose a lightweight approach,
which implements data localization (i.e., deciding which parts of the query can be an-
swered by which data source) based on information about RDF predicates contained in
the datasets. The proposed index structure is oriented towards object-oriented data-
base systems. It indexes all schema-paths (i.e., chains of attributes) and organizes
them in a hierarchy of paths and subpaths. The drawbacks of the approach include
that predicates always have to be bound, too many sources are selected for common
predicates and query optimization is difficult due to the lack of instance level informa-
tion. Furthermore, the system is limited to answering path-structured queries.

Instance-level Indexing: Instance-level index structures do not only focus on RDF
predicates but also cover subjects and objects. The system described in [QL08] im-
plements a schema-level index which is combined with instance-level synopses, i.e.,
information about the objects associated with a predicate. This includes, e.g., expres-
sions that can be defined by SPARQL filter operators (e.g., only names which start
with the letters A-F). Furthermore, cardinalities (i.e., the number of subjects which
appear in a triple containing the predicate) and selectivities (i.e., the number of sub-
jects for different object values) are stored. The system is able to extract the required
instance-level information automatically and also offers interfaces for manual fine tun-
ing by experts. Although this additional information enables the query processor to
perform some optimizations, the index lacks comprehensive instance-level information.
As the approach also utilizes predicates for source selection, it is restricted to answering
queries with bound predicates.

The approach proposed in [LWB08,LW09a] utilizes more detailed statistical infor-
mation about the data sources. The index stores histograms over all values of pred-
icates for all contained RDFS classes [LW09a]. It distinghuishes between histograms
for different XML Schema data types. If a predicate’s values are RDF resources, the
URIs are not compressed or approximated. The index is generated automatically and
allows to estimate the selectivity and cardinality of individual triple patterns and fil-
ter expressions. These estimates are utilized for join-order optimization. The query
execution engine further implements several well-known optimization techniques, such

52 Related Work

CHAPTER 5: Maintaining Local Autonomies: Distributed Query Processing

as semi-joins and row-blocking [Kos00]. The approach imposes several restrictions on
datasets and queries which make it unfeasible for a deployment in our context. For
example, schema information has to exist for each data source and instances have to
be annotated with it. Furthermore, the approach is limited to SPARQL queries with
variable subjects and explicitly defined RDFS classes. This is necessary to associate
the variables in the query to the histograms in the index. Because URIs are not
compressed, the approach can not handle large datasets.

Data Summaries

Because of the wide-spread use of some vocabularies and the schema-relaxed nature of
SPARQL, many RDF databases are potentially able to answer a single triple pattern.
But if the same triple pattern is part of a more complex SPARQL query many of these
answers are irrelevant due to a lack of join partners. Because of the design of their
instance-level synopses, the previously described systems are not able to prune the
resulting redundant subqueries. A system which is able to consider such dependencies
and to answer arbitrary queries (e.g., with unbound predicates) has been presented
in [HHK+10]. Here, data localization is implemented based on a combined schema-
and instance-level index. The index structure is built by transforming the RDF data
into a numeric space by hashing subject, predicate and object independently. The
resulting points are then approximated by a spatial index structure consisting of three-
dimensional minimum bounding boxes (MBBs). The index structure implements a Q-
Tree [HKK+07], which is a variant of an R-Tree [Gut84]. Such trees do not reference the
indexed data but approximate it. Q-Trees have also been described as a mixture of R-
Trees and histograms [HHK+10]. When optimizing a given SPARQL query, constants
contained in a triple pattern are hashed and a point- or range-query is performed on the
index structure, returning a set of minimum bounding boxes (MBBs). Dependencies
between triple patterns are taken into account by executing the same operations (i.e.,
joins) on the resulting MBBs, as would have been performed on the variable bindings
during query execution. Therefore sources can be pruned that returned MBBs which
did not have a join partner in any of these operations.

In the following sections a new index structure is presented, which is inspired by the
concept of RDF data summaries but allows to optimize much more complex queries.
One important aspect of the our synopsis is that it includes type information. This
allows the optimizer to produce more accurate results. Furthermore, an adequate con-
version of literals into numeric values allows the consideration of much more SPARQL
operators into the query optimization process. Approximating several triples by ranges
of hash-values is inaccurate, as this often leads to overlapping MBBs, that do not ap-
proximate the same RDF nodes. As this leads to inaccurate results, our novel index
structure contains much more detailed information but still remains very compact.
This allows the optimization of more complex queries and leads to reduced main mem-
ory requirements. Finally, we present several compile-time and runtime-techniques,
which are tightly coupled to the index structure and enable the efficient execution of
SPARQL queries within our distributed environment.

Related Work 53

CHAPTER 5: Maintaining Local Autonomies: Distributed Query Processing

5.2 Indexing
The basic idea of an RDF Data Summary is to project the data onto a set of three-
dimensional points by computing independent hash values for each triple’s subject,
predicate and object. These points are then approximated by a spatial index structure
called Q-Tree [HHK+10]. Q-Trees are a variant of R-Trees that have a constant number
of leaf nodes and do not reference the data items themselves but summarize them, e.g.,
by storing counts. Data items are approximated byMinimum Bounding Boxes (MBBs)
on leaf level. A set of nodes is itself summarized by a MBB on a higher level, up to
one single root node. Figure 5.2 shows an example of a two-dimensional Q-Tree.

4 5 6 7 8

2 3

11

2

3

4

6

5

8

7

count=2count=3count=2count=3count=3

Figure 5.2: A two-dimensional Q-Tree
A data summary is a three-dimensional Q-Tree for all data sources, which is built

by iteratively transforming the triples from each source and inserting them into the
tree. Each leaf node stores a set of source identifiers, including one for each source of
a triple approximated by the node. During query optimization a range-query is built
from each triple pattern’s constants and variables and executed against the index. The
result of such a query is a set of MBBs derived from valid leaf nodes. If the result is not
empty, every system that is referenced by any of the resulting MBBs could potentially
return variable bindings for the according triple pattern.

P
re

di
ca

te

Subject

O
b

je
c
t

T1Res1

T2 Res2

Figure 5.3: Join of two MBBs over the subject-dimension
Although this approach is highly flexible, it is not well suited for complex queries

and large datasets. As the nodes of the indexed RDF datasets are hashed, any type
information is lost. However, the preservation and incorporation of type information
would lead to more accurate results (e.g., resources can only be joined with resources)
and the ability to consider further SPARQL operators (e.g., selecting results with
filter expressions). Furthermore, it is very inaccurate to approximate several triples by
ranges of hash values, as this often leads to overlapping MBBs that do not approximate
common RDF nodes. This is reinforced by the fact that Q-Trees are designed to
have a predefined, constant number of leaf nodes regardless of the size of the dataset.
In general there are therefore considerably more join partners for MBBs than there
would be for the approximated triples. This leads to inaccurate results and limits

54 Indexing

CHAPTER 5: Maintaining Local Autonomies: Distributed Query Processing

the optimizer to simple queries and small datasets due to significant main memory
requirements and running times.

5.2.1 Type Information
Our index structure incorporates information about the type of resources and liter-
als and implements value- or order-preserving transformations for some literal data
types. This leads to more accurate results and allows to consider further SPARQL
operators during query optimization. Type information is encoded as two-byte un-
signed integers representing type-identifiers. Therefore 65536 different data types can
be distinguished. For common literal data types (such as integers, strings or calendar
dates) type-identifiers and transformations are assigned statically. Strings are further
distinguished by their defined language. Values with data types which can be encoded
by the eight bytes provided for hash values, such as integers, floats, calendar dates and
timestamps, are kept as is and interpreted accordingly.

http

www/w3/org dbpedia/org/categories/category

2000/01/rdf-schema 2001/xmlschema

3

12

1 1

http/dbpedia/org

categories/category resources

2

1 1

http

www/w3/org dbpedia/org

2000/01/rdf-schema 2001/xmlschema

5

32

1 1 categories/category resources2 1

C

B

A

Figure 5.4: Local and global prefix trees

Type-identifiers are not only used for literals but also for resources. Type infor-
mation can be assigned to resources by encoding a prefix of the resources’ URIs. In
contrary to literals, this can not be implemented by simply assigning identifiers to these
prefixes as there might be too many of them (e.g. a very heterogeneous collection of
URLs). However, as even datasets that do not adhere to a schema very often prefer-
ably use a certain vocabulary, most URIs in an RDF dataset share a set of common
prefixes. To determine the common prefixes of an individual dataset we normalize the
triples’ URIs and split them into a list of path components:

• http://dbpedia/org/categories/Category:Antidiabetic_drugs

• http-dbpedia-org-categories-category-antidiabetic_drugs

We then add all components (excluding the last element) to a radix tree and count
the number of their occurrences. Finally, a global view is needed as this allows to map
the same prefixes from different datasets onto the same type identifiers. Local radix
trees are computed in parallel for each data source (trees (a) and (b) in Figure 5.4) and

Indexing 55

CHAPTER 5: Maintaining Local Autonomies: Distributed Query Processing

merged into a global tree (see tree (c) in Figure 5.4). Each leaf node represents one
prefix which can be built by appending all components on its path to the root node. If
the number of prefixes is larger than what can be encoded by the available two bytes,
the top-k prefixes can be selected by iteratively removing the leaf node with the lowest
frequency until only k leaf nodes remain.

The organization of common prefixes in a radix tree also allows to efficiently deter-
mine the type for a given normalized URI as radix trees support an efficient longest-
prefix matching operation. Parts of the URI not contained in the longest prefix are
transformed by applying a hash function. To cover unknown or infrequent types we
further reserve default identifiers. In the following sections we assume that for any
resource, blank node or literal n ∈ T :

• type(n) returns the two-byte type identifier, and

• hash(n) returns the eight-byte hash value.

5.2.2 Index Organization
The proposed index structure does not implement a single synopsis for all datasets,
but one index per data source. This allows for independent updates and increases the
accuracy as any MBB can be uniquely associated with a single endpoint. Further-
more we apply vertical partitioning [AMMH07] to each index. This concept is based
on the observation that for real-world biomedical RDF datasets the number of dis-
tinct predicates is very small compared to the number of triples. We therefore group
triples that share the same predicate into a common partition, efficiently eliminating
the need to store most of the predicates. This enables us to reduce the amount of re-
dundant information and at the same time preserve the predicates’ hash values. This
further increases the accuracy on schema-level, which is important because predicates
are rarely unbound in common SPARQL queries [AFMPdlF11,PV11]. Furthermore,
vertical partitioning allows to efficiently handle type information. For this purpose, we
partition the dataset not only by predicate hash value, but also by subject, predicate
and object type. As a result, a partition P = (types, typep, typeo, hashp) references a
two-dimensional spatial index structure, approximating subject and object hash values
for any triple t = (ts, to, tp) with type(ts) = types, type(tp) = typep, hash(tp) = hashp

and type(to) = typeo.

39 3243210073213

02 1753078394425

12 9212132431904

02 3243210070765

typeo hashptypeptypes

39 3243210073213

02 1753078394425

12 9212132431904

02 3243210070765

typeo hashptypeptypes

39 3243210073213

02 1753078394425

12 9212132431904

02 3243210070765

typeo hashptypeptypes

DBA

DBB

DBC

id

hashohash
s

Figure 5.5: Partition trees, partition table and system table

56 Indexing

CHAPTER 5: Maintaining Local Autonomies: Distributed Query Processing

An example for such an index is show in Figure 5.5. The system table references a
list of partitions (partition table) for each indexed data source. Each of these partitions
again references a spatial index structure that will be explained in more detail in the
following section.

5.2.3 Partition Trees
In order to further increase the accuracy of our index we developed an extension of
Q-Trees, which we call Partition-Trees or PARTrees for short, that store more com-
prehensive information about the data elements in one partition. Conceptually, sets of
integers are added to the leaf nodes which store the two least significant bytes (LSBs)
of the indexed hash values. For example, for the subject-dimension the set bs contains
the value (hash(ts) mod 216) for each triple t = (ts, tp, to) approximated by the leaf
node. Resulting in only a tiny space overhead, it is further possible to preserve the
correlation between the LSBs of the hash values for the different dimensions. For this
purpose we store a set of points n.lsb = {(hash(ts) mod 216, hash(to) mod 216)} that
approximate the subject and object hash value of each triple t = (ts, tp, to) indexed
by a leaf node n. Because each of these points occupies two bytes for the subject and
object dimension respectively, the index consumes at least four bytes of memory per
triple. As can be seen in the following sections this growth in memory consumption is
legitimate because the stored information helps to determine sources for triple patterns
more accurately and drastically reduces the number of join partners for most MBBs.
In contrast to Q-Trees, which have a fixed number of leaf nodes, we allow our trees to
grow with the number of indexed data elements. In order to control space consump-
tion we define a maximum fanout for inner nodes and leaf nodes which describes the
maximum number of child nodes (or approximated triples) per node. During indexing
the PARTrees are generated locally by applying the Sort-Tile-Recursive (STR) bulk-
loading algorithm [LEL97] and transmitted to the mediator on a per-partition basis
where they are kept in main memory.

5.3 Query Optimization
The initial execution plan is generated by selecting possible sources for each triple
pattern. To this end type information and hash values are derived from the constants
contained in the patterns. The global index is now queried in order to determine
potential sources. A partition p = (types, typep, typeo, hashp) is valid for a triple pat-
tern t = (ts, tp, to) if its referenced PARTree might approximate a triple that satisfies t.
This means that the types and hash value defined by the partition p match the triple
pattern’s constants, i.e., all of the following conditions hold true:

1. ts is a variable, or type(ts) = p.types,

2. tp is a variable, or (type(tp) = p.typep and hash(tp) = p.hashp),

3. to is a variable, or type(to) = p.typeo.

For each system the partition table is checked and range- or point-queries are executed
against the PARTrees referenced by valid partitions. Similar to R-Trees, the trees are
traversed from the root node to the leaf nodes on each path consisting of valid nodes
n with n.mind ≤ hash(td) ≤ n.maxd for each constant dimension d ∈ {s, o}. A leaf

Query Optimization 57

CHAPTER 5: Maintaining Local Autonomies: Distributed Query Processing

node nl = (mins,maxs,mino,maxo, lsb) is valid if its MBB also covers hash(td) for
each constant dimension d ∈ {s, o} and the stored LSBs match the hash value(s), i.e.,
the following holds true:

1. t.s and t.o are variables, or

2. t.o is variable and (hash(t.s) mod 216, y) ∈ nl.lsb, or

3. t.s is variable and (x, hash(t.o) mod 216) ∈ nl.lsb, or

4. (hash(t.s) mod 216, hash(t.o) mod 216) ∈ nl.lsb.

Based on these preconditions it is possible to determine the set of potential sources
for each triple pattern from the global index which is sketched in Algorithm 1. If the
optimizer is not able to determine at least one potential source for each of the query’s
triple patterns, the query can not yield any results and further optimization and query
execution can be omitted.

Algorithm 1: Source Selection
Input: Triple pattern t
Result: All possible sources for t

1 begin
2 S ← ∅
3 foreach system s do
4 foreach partition p of s that is valid for t do
5 if tree of p contains valid leaf node for t then
6 S ← S ∪ {s}
7 break

8 return S

For our example query from Figure 3.5 sources for the triple pattern (?compound,
formula, ?formula) can be found by only checking the partition tables as both sub-
ject and object are variables. For the triple pattern (?compound, contraindication,
"Hypovolemia") additional range queries with a constant at the object dimension have
to be performed.

JOIN [?c]

DISPATCH [DBA]

BGP [?c sideEffect ?s]UNION

DISPATCH [DBB] DISPATCH [DBC]

BGP [?c formula ?f]BGP [?c formula ?f]

JOIN [?c]

DISPATCH [DBA]

BGP [?c contraindication

Hypovolemia]

?f

?c

?s

= ?formula

= ?compound

= ?sideeffect

Figure 5.6: Initial plan for the example query

An initial execution plan is built from the set of potential sources by modeling de-
pendencies between patterns as joins over its variables. The operator Join(Vj) denotes
that the variable bindings returned by its children are to be joined over variables Vj.

58 Query Optimization

CHAPTER 5: Maintaining Local Autonomies: Distributed Query Processing

An operator Dispatch(s) states that its subtree is to be evaluated by the remote sys-
tem s. The case in which there is more than one source for solutions to a triple pattern
is modeled by unifying the results of different dispatch operators. The operator Union
therefore denotes that the variable bindings returned by its children are to be unified.
The initial execution plan for our example query is shown in Figure 5.6. We assume
a scenario consisting of three data sources, DBA, DBB and DBC in which the triple
pattern (?compound, formula, ?formula) can be answered by the systems DBB and
DBC whereas the other two triple patterns can only be answered by the system DBA.

5.3.1 Plan Simplification
In the next optimization phase the initial execution plan is simplified by "simulating"
its execution based on the information provided by the index structure. The variable
bindings returned by evaluating a triple pattern at a remote system are represented by
Approximate Variable Bindings (AVBs). Each AVB b approximates a set of bindings
for a set of variables V by defining type information, boundaries for hash values and
compressed bitsets for each variable dimension v ∈ V .

1. b.minv and b.maxv are lower and upper bounds for the bindings’ hash values.

2. b.typev defines the bindings’ type.

3. b.bitsetv encodes the bindings’ LSBs.

The set of possible LSBs for the approximated variable bindings are encoded in a
bitset (of length 216) because this allows to efficiently join two AVBs. As the bitsets are
only sparsely populated, they can also be compressed very well. Each AVB is initially
being produced by a certain dispatch operator as explained below. When an AVB has
been completely processed and reaches the top of the query execution plan there are
in general multiple dispatch operators that have contributed to it. Each AVB stores a
bitset b.dispatches that is used to keep track of these contributing operators. In the
following sections we will describe these operators in more detail. As a Union operator
simply unifies the two sets of AVBs produced by its children, we focus on the Dispatch
and Join operator.

Dispatch Operator

When executed, the triple pattern referenced by a dispatch operator Dispatch(s) is
evaluated in the same way as during source selection but for a single source s. Similar to
the initial plan generation process, the partition table of s is checked and the referenced
PARTrees are queried for valid leaf nodes. The resulting leaf nodes are then converted
into AVBs representing sets of potential bindings for a triple pattern. This process
is sketched in Algorithm 2. For each variable dimension boundaries for hash values
as well as the data type and a bitset is defined. If the predicate is a variable this
information is derived from the partition’s values for typep and hashp. In case of a
variable at the subject or object position the minimum and maximum boundaries for
the bindings’ hash values are defined by the leaf node’s MBB and the type is defined
by the partition.

Bitsets for the subject and object dimension can be derived directly from the set of
points n.lsb if both subject and object are variables. Otherwise the hash value of the

Query Optimization 59

CHAPTER 5: Maintaining Local Autonomies: Distributed Query Processing

Algorithm 2: Produce AVBs
Input: System s, triple pattern t = (ts, tp, to)
Result: All AVBs for t from system s

1 begin
2 B ← ∅
3 foreach partition p of s that is valid for t do
4 foreach leaf node n in tree of p that is valid for t do
5 b← new AV B
6 foreach d ∈ {s, p, o} such that td is variable do
7 if d = p then
8 b.typetd = p.typep
9 b.mintd = b.maxtd = p.hashp

10 b.bitsettd .set(p.hashp mod 216)

11 else
12 b.typetd = p.typed
13 b.mintd = n.mind, b.maxtd = n.maxd
14 b.bitsettd = DeriveBitset(d, n, t)

15 B ← B ∪ {b}

16 return B

constant dimension is used to project onto relevant bits for the variable dimension. If
both, subject and object, are variables each dimension is transformed into a bitset by
simply setting the bits as defined by the points’ coordinates for the subject and object
dimension. In case of one constant and one variable dimension only these bits are
set for the variable dimension for which a point exists in n.lsb that has a coordinate
matching the constant dimension. Algorithm 3 implements this for a variable subject
dimension, the object dimension is handled analogously.

The downside of this transformation is that the correlation between the LSBs is lost
if both subject and object are variables, resulting in possible false positives. On the
other hand AVBs can now be joined much more efficiently, as the intersection of two
bitsets can be performed simply by computing a bitwise AND-operation. Ascending
integers are assigned as unique identifiers to each dispatch operator in order to en-
able the tracking of contributing sources. To this end the i-th bit is initially set in
b.dispatches for each AVB b produced by a dispatch operator with identifier i.

Join Operator

Two MBBs can be joined if the defined ranges overlap for each join dimension. For
AVBs we extend this by taking data types and bitsets into account. Two AVBs b1 and
b2 can be joined if the following holds true for each join dimension v ∈ Vj:

• b1.minv ≤ b2.maxv and b1.maxv ≥ b2.minv (MBBs overlap),

• b1.typev = b2.typev (types are equal),

• (b1.bitsetv AND b2.bitsetv) 6= 0 (at least one equal bit is active).

60 Query Optimization

CHAPTER 5: Maintaining Local Autonomies: Distributed Query Processing

Algorithm 3: Derive Bitset
Input: Dimension d ∈ {s, o}, leaf node n, triple pattern t = (ts, tp, to)
Result: Bitset for the dimension d

1 begin
2 b← new bitset
3 if d = s then
4 /∗ handle subject dimension∗/
5 if t.o is a variable then
6 foreach (x, y) ∈ n.lsb do
7 b.set(x)

8 else
9 foreach (x, hash(to) mod 216) ∈ n.lsb do

10 b.set(x)

11 else
12 /∗ handle object dimension∗/
13 return b

The minimum and maximum boundaries for hash values resulting from a join between
two AVBs are defined in the same way as for a spatial join of the MBBs involved.
Furthermore the bitsets of the resulting AVB are defined as the result of a bitwise
AND-operation on the bitsets of both AVBs for each dimension. Therefore the number
of active bits in the AVBs’ bitsets decreases as AVBs are passed upwards towards the
root of the query execution plan. The properties of the AVB br resulting from a join
between two AVBs b1 and b2 for each dimension v ∈ Vj are defined as:

• br.minv = max(b1.minv, b2.minv),

• br.maxv = min(b1.maxv, b2.maxv),

• br.bitsetv = b1.bitsetv AND b2.bitsetv,

• br.typev = b1.typev.

The bitset br.dispatches is set to (b1.dispatches OR b2.dispatches) in order to keep
track of the sources contributing to br. Properties for variable dimensions not contained
in Vj are simply inherited from either b1 or b2. Note that it is not possible that the
underlying triple patterns contain a common variable that is not in Vj due to the
implicit definition of joins. When joining two sets of MBBs we first partition each
operand into sets of AVBs with equal data types in the join dimensions. We then solve
the rectangle intersection problem for each combination of compatible partitions by
applying a standard plane-sweeping algorithm. Afterwards the bitsets of each pair of
intersecting AVBs are checked for compatibility.

Join-order Optimization

It is obvious that the performance of joining sets of AVBs strongly depends on a good
join-order for many queries. We therefore implemented a cost-based optimizer utilizing
a top-down enumeration strategy with memoization [FM11]. We assume independence

Query Optimization 61

CHAPTER 5: Maintaining Local Autonomies: Distributed Query Processing

between the individual triple patterns and estimate selectivities based on the higher-
level inner nodes of the PARTrees. For a given triple pattern we construct a set of
MBBs by traversing the PARTrees of each valid partition up to a predefined depth
(e.g., three). We estimate the selectivity for a join between two triple patterns by
computing the cardinality of the spatial join between the sets of MBBs returned by
this scans. As LSBs are only stored in the leaf nodes, we can in this process only
consider the MBBs’ and the data types defined by the partitions. This procedure has
some potential drawbacks. Firstly, as the PARTrees’ higher-level nodes approximate
a potentially large number of triples from which only a tiny fraction might be a valid
solution. Therefore, the resulting selectivity estimation can be imprecise. Secondly,
the assumption of independence of the selectivities of joins in a SPARQL query does
not hold as has been shown in [NM11]. Despite these limitations, the method performs
very well for most queries, as can be seen in Section 5.5.

Sideways Information Passing

Many query processors implement different sideways information passing (SIP) tech-
niques, which allow to reduce the volume of intermediate results and thus join com-
plexities. The general idea is to incorporate lightweight mechanisms, which allow for
passing information sideways in the query execution plan, i.e., between operators that
are neither ancestors nor descendants of each other. This can then be utilized to
remove tuples from local intermediate results, which are known to not produce any re-
sults due to the information provided by other operators. A very lightweight run-time
SIP technique for processing joins on RDF data has been presented in [NW09] and is
implemented by the RDF-3X database system, which we utilize in our prototype (see
Section 5.4).

JOIN [?c]

DISPATCH [DBA]

BGP [?c sideEffect ?s]UNION

DISPATCH [DBB] DISPATCH [DBC]

BGP [?c formula ?f]BGP [?c formula ?f]

JOIN [?c]

DISPATCH [DBA]

BGP [?c contraindication

Hypovolemia]

Figure 5.7: Sideways information passing in the example query

Our SPARQL query optimizer does not implement pipelining when processing ini-
tial query execution plans. It would therefore potentially materialize a large volume
of AVBs in memory, many of which can never produce a result. Preventing the ma-
terialization of these redundant intermediate results is therefore very important in
order to reduce the main memory requirements of our query optimizer as well as join
complexities and thus execution times.

As our index structure includes comprehensive type information, a very light-weight
and efficient SIP technique can be implemented for our optimizer. To this end, we
simply create one bitmask for each join variable, in which we keep track of all type
identifiers that could still find a join partner. These bitmasks are updated whenever

62 Query Optimization

CHAPTER 5: Maintaining Local Autonomies: Distributed Query Processing

an operator has finished its execution. The first operator that produces a complete set
of bindings for a join variable initializes the bitmask by setting the according bit for
each type identifier contained in its intermediate result. All operators that produce a
complete set of bindings for the same variable in subsequent steps build a bitmask for
their intermediate result and update the global bitmask by computing a bitwise AND
between its local and the global bitmask. In our global index structure, type identifiers
are stored in the partition table for each PARTree. Whenever a dispatch operator is
executed, it can therefore utilize the global bitmask to exclude a large number of
partitions in a very efficient manner. Moreover, for each combination of join variable
and type identifier, we store a minimum and maximum boundary for the hash values,
that could possibly find a join partner. This is information is maintained in the same
way as the global bitmasks for type identifiers and is utilized to prune redundant
variable bindings while traversing PARTrees when performing an index scan.

JOIN [?c]

DISPATCH [DBA]

BGP [?c sideEffect ?s]DISPATCH [DBB]

BGP [?c formula ?f]

JOIN [?c]

DISPATCH [DBA]

BGP [?c contraindication
Hypovolemia]

Figure 5.8: Simplified query execution plan

Figure 5.7 shows how sideways information passing can be utilized when optimizing
our example query. The dispatch operator with a constant object (Hypovolemia) will
presumably be rather selective and return just a few AVBs. In contrast, the other
dispatch operators have variable subjects and objects and will therefore not be very
selective. When the selective dispatch operator has been executed, it initializes the
global bitmask which reduces the set of potential type identifiers for the variable ?c
and defines according minimum and maximum boundaries for the hash values. This
information is first utilized by the two dispatch operators in the lower left subtree to
exclude many partitions and PARTree nodes when scanning the index. When the left
join has been executed, the bitmask is updated and now contains only type identifiers
which were contained in the intermediate result of the join operator. This information
is then passed to the rightmost dispatch operator, in order to reduce the number of its
intermediate results.

5.3.2 Post-processing
In the post-processing phase, the resulting operator tree is transformed and subqueries
are derived. If the set of resulting AVBs is empty, the query can not return any results
and query execution can therefore be omitted. Otherwise, there is a potential to prune
redundant dispatch-operators that have not contributed to the result. To this end, we
monitor the resulting AVBs and keep only those operators who have contributed to at
least one AVB. The others are pruned from the query execution plan.

For our example query from Figure 3.5 we assume that the results for the triple
pattern (?compound, formula, ?formula) from source DBC did not contribute to
the result. Figure 5.8 shows the execution plan after pruning the redundant operator.

Afterwards the tree is reorganized in order to push down joins between triple pat-
terns behind one common dispatch operator whenever possible. The triple patterns of

Query Optimization 63

CHAPTER 5: Maintaining Local Autonomies: Distributed Query Processing

these operators can then be unified to form a more complex basic graph pattern.

JOIN [?c]

BGP [?c sideEffect ?s]

DISPATCH [DBB]

BGP [?c formula ?f]

JOIN [?c]

DISPATCH [DBA]

BGP [?c contraindication
Hypovolemia]

JOIN [?c]

DISPATCH [DBA]

BGP [?c sideEffect ?s .
?c contraindication
Hypovolemia .]

DISPATCH [DBB]

BGP [?c formula ?f]

Figure 5.9: Reorganization and pushdown of operators

As in [HAR11] we rely on a heuristic assuming that the minimal number of sub-
queries yields optimal performance. The Figures 5.9 and 5.10 show the transformed
execution plan as well as the derived subqueries for our example query.

SELECT ?compound ?sideeffect
WHERE {
?compound sideEffect ?sideeffect .
?compound contraindication Hypovolemia

}

SELECT ?compound ?formula
WHERE {
?compound formula ?formula

}

DBA DBB

Figure 5.10: Subqueries for the example query

5.4 Query Execution
In the query execution phase, the subqueries are sent to the local databases and the
global result is computed by processing the local results. In this context, it is possible
to implement further optimizations, which, e.g., aim at reducing the required network
bandwidth. In this section a novel technique for pruning redundant temporary results is
present, which is enabled by our indexing and query optimization mechanisms. Finally,
the architecture of the developed query execution engine is described in more detail.

5.4.1 Reducing the Volume of Intermediate Results
Our query optimizer allows to implement several techniques for reducing the volume
of intermediate results during query execution. First, this includes generic approaches,
such as the bind join mechanism [Kos00] which our optimizer is able to apply selectively,
i.e., whenever it is potentially useful. Second, this includes techniques that are specific
to our approach, such as replacing unbound predicates with constants and pruning
redundant intermediate results by utilizing an approach related to semi-join reducers.

Pruning Redundant Intermediate Results

An important side-effect of the presented approach is that the AVBs resulting from
query optimization can also be used to prune redundant variable bindings during query
execution. As AVBs describe restrictions for hash values of variable bindings they
can be used to filter a stream of bindings, leaving only those who are potentially
relevant for answering a query. A set of n-dimensional AVBs can be derived from a
set of bindings B for n variables by iteratively hashing the values of each binding and
approximating them in the same way as during index generation, i.e., by applying
the Sort-Tile-Recursive algorithm. When we denote this by a function AVB(B) and

64 Query Execution

CHAPTER 5: Maintaining Local Autonomies: Distributed Query Processing

returning bindings for a query execution plan P by a function Q(P) the following holds
for a query consisting of a join between two triple patterns T1 and T2:

AVB(Q(T1 on T2)) ≈ AVB(Q(T1)) on AVB(Q(T2))

As AVB(Q(T1)) on AVB(Q(T2)) is exactly what is computed by the optimizer during
query simplification, the AVBs returned by the optimizer effectively approximate the
variable bindings that would be returned when executing the query. This is true for
any other query and can be used to implement a concept related to semi-join reducers
(see, e.g., [Kos00, SKBK01]). In this approach irrelevant join candidates for a join
between two relations from remote systems are pruned by matching them against the
results of a semi-join operation. Although there are different ways to implement semi-
join reducers (e.g., with bloom-filters), they have in common that the reducers are
computed at run-time whereas in our case they are generated at compile-time.

The optimizer returns a set of n-dimensional AVBs (one dimension for each variable
in the query) but individual subqueries normally only cover parts of these variables. We
therefore split each resulting AVB into multiple (potentially overlapping) AVBs, one
for each set of variables contained in a subquery. As the set of AVBs for an individual
subquery might now contain duplicates, we further apply a distinct operator. In order
to efficiently check variable binding against the reducers, we again organize AVBs in
PARTrees by applying the Sort-Tile-Recursive algorithm. In contrast to indexing where
we build two-dimensional trees, the number of dimensions now depends on the number
of variables in the subquery. Moreover, we do not partition the resulting AVBs by
data types, in order to keep the space overhead low. Instead, we organize them in one
single PARTree in which nodes also store type information. For each dimension, the
data type of a node is defined as the result of a bitwise OR-operation on the according
type identifiers of its children. This is inspired by S-Trees, a variant of which has also
been used for indexing RDF datasets in [ZMC+11].

select ?c ?f
where {

?c formula ?f
}

?compound ?formula

Propofol C
12
H
18
O

Aspirin C
9
H
8
O
4

Valium C
16
H
13
C
1
N
2
O

Hash: (99889, 327681) Type: (851, 37)
327681 mod 216 = 3

X

√

Figure 5.11: Example for applying a reducer

The trees generated by this process are then transferred to the remote systems
together with the subqueries. During the execution of a subquery, members of the
stream of resulting variable bindings are pruned if there is no leaf node in the reducer
matching the binding’s types and hash values. This does not affect the completeness
of the overall result, because the generated reducers only allow for false positives.

Query Execution 65

CHAPTER 5: Maintaining Local Autonomies: Distributed Query Processing

This process is exemplified in Figure 5.11. It shows how the second subquery from
Figure 5.10 is evaluated at a knowledge base about compounds and their chemical
properties. The generated reducer is a two-dimensional spatial tree structure, which
covers the compound and formula dimensions. The leaf nodes of this tree contain one
bitmask for each of these dimensions, of which only one is shown in the figure.

The query is executed at the local database and for each of the resulting vari-
able bindings it is checked whether they are a valid result according to the associ-
ated reducer. In this example, we check the binding (?compound=Propofol, ?for-
mula=C12H18O). We assume that the two-dimensional point derived by hashing the
constants is (99889, 327681) and the associated type information is (851, 37). Firstly,
when checking the binding for validity, the hash values are utilized to traverse the tree
structure up to a leaf node. If no leaf node is found, the binding is not valid. In the
example we assume that there is a valid leaf node, which is highlighted in the figure.
Secondly, the type information is utilized to check whether the according bit is set in
the bitset related to each dimension. In the example, we assume that this is true for
both dimensions and the binding is a valid local solution for the subquery. This means,
that it is very likely to contribute to the overall result of the query.

Predicate Binding

Although the previously presented technique allows to heavily reduce the volume of
intermediate results during query execution (see Section 5.5), it is not possible to
leverage this optimization for speeding up local query execution. This means that if a
local subquery is not very selective, many tuples are extracted from the local database
and then pruned by applying a reducer. This process is potentially very costly, as is
exemplified by the query shown in Figure 5.12. We assume that the first, selective,
triple pattern of this query is to be executed at another system than the second, highly
unselective, triple pattern. In this case, a subquery would be executed that selects all
triples contained in the local database.

SELECT ?predicate ?object

WHERE {

 DB00201 sameAs ?caff .

 ?caff ?predicate ?object

}

SELECT ?caff

WHERE { DB00201 sameAs ?caff }

SELECT ?caff ?predicate ?object

WHERE { ?caff ?predicate ?object }

Figure 5.12: Example query with an unselective subquery

To increase the selectivity of queries with unbound predicates, our optimizer employs
a technique which we call predicate binding. In contrast to information about the
triples’ subjects and objects, our index structure does not approximate information
about predicates but preserves it for each partition. During query optimization, our
optimizer determines valid data sources, type identifiers and boundaries for all potential
bindings to all variables, including predicates.

When the set of predicates contained in the data sources is known, the optimizer
can utilize this information to compute a set of resources that are valid bindings for a
variable predicate. This set is defined by all predicates with a type identifier and hash
value that match any of the resulting AVBs. The set of bindings for a variable predicate
is then sent to the subsystem together with the query. During local query execution,
these bindings are inserted into the subquery in order to increase its selectivity. The set

66 Query Execution

CHAPTER 5: Maintaining Local Autonomies: Distributed Query Processing

of predicates contained in each subsystem can easily be determined while computing
the local prefix tree.

Bind Joins

Bind joins are a common technique implemented in all state-of-the-art distributed
query processors for RDF databases, such as the systems presented in [LWB08,QL08]
and [SHH+11]. The basic idea is to compute a join between two subqueries by sequen-
tializing their execution and binding a variable in one query to all according values
obtained by executing the other query. For previous systems, the bind join mechanism
is the most important technique for reducing the volume of intermediate results and
thus query execution times. To this end, the bind join is simply performed whenever
possible, while techniques such as row-blocking are utilized to allow for some level of
parallelism.

Similar to predicate binding, bind joins are relevant for speeding up local query pro-
cessing in our system. In contrast to previous approaches, our optimizer does not solely
rely on the bind join operator, but utilizes cardinality estimates to execute a bind join
whenever it seems appropriate. To obtain these cardinality estimates, we implement
a multi-phase optimization technique. In this context, the reducers generated for each
subquery Qi are utilized to estimate the cardinality of the intermediate result obtained
by applying the reducer to the local result set of the query, reduced(Qi). In subsequent
phases, we apply our optimization process to each generated subquery in order to ob-
tain estimates for the cardinality of the original result sets, original(Qi). Estimates
for reduced(Qi) are derived by counting the active bits in the bitsets contained in the
leaf nodes of the generated reducers. In the subsequent optimization phases for each
subquery, we do not build reducers, but estimate the value of original(Qi) by counting
the active bits in the resulting AVBs.

We utilize these values and a heuristic to decide whether bind joins are to be executed
and if, between which subqueries. First, we determine whether any of the subqueries or
any subset of the subqueries is a potential source for a bind join. Here, it is important
to make sure that a source provides all possible bindings for its triple patterns. This
means that a source can also be a set of subqueries, if more than one query returns
bindings for a contained pattern. A subquery can only be a source if it is highly
selective, i.e., if its estimated reduced cardinality lies under a predefined threshold:

reduced(Qi) ≤ cr

Note that for determining the set of potential sources, we do not need to execute
any additional optimization phases. If a query execution plan does not include any
subqueries that are valid sources, we can therefore skip any further optimizations and
directly execute the query without bind joins.

Second, if there is at least one subquery which is a potential source for a bind-join
and other subqueries exist which share common variables, we determine the set of
potential targets. A subquery can only be a target if it is highly unselective, but its
reduced cardinality is low, i.e., a large portion of the resulting tuples will be filtered
by a reducer. We therefore perform subsequent optimization phases on all subqueries
and define a query as unselective if its original cardinality is larger than a threshold:

original(Qi) ≥ co

Query Execution 67

CHAPTER 5: Maintaining Local Autonomies: Distributed Query Processing

Additionally, a bind join can only be beneficial if a large fraction of the resulting tuples
will be dropped by a reducer:

reduced(Qi)

original(Qi)
≤ cf

When the optimizer has determined that there are potential sources and targets,
it derives an execution plan with bind joins, where the execution of some queries is
sequentialized. The temporary results of a subquery or a set of subqueries is then
buffered at the mediator and passed as initial bindings to the target. Queries which
are neither a source, nor a target can be executed in parallel to the sequences that
implement bind-joins. Our execution plans include all possible bind joins between any
compatible sets of sources and targets. If a cyclic dependency is detected, which can be
the case if at least two sets of queries exist which are potential sources and targets, we
start the sequence with the most selective source and remove all bind joins to this set
of queries. Although the sequences of bind joins can become rather complex, they are
often quite simple for many real-world queries (see, e.g., Section 5.5). For our example
query from Figure 5.12, the optimizer would produce the following query execution
plan:

SELECT ?c WHERE {DB00201 sameAs ?c} BIND
===⇒

?c
SELECT ?p ?o WHERE {?c ?p ?o}

5.4.2 System Architecture
In order to evaluate the pruning power of our approach we have developed a query en-
gine based on the mediator/wrapper architecture shown in Figure 5.13. It implements
a query execution model which consists of four steps:

1. Parse and optimize the query.

2. Execute subqueries at the remote systems (partly sequentialized with bind joins).

3. Load local results into a global database.

4. Execute the query on the global database.

This is basically equivalent to executing the query on a relevant subgraph of the global
graph. Therefore an RDF store can again be used as a global temporary database. Our
prototype implements all concepts described in this chapter. It supports distributed
indexing as well as query optimization and execution, as is shown in Figure 5.13.

Wrappers export standardized interfaces to the remote systems which are provided
by instances of the RDF-3X database system [NW10]. As the wrappers are loosely
coupled to the underlying databases and only require a SPARQL interface, we are able
to integrate nearly any RDF store. We chose RDF-3X because it is one of the most ef-
ficient, open-source RDF database systems available and offers excellent performance.
All components are multithreaded and able to process several queries in parallel. Me-
diator and wrappers communicate via messages exchanged over plain sockets.

The temporary global database is also implemented as an instance of the RDF-3X
system. Because the developed optimizations generally cut down heavily on the number
of intermediate results (see section 5.5) it is also possible to replace it by an in-memory

68 Query Execution

CHAPTER 5: Maintaining Local Autonomies: Distributed Query Processing

Database1

stdin stdout

Socket

Databasen

Socket

Tuples

Tuples Tuples

Wrapper1 Wrappern

Workero
Worker1

Workero
Worker1

Mediator

Workero
Worker1

Socket

RDF-3X

stdin stdout

st
di
n

st
do
ut

R
D
F-
3X

Databasem

SocketWrapperm

Workero
Worker1

stdin stdout

Query Response Indexing ResponseQuery Request

Temporary
Database

Index
Optimizer

E
xe
cu
to
r

RDF-3X RDF-3X

Figure 5.13: System architecture

database. Unfortunately the number of intermediate results is much higher without
optimizations and they do thus often not fit into main memory. We therefore chose
RDF-3X to allow for a fair comparison of the unoptimized and optimized case in the
following section.

5.5 Evaluation
There is currently no established benchmark for distributed SPARQL processors. Al-
though several benchmarks for stand-alone RDF stores have been proposed [BS09,
SHLP09, GPH04], they naturally do not reflect the specific challenges faced by dis-
tributed query processors for RDF (e.g. data localization or distributed join process-
ing). FedBench is a benchmark for federated SPARQL query processing, which is in
an early stage and has not yet been widely adopted [SGH+11]. It does not offer means
for a systematic evaluation of a query processor, but provides a valuable setup for
comparing different systems.

We therefore start by systematically evaluating the scalability of our approach for
increasing query complexity and different types of data distribution, which covers a
broad spectrum of the challenges faced by federated RDF database systems. To this
end, we have generated our own workload based on a collection of biomedical knowledge
bases. The benchmark focuses on Basic Graph Patterns that form the backbone of
SPARQL query processing and our novel query execution technique based on semi-join
reducers.

Finally, we then present an evaluation of our system with the FedBench benchmark,

Evaluation 69

CHAPTER 5: Maintaining Local Autonomies: Distributed Query Processing

to allow for a comparison with related approaches. This benchmark builds upon a rich
collection of publicly available RDF databases and real-world query sets from different
application domains.

In both experiments, our testbed consisted of three Dell desktops which hosted the
data sources and wrappers. Each of these machines has a 4-core 3.1 GHz Intel Core i5
CPU with 6 MB cache and 8 GB of memory running a 64-bit Linux kernel in version
2.6.35. The mediator was deployed on the same machine which has been utilized in
the experiments in the previous section, i.e., a Dell laptop with a 4-core 1.6 GHz Intel
Core i7 CPU with 6 MB cache and 4 GB of memory running a 64-bit Linux 2.6.35
kernel. All systems are able to perform sequential reads on their local hard disks with
about 100 MB/s and were connected via Fast Ethernet. Mediator and wrappers are
implemented in Java and all machines were running a 64-bit Sun JVM in version 1.7.0.
The JVM heap size was restricted to 512 MB for each wrapper and 3 GB for the
mediator.

5.5.1 Evaluation of Scalability
Datasets

Our evaluation datasets contain roughly 100 million triples and consists of the datasets
that have been presented in Section 4.5. The scenario models a knowledge base for drug
developers and researchers in the area of medicine, and incorporates the interlinked
RDF databases presented in Section 4.5. An overview over the characteristics of the
datasets is shown in Figure 5.1

System # Triples # Subjects # Predicates # Objects
Infobox Properties 34.2 M 1.816.862 38.563 8.107.107
Other Properties 31.3 M 9.490.850 8 13.590.111

GeneID 20.1 M 462.855 31 10.750.501
Linked CT 9.8 M 981.880 90 3.808.369
HGNC 1.1 M 125.256 37 655.833
OMIM 0.9 M 20.280 43 379.099

Drugbank 0.5 M 19.693 119 275.336
Dailymed 0.2 M 10.015 28 67.778
Sider 0.1 M 2.674 11 29.410

Diseasome 0.1 M 8.152 19 27.704
Global 98.4 M 11.121.647 38.905 35.837.311

Table 5.1: Characteristics of the evaluation datasets

We evaluated three different scenarios by partitioning the dataset in different ways.
In the naturally-partitioned scenario the datasets have been preserved as is. For the
horizon- tally-partitioned scenario we merged all datasets into one single dataset and
partitioned it horizontally into n equally sized datasets. In the randomly-partitioned
scenario all triples have been distributed randomly among n equally sized datasets.
These three scenarios model different ways in which we expect data to be collected.
The rationale for natural data distribution is straightforward as this models the case in
which several subject-specific data collections have been established. Horizontal data
distribution resembles a scenario in which different knowledge bases have been built by
merging subsets of other datasets. Finally the randomly-distributed scenario models
an extreme for an RDF-specific type of data collection. We assume that users take
advantage of their ability to uniquely reference entities in other datasets and further
annotate them. Therefore the information regarding individual entities is spread over
different data sources. A real-world data management solution for our biomedical use

70 Evaluation

CHAPTER 5: Maintaining Local Autonomies: Distributed Query Processing

cases would probably have to deal with a data distribution lying somewhere in between
these three scenarios.

When partitioned naturally, we distributed the datasets among the three machines
as follows:

• Machine A: Infobox Properties, OMIM, Drugbank (≈36 M triples)

• Machine B: Other Properties, HGNC, Sider (≈32.6 M triples)

• Machine C: GeneID, LinkedCT, Dailymed, Diseasome (≈30.2 M triples)

In case of horizontal or random partitioning we derived nine equally sized datasets
(≈10.9 M triples) and distributed them uniformly among the three machines (three
datasets each).

Workload

The workload used for evaluating the presented approach is generated from different
patterns. A query pattern is defined by a number of stars (s), a number of constants (c)
and a number of variables (v). Each star defines a basic graph pattern that consists of
(c+v) triple patterns. Subjects of these triple patterns are always variables, predicates
are always bound and c of the objects are constants, whereas v of the objects are
variables. If a pattern consists of more than one star, the individual stars are connected
via additional triple patterns with unbound subject and object and bound predicate.
Therefore a query pattern with parameters s,c and v consists of n = (c+ v+1) ∗ s− 1
triple patterns. Such queries are considered to be good representatives for many real
world SPARQL queries [AFMPdlF11] and similar query patterns have been used in
other evaluations [AMMH07, NW10, HAR11]. In the following sections we denote a
pattern consisting of s stars with v variables and c constants as SsVvCc. Figure 5.14
shows an overview over the set of query patterns used in this evaluation. It comprises
patterns consisting of one, two and three stars, each of which consists of one, two or
three constants and one or two variables. The most complex query pattern (S3V1C2)
consists of n = 11 triple patterns.

We generated a workload by creating roughly 100 instances of each pattern. To this
end we associated stars to data sources (naturally-partitioned). A random instance of
a star was generated by selecting all possible outgoing triples for a random subject,
replacing the subject with a variable, randomly selecting v triples and replacing its
objects by variables and c triples that were kept as is. In order to generate a workload
which can be executed in a reasonable amount of time without applying any optimiza-
tions we ensured that each star does not yield more than 10.000 results. We further
matched links between stars with links between datasets which allowed us to control
how the load is spread among the data sources. For each possible link between two (or
three) datasets we created an equal number of queries in a way that resulted in about
100 instances. In the case of s = 1 this was trivial. As there are 10 data sources we
just created 10 random instances for each dataset. For patterns consisting of s = 2
stars we were able to discover 25 possible links between two data sources. Therefore
we created four random instances per query pattern and link, which resulted in exactly
100 queries. For s = 3 this was more complicated as links between data sources are
not always transitive. We found that there are 32 possible links between three datasets
and created three instances for each of them, resulting in 96 queries per pattern.

Evaluation 71

CHAPTER 5: Maintaining Local Autonomies: Distributed Query Processing
3
st
ar
s

2
st
ar
s

1
st
ar

1 constant / 1 variable 2 constants / 1 variable 2 constants / 2 variables 3 constants / 2 variables

Constant

Variable

Figure 5.14: Query patterns
Query Class ≤101 ≤102 ≤103 ≤104 ≤105

S1V1C1 71 5 6 11 7
S1V1C2 88 8 1 2 1
S1V2C2 82 7 7 3 1
S1V2C3 87 9 3 1 0
S2V1C1 87 6 4 3 0
S2V1C2 98 1 1 0 0
S2V2C2 91 6 2 1 0
S3V1C1 73 20 3 0 0
S3V1C2 88 5 3 0 0
Total 765 67 30 21 9

Table 5.2: Result cardinalities

Although there are no guarantees that this process generates queries that spread
the load equally among the different datasets (i.e., query each dataset with the same
frequency), it works well in practice. Regarding the naturally-partitioned scenario, the
load is spread equally for s = 1. In case of s = 2 OMIM and GeneID are slightly
underrepresented whereas Diseasome and Drugbank are overrepresented. For s = 3
OMIM, GeneID and HGNC are slightly underrepresented whereas Diseasome, Drug-
bank and Dailymed are overrepresented. All other datasets are queried with the same
frequency. Table 5.2 shows the result cardinalities of the queries in our workload. Due
to limiting the results of the individual stars to a cardinality of ≤10.000 most queries
(≈85%) return less than 10 results. As can be seen from the following experiments,
the overall time needed to execute a query is usually not strongly correlated with the
cardinality of its result but with the cardinalities and number of its subqueries which
are again influenced by data distribution. As it is more robust against outliers, we
report the geometric mean of the running times for the different sets of queries.

Indexing

The size and accuracy of the index can basically be controlled by adjusting the PARTrees’
leaf fanout parameter (fl) as it defines the number of triples that are packed into one
leaf node. Figure 5.15 shows the size of the index for different values of fl in the case
of natural data distribution. Space consumption converges to a lower boundary when

72 Evaluation

CHAPTER 5: Maintaining Local Autonomies: Distributed Query Processing

increasing fl. This is due to the fixed four bytes allocated for each indexed triple. The
additional overhead for nodes in the PARTrees decreases with fl.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 10 20 30 40 50 60 70 80 90 100

In
de

x
si

ze
 [M

B
]

Leaf fanout

Figure 5.15: Index size in case of natural partitioning

For our evaluation we chose fl to be 50 which seems to be a good trade-off between
space consumption and performance according to our experiments. In this case the
index consumes about 5.6 bytes per triple. This totals to about 555 MB of main
memory which corresponds to a compression ratio of about 5% compared to the original
data in RDF turtle format (12 GB). In case of horizontal and random data partitioning
the space consumption increases slightly to 560 MB and 571 MB respectively. Building
the index from scratch takes about 18 minutes for natural data distribution and 10
minutes for the other scenarios. The latter benefit from the fact that each dataset
contains an equal number of triples, which leads to a higher level of parallelization.
About 30% of the time is spent on building the prefix tree.

Query Optimization

The average time needed to optimize the generated SPARQL queries is shown in Fig-
ure 5.16. The measured running times include all optimization steps, ranging from
parsing the query and initial plan generation, to plan simplification and the generation
of reducers. As can be seen the running time increases with the complexity of the un-
derlying query pattern. The patterns S2V2C2 and S3V1C2 are the most difficult, as they
contain the most variables and joins. Furthermore the complexity increases slightly
when optimizing queries in case of horizontally- and randomly-partitioned data. Analo-
gously to the increasing size of the index this is due to the fact that these partitionings
lead to a larger number of unique predicates per dataset and therefore increase the
number of partitions. Triples that are summarized in one leaf node in case of natural
data distribution are then potentially placed in different nodes. This results in more
leaf nodes and the need to join more AVBs during query optimization.

We also tried to compare our approach to the work presented in [HHK+10]. For
this purpose we ignored the type information and LSBs stored in our index. Despite
the partitioning of triples by data source and predicate, this closely resembles the
original index structure. In this case the optimizer was not able to handle about
51% of the workload’s queries because it produced a huge number of intermediate
results during join processing and ran out of memory. Increasing the heap size limit
did not effectively solve this problem. The error rate increased with the complexity
of the underlying query pattern ranging from 0% for the query class S1V1C1 to 98%

Evaluation 73

CHAPTER 5: Maintaining Local Autonomies: Distributed Query Processing

 0

 500

 1000

 1500

 2000

S1V1C1

S1V1C2

S1V2C2

S1V2C3

S2V1C1

S2V1C2

S2V2C2

S3V1C1

S3V1C2

G
eo

m
et

ric
 m

ea
n

of
 q

ue
ry

 o
pt

im
iz

at
io

n
tim

es
 [m

s]

Query class

Naturally partitioned
Horizontally partitioned

Randomly partitioned

Figure 5.16: Time needed for query optimization

for S2V2C2, S3V1C1 and S3V1C2 respectively. The running times for optimizing the
remaining queries increased by an average factor of about 50, ranging from 1.6 for the
query class S1V1C2 up to 288 for S3V1C1.

Query Execution

Figure 5.17 shows the average time needed to execute the workload including query
optimization. With a workload-average of about one second in case of natural and
horizontal partitioning the prototype performs very well.

 0

 1000

 2000

 3000

 4000

 5000

 6000

S1V1C1

S1V1C2

S1V2C2

S1V2C3

S2V1C1

S2V1C2

S2V2C2

S3V1C1

S3V1C2

G
eo

m
et

ric
 m

ea
n

of
 q

ue
ry

 e
xe

cu
tio

n
tim

es
 [m

s]

Query class

Naturally partitioned
Horizontally partitioned

Randomly partitioned

Figure 5.17: Time needed for query execution
The average query execution times increase by a factor of up to five when the

data is partitioned randomly. In contrary to the other scenarios, where most triple
patterns can be answered by only one single data source, there are often much more
potential sources in this scenario. As a result, less triple patterns can be pushed down
and grouped into more complex subqueries which significantly increases the number
of subqueries and resulting variable bindings. Although many of these bindings can
be pruned, this increases local query execution times because the reducers are only
applied to the result sets of the subqueries and are not directly involved into local
query processing.

74 Evaluation

CHAPTER 5: Maintaining Local Autonomies: Distributed Query Processing

 0

 20

 40

 60

 80

 100

G
eo

m
. m

ea
n

[%
]

Naturally partitioned

Pruned
Reduced

20.9
14.7

7.5 5.9 1.9 1.5 .9 1.5 2.7

20.4
14.7

7.4 5.7 1.9 1.5 .9 1.4 2.7

 0

 20

 40

 60

 80

 100

G
eo

m
. m

ea
n

[%
]

Horizontally Partitioned

21.7

9.9 6.0 3.3 2.8 2.1 1.5 3.0 3.2

17.7
6.7 4.4 2.6 1.8 1.5 1.0 1.4 1.8

 0

 20

 40

 60

 80

 100

S1V1C1

S1V1C2

S1V2C2

S1V2C3

S2V1C1

S2V1C2

S2V2C2

S3V1C1

S3V1C2

G
eo

m
. m

ea
n

[%
]

Randomly Partitioned

46.3

29.7
22.4 18.5 20.1

12.2 15.0
25.6

15.7
22.4

12.5
7.5 6.3 4.3 4.0 3.7 4.2 4.8

Figure 5.18: Average execution times for the different query classes

The impact of the different optimizations is shown in more detail in Figure 5.18.
We denote pruning parts of the operator tree with Pruned, and further reducing the
number of returned variable bindings with Reduced. The baseline of 100% is defined by
the unoptimized case, in which the step of query simplification is omitted (see Section
5.3.1) and initial execution plans are post-processed and executed directly without
applying any optimizations. In case of natural data distribution, pruning operators
reduces the average query execution time by up to two orders of magnitude (S2V2C2).
Further reduction of the resulting variable bindings yields only an additional speedup
of up to 10%. In total, the average query execution time is decreased by a factor of
five (S1V1C1) to 110 (S2V2C2). In this case applying reducers has only little impact,
as subqueries do not yield many irrelevant results. When the data is distributed
horizontally, plan simplification yields a speedup of a factor of five to 65 (S2V2C2).
Reducers also have a significant impact, further decreasing query execution times by
a factor of up to two. Applying all optimizations the average query execution time
is decreased by a factor of five (S1V1C1) to 100 (S2V2C2). In case of random data
distribution much more data sources yield relevant results, limiting the impact of plan
simplification. This results in a speedup of a factor of two to eight (S2V1C2). On the
other hand the potential for pruning irrelevant results is significantly increased, leading
to an additional speedup of a factor of up to five (S3V1C1). This adds up to a total
speedup of a factor of four (S1V1C1) to 25 (S2V2C2).

When compared to natural data distribution, the overall query execution times
increase slightly in case of horizontal and significantly in case of random data distribu-
tion. For naturally or horizontally distributed data only a single data source returns

Evaluation 75

CHAPTER 5: Maintaining Local Autonomies: Distributed Query Processing

relevant bindings for most triple patterns. Therefore these scenarios benefit the most
from pruning operators from the query execution plan. Horizontal distribution does
also offer some potential for reducing the resulting variable bindings, as the unnatural
distribution slightly increases the number of irrelevant variable bindings returned by
the subqueries. In case of random partitioning pruning parts of the operator tree is
more difficult because relevant results for triple patterns can often be returned by more
than one data source. On the other hand this significantly increases the potential to
reduce the amount of resulting variable bindings. Independent from data distribution
the speedup increases with the complexity of the underlying query pattern.

0 GB

20 GB

40 GB

60 GB

80 GB

100 GB

P
ay

lo
ad

 [M
B

]

Naturally partitioned

Naive
Pruned

Reduced

12901 12199
20777

25997

44029
34872

65522

44820
39842

189 5 12 1 1211 12 30 242 22
31 5 12 1 14 3 6 11 5

0 GB

20 GB

40 GB

60 GB

80 GB

100 GB

P
ay

lo
ad

 [M
B

]

Horizontally partitioned

18872
23846

33124 37637

50651 49627

84054

59174
63861

3842 2996 2117 2691
8141 5340 4347

9161 6465
54 17 16 2 14 3 6 13 5

0 GB

20 GB

40 GB

60 GB

80 GB

100 GB

S1V1C1

S1V1C2

S1V2C2

S1V2C3

S2V1C1

S2V1C2

S2V2C2

S3V1C1

S3V1C2

P
ay

lo
ad

 [M
B

]

Randomly partitioned

18230
24034

33881 38285

50920 50067

84877

59874
64526

9832 7510 10943 9683
18540

10400
18349

22881
14538

108 30 94 16 49 15 22 40 21

Figure 5.19: Transferred data volumes for the different query classes

Details on the total data volume (over all queries in the respective class) transferred
while executing the workload are shown in Figure 5.19. Here, Naïve denotes the
unoptimized case. Plan simplification reduces the transferred data volume by several
orders of magnitude. Further pruning irrelevant variable bindings yields an additional
reduction by up to another few orders of magnitude, especially in the case of random
data distribution. Due to plan simplification the generated subqueries often correspond
to the stars contained in a query when data is distributed naturally or horizontally.
The number of bindings for these stars are limited to ≤10.000 and therefore the number
of bindings returned by all subqueries is often ≤10.000 ∗ #Stars. Loading a dataset
into RDF-3X is very fast for smaller datasets. The total query execution times are thus
often dominated by local query processing in this cases because the generated reducers
do not affect local query processing. If data is distributed randomly the number of
results returned by the subqueries increases significantly. As reducers are able to prune
many of these bindings, they do have a strong impact on the overall running times in
this scenario.

76 Evaluation

CHAPTER 5: Maintaining Local Autonomies: Distributed Query Processing

5.5.2 Evaluation with FedBench
FedBench is the first benchmark that has been proposed for federated SPARQL query
processors [SGH+11]. It builds upon a rich collection of publicly available RDF data-
bases, many of which are also part of the evaluation datasets utilized in the previous
section. The benchmark consists of four scenarios, a Life Sciences scenario, a Cross
Domain scenario, a Linked Data scenario and parts of SP2Bench, which is a benchmark
for stand-alone triple stores [SHLP09]. The life sciences and cross-domain scenarios in-
clude real-world queries over popular RDF datasets. The linked data scenario contains
rather simple queries, which are meant for benchmarking Linked Data query proces-
sors. The SP2Bench scenario is included for evaluating the completeness of a system’s
support for all SPARQL features.

Dataset #Triples Machine
DBPedia 43.6M A
NY Times 335k A
SW Dog Food 104k A
Geonames 108M B
Jamendo 1.05M B
Drugbank 767k B
Chebi 7.33M C
LinkedMDB 6.15M C
KEGG 1.09M C
Total 168M –

Domain Query Shape #Results

Life Sciences

1 – 1159
2 – 333
3 Hybrid 9054
4 Hybrid 3
5 Hybrid 393
6 Hybrid 28
7 Hybrid 144

Cross Domain

1 Star 90
2 Star 1
3 Hybrid 2
4 Chain 1
5 Chain 2
6 Chain 11
7 Chain 1

Table 5.3: Characteristics of the FedBench datasets and queries

Similar to previous evaluations with FedBench, e.g., [SHH+11], [SGH+11], [GS11],
we focus on the life sciences and cross-domain scenarios. In total, the datasets utilized
by FedBench contain more than 168 million triples, which results in an index size
of 923 MBs. The datasets were distributed amongst the same machines that have
been utilized in the previous section. An overview over the individual datasets as well
as basic characteristics of the two different query classes is shown in Table 5.3. In
contrast to other evaluations, we did not split the datasets by scenario but built one
large federation which contained all datasets.

?drug

drugCategory

cathartics

?compoundcompoundID?description description ?enzymesubstrate ?reaction

type

Enzyme

enzyme

?equation

equation

Figure 5.20: FedBench query LS-4

The FedBench queries form star-shaped, chain-shaped or hybrid query patterns
with up to 9054 results and 6 joins. The most complex query, query four from the life
sciences scenario, is shown in Figure 5.20. It forms a hybrid query pattern with six
joins, bound predicates, six variables and two constants.

The results of our evaluation of the different query execution techniques described
in the previous sections are shown in Table 5.4. Together with the work presented
in [SHH+11] and [GS11], our approach is amongst the few systems proposed so far
that can handle all life-sciences and cross-domain queries. Moreover, it is the only
system that can handle all benchmark queries without executing bind joins.

Evaluation 77

CHAPTER 5: Maintaining Local Autonomies: Distributed Query Processing

Reduced Bound Predicates Bound Joins
Query Optimization Total Reduction Optimization Total Reduction Optimization Total Reduction
LS-1 0.01 0.17 0.00 0.01 0.18 0.00 0.01 0.37 0.00
LS-2 0.70 902.48 99.99 0.68 256.36 99.99 0.69 1.39 2.34
LS-3 2.90 10.10 4.16 2.38 9.49 4.16 2.37 9.78 4.16
LS-4 0.16 2.11 99.43 0.15 2.03 99.43 0.16 2.20 99.43
LS-5 5.41 9.39 96.12 5.91 9.71 96.12 5.50 9.54 96.12
LS-6 0.04 0.87 99.28 0.03 0.88 99.28 0.03 0.93 99.28
LS-7 1.34 5.63 94.76 1.15 5.79 94.76 1.20 5.90 94.76
CD-1 0.14 122.14 99.99 0.14 53.01 99.99 0.15 0.91 0.00
CD-2 0.01 0.42 0.00 0.01 0.42 0.00 0.01 0.42 0.00
CD-3 0.05 0.69 99.98 0.05 0.67 99.98 0.05 0.75 99.98
CD-4 0.06 0.77 99.91 0.06 0.78 99.91 0.06 0.77 99.91
CD-5 0.05 0.61 96.38 0.05 0.62 96.38 0.05 0.62 96.38
CD-6 0.02 0.40 98.97 0.02 0.39 98.97 0.02 0.38 98.97
CD-7 0.38 86.10 99.99 0.38 86.23 99.99 0.40 1.44 99.52

Mode
BP BJ

X X

X X

X

Table 5.4: Execution times [s] and reduction factors [%] for the FedBench benchmark

As specified in [SGH+11], we executed all queries five times following an initial
warm-up run. Table 5.4 shows the average query optimization time, the average total
time required for optimization and execution as well as the percentage of tuples that
have been dropped by applying the reducers. The numbers clearly show that our opti-
mizer efficiently handles complex real-world queries over large datasets while employing
sophisticated multi-pass optimization techniques. Moreover, our system achieves very
good results during query execution even when not implementing any run-time opti-
mization techniques such as bind joins. The two rightmost columns indicate whether
a query has been executed with bound predicates (BP) or bind joins (BJ).

For queries LS-2 and CD-1 the predicate binding technique results in a significant
speed-up of almost up to a factor of four. This shows that the selectivity of queries with
unbound predicates can be efficiently increased with static compile-time optimizations
that come at no additional costs. The queries LS-2, CD-1 and CD-7 also significantly
benefit from binding variables at run-time. Although this technique requires additional
optimization-phases to be executed for all subqueries, the query optimization time is
not increased significantly. Moreover, the query execution time decreases by up to two
orders of magnitude. Even when employing bind joins, the reducers generated by our
optimizer at compile-time still lead to a significant reduction of the size of intermediate
results, e.g., reducing the number of intermediate tuples by 99.52% for query CD-7.

Service Requests
Query FedX SPLA SPLB PARTrees
LS-1 1 1 1 1
LS-2 18 26 26 3
LS-3 2059 18 2 2
LS-4 3 11 2 2
LS-5 458 17 8 3
LS-6 45 16 8 2
LS-7 485 4 4 4
CD-1 7 26 26 5
CD-2 2 10 2 2
CD-3 23 19 2 2
CD-4 38 20 4 2
CD-5 18 10 2 2
CD-6 185 10 10 2
CD-7 138 13 5 5

Table 5.5: Comparison with FedX [SHH+11] and SPLENDID [GS11]

Table 5.5 shows a comparison with FedX [SHH+11] and SPLENDID [GS11] in terms
of the number of service requests, i.e., subqueries. In contrast to FedX, which enables

78 Evaluation

CHAPTER 5: Maintaining Local Autonomies: Distributed Query Processing

on-demand query federation, SPLENDID does utilize an index structure in form of
VOID (Vocabulary Of Interlinked Data) descriptions. SPLA is a variant of SPLENDID
that only utilizes information about predicates contained in a dataset. SPLB is a
variant that further utilizes type information and OWL sameAs statements, and is
therefore not able to handle schema-free datasets. As can be seen, our approach
requires significantly fewer subqueries to evaluate a global query. The reason for this is
twofold. First, our optimizer is able to locate relevant data sources with high accuracy,
which strongly lowers the number of requests to the subsystems. Second, subqueries
result in very few intermediate results due to our semi-join reducers. Bind joins can
therefore be executed without requiring additional messages to be sent, even when
implementing row-blocking.

5.6 Conclusions and Suggestions for Further Work
In this chapter, a scalable system for optimizing and executing SPARQL queries over
large distributed RDF graphs has been presented. Because of the wide-spread use
of some RDF vocabularies and the schema-relaxed nature of SPARQL, many RDF
databases are potentially able to answer a single triple pattern. But if the same triple
pattern is part of a more complex SPARQL query many of these answers are irrelevant
due to a lack of join partners. The rich RDF-specific synopsis described in this thesis
enables efficient compile-time and run-time techniques that address this problem. At
compile-time, sources that would return only irrelevant results for an individual triple
pattern can be pruned from the query execution plan. Especially this technique is also
of high relevance for querying Linked Data [LIN]. Because this scenario is characterized
by a large number of small data sources that are only accessible via a high latency, low
bandwidth network, it is very important to minimize the number of subqueries.

There are several possible directions for future research. For example, our index
structure implements vertical partitioning [AMMH07]. It has been shown that this
storage scheme does not perform very well for datasets with a large number of distinct
RDF predicates when implemented on top of relational database systems [SGK+08].
Similar problems arise in our solution for very heterogeneous datasets in which a large
number of predicates occur only rarely. As this leads to many small partitions the
compression ratio can drop significantly which also has a negative impact on running
times. This problem can be overcome by merging small partitions into one common
partition. A related approach has been proposed in [NM11] for other schema-level
information. To improve the performance and results of join-order optimization the
concept presented in [NM11] could be adopted. The basic idea is to provide very accu-
rate cardinality estimations based on a lightweight RDF-specific approach for mining
parts of a dataset’s schema. This could potentially be implemented in our approach
based on the triples’ subject, predicate and object types and hash values.

Future work could also investigate how distributed RDF stores can be queried effi-
ciently by processing the results of subqueries with MapReduce. A related system has
been presented in [HAR11]. Although the system presented therein also offers query
processing over distributed instances of the RDF-3X system, its aim is to use a cluster
of machines in order to manage one large RDF dataset. As it needs to control how
data is distributed among the local databases, its concepts are not directly applica-
ble to our requirements though. Regarding the bind join mechanism, we have only

Conclusions and Suggestions for Further Work 79

CHAPTER 5: Maintaining Local Autonomies: Distributed Query Processing

presented an initial concept which is based upon informed heuristics. In future work
we are planning to employ a much more elaborated technique, which is not driven by
heuristics but uses the results of the several optimization phases to estimate the selec-
tivities of bind joins between subqueries. These estimates can be derived by joining
the AVBs returned by the different optimization phases and utilized for a cost-based
optimization. In order to make effective use of this optimization, the local databases
need to be able to process queries containing initial variable bindings. Although there
are workarounds, this is currently not supported in most RDF stores but has been
included in the W3C’s working draft for the upcoming SPARQL version [SPA].

The prototype presented in this thesis does not require the distributed querying
engine to support concurrent reads and writes. In contrast, the indexes are rebuild
from scratch at certain points in time in order to incorporate new knowledge into the
dataspace (see Chapter 6 and Chapter 7). It is generally possible to propagate updates
to our index but the subject, predicate and object hash values and types of triples that
have been added, updated or deleted have to be made available. RDF-3X offers a
natural way to implement this, as it handles updates via a so-called differential index
which is periodically merged with the main index. Our index will degrade over time
when updates are performed because the MBBs of a PARTree’s leaf nodes can not be
split in a reasonable way without knowing the original data items. Future work could
investigate means to measure this degradation for automatically rebuilding the index
when required.

80 Conclusions and Suggestions for Further Work

CHAPTER 6

Bridging the Gaps: Semantic Integration and Data
Transformation

With the techniques presented in the previous sections it is possible to provide an in-
tegrated access to a set of distributed RDF representations of biomedical data sources.
Conceptually, the most important missing components of a comprehensive information
integration platform are flexible and scalable techniques for semantically integrating
and transforming data. This chapter first presents approaches for manually editing and
annotating the dataspace for semantic integration purposes. This includes techniques
for browsing the dataspace, which is challenging as it consists of a large distributed
graph structure. Secondly, a flexible technique for automated semantic integration is
presented, which is able to leverage the manually defined annotations. It is able to
access the querying interface presented in the previous section and to post-processes
the result sets by executing integration workflows, which are formulated in a script-
ing language. A real-world scenario includes a large number of such transformation
scripts. The system is therefore able to automatically parallelize the execution of the
individual scripts based upon knowledge about the dependencies between them. It
further automatically distributes their execution over the available computing nodes
for better resource utilization. Finally, we describe different domain-specific operators,
which can be utilized by the integration scripts. This operators, e.g., allow to execute
semantic reasoning or data de-identification processes.

6.1 Manual Annotation and Mapping
When annotating and editing a graph-structure, it is important to provide a suitable
overview over the data. Therefore, this section focuses on browsing and navigating large
RDF graphs. At any time during this process, the approach allows data integrators to
edit existing data, or add new data. In the latter case, the user is required to specify
the target location (database) for the new data. It can be assumed that the user is able
to utilize multiple navigation- and editing-components in parallel in order to compare
the data and map data items to each other. The system discriminates between low-
volume data and high-volume data, which might be too large to be displayed as a whole
or does not fit entirely into main memory.

6.1.1 Related Work
In case of high-volume data, a component is needed which allows to browse the graph,
as it is not possible to display all information at the same time. In [DK08] an approach

81

CHAPTER 6: Bridging the Gaps: Semantic Integration and Data Transformation

has been presented, which is based upon a layered representation of the graph. It does
not consider the direction of the edges in the graph, but builds a tree-structure with a
circular layout following the direction of the navigation. When a new node is added,
it is put one layer below its parent node and shares the space induced by the angle
of its parent with its siblings. If this angle is not sufficient to provide space for all of
a node’s children, it calls its parent and requests more space, which can be achieved
by recomputing the angles. This request for more space is passed on recursively until
it can be fulfilled. If the request reaches the root node, all nodes are moved one
layer away from the root node to provide more space. The approach further includes
concepts for deleting and reorganizing nodes. A drawback is that it displays the graph
as a tree-structure, although this is not suitable for many graphs. For example, if a
graph is strongly connected, there are many edges which are not part of the navigation
tree and thus complicated to navigate and layout. Furthermore, the resulting layout
is dependent on the order in which the graph is navigated and can not be easily
reproduced. The approach presented in [ODD06] implements a different concept. Here,
the data is not displayed as a graph, but in tabular form. Querying is implemented via
so-called "facets". A facet normally represents a property or classification of the nodes.
In case of patient-data this could, e.g., be the name or the date of birth. In a graph,
facets would be the incoming and outgoing edges of a node. The graph is navigated by
adding, removing and altering facets. Furthermore, it is possible to query the dataset
by defining restrictions for facets. The concept is oriented towards semi-structured
data, which follows a meaningful schema, and is thus not suitable for our application
context.

Smaller datasets can be annotated and altered by utilizing an editor for RDF data,
which loads and displays the entire dataset at the same time. Protégé is an open-
source platform, which includes multiple tools for creating, editing and managing on-
tologies [GMF+03]. It offers different ways to create knowledge bases, supports many
formats and is in wide-spread use. It is not suitable in our context, because it im-
plements a schema-first approach. This means that most of its functionality (e.g., a
graphical view on the data) is only available after the ontology or schema of the data
has been specified. In [TOP] a commercial workbench for creating and editing on-
tologies is provided. Similar to Protégé, it is strongly oriented towards the meta-level,
i.e., it implements a schema-first approach. It provides extensive means to graphically
navigate and edit ontologies. [REJ] is a very light-weight open-source editor for RDF
data. It is well suited for the rapid development of small ontologies and is based upon
a textual representation. In contrast to [GMF+03] and [TOP] it does not enforce a
schema-first approach and is easy to use. It is not suited for our context, because it is
oriented towards very small datasets.

6.1.2 Navigating the Dataspace1

Within the context of a large distributed RDF graph, performance aspects are highly
relevant. This includes techniques to reduce the main memory consumption and to
achieve an acceptable response time by implementing a suitable caching strategy to
reduce the number of queries. This section presents the basic concepts behind our
approach, whereas details on the resulting user interface are given in Chapter 7. The

1Parts of the work presented in this section are based on the student project [Kuh11]

82 Manual Annotation and Mapping

CHAPTER 6: Bridging the Gaps: Semantic Integration and Data Transformation

basic idea is to allow the user to explore the distributed graph structure by expanding
and collapsing nodes, i.e., displaying or hiding nodes and its children or ancestors.
The resulting sub-graph is displayed by applying a spring layout algorithm, which dy-
namically adjusts to the graph structure. Two aspects of this approach have to be
implemented carefully. Firstly, it must be ensured that the displayed sub-graph is not
too large, as this reduces visual clarity and consumes a lot of resources. Secondly, it
must be ensured that this also holds after a node has been expanded. The reason is
that in a strongly connected graph, a node might have a large number of children or
ancestors, which can not be displayed at the same time when it is expanded. The
component implements different designs for resources as well as literals and utilizes
prefixes to shorten the resources’ identifiers. This prefixes are managed in a consistent
way for all components in the overall integration system and are, e.g., coupled to the
common prefixes which are determined during indexing (see Section 5.2). For perfor-
mance reasons, the system maintains a global in-memory cache, which implements a
Least Recently Used (LRU) eviction policy, and maps URIs to their abbreviated repre-
sentations. For navigating the RDF graph, the component solely relies on the querying
interface, which has been presented in the previous section. The incoming and out-
going edges of a given node n can be retrieved by executing the following SPARQL
queries:

• Incoming: select distinct ?s ?p where ?s ?p n order by ?p ?s.

• Outgoing: select distinct ?p ?o where n ?p ?o order by ?p ?o.

Expanding Nodes

The expansion of a node is a difficult operation, as any node might have a large number
of incoming or outgoing edges. For example, a resource which defines a class that is
frequently used in a dataset might be strongly connected. It is therefore necessary
to, firstly, provide means to display only some of those edges and to allow the user to
select which ones to display. Secondly, it is important to cache the neighbourhood of
a displayed node and provide means to browse and search it. The component initially
only displays n edges for each node, whereas n is a user-defined parameter. The other
edges can be accessed by browsing through a list and added to or removed from the
sub-graph. As this list might be too large to fit into main memory, it is stored on disk
where it is organized into pages. This allows for a fast access to all elements within a
certain page, which are read dynamically from the disk during browsing. Furthermore,
those lists are also used as a local cache. Although, it would also be possible to use a
database for this purpose (e.g., an RDF database), databases generally do not provide
an interface for accessing the data organized in a manner suitable for this process.

An example of the implemented index structure is shown in Figure 6.1. The Nodes
index is a hash map, which allows to retrieve the list of all pages (Page index) for
a given node. Those pages are stored on disk and can be retrieved dynamically. A
LRU eviction policy ensures that the in-memory index does not grow too large and
also frees the memory on the hard-disk if a node is evicted from the index. Due to
this design, the component has low memory footprint but allows to efficiently browse
a large strongly connected RDF graph.

Manual Annotation and Mapping 83

CHAPTER 6: Bridging the Gaps: Semantic Integration and Data Transformation

Nodes

Node1

Node2

Node3

Noden

...

Nodes Index

Pages

1

2

3

Incoming
(Predicatem, Nodem)

(Predicatem+1, Nodem+1)

...

(Predicatek, Nodek)

Page

Pages

1

2

(Predicatep, Nodep)

(Predicatep+1, Nodep+1)

...

(Predicateq, Nodeq)

Page

Outgoing

Page Index

Pages

Main Memory Hard Disk

Figure 6.1: Index structure for navigating an RDF graph

Collapsing Nodes and Cleaning Up

For visual clarity and lower resource consumption the size of the navigated sub-graph
is adjusted dynamically during browsing. To this end, all visible nodes are added to
a priority queue based upon a time-stamp of the last interaction (expanded, edges
added etc.). If the total number of nodes exceeds a predefined limit, this priority
queue is utilized to remove the least recently used nodes from the sub-graph until the
limitation holds again. Removing a node means to remove the node itself as well as
all of its incoming and outgoing edges. After removing a node, a clean-up operation
is performed which removes orphaned nodes. To this end, all nodes which are not
connected to any other node anymore are also removed from the graph. Nodes are
removed in the same way, when they are explicitly collapsed by the user.

6.1.3 Editing Low-Volume Data2

In case of smaller datasets, it is possible to display the complete graph for editing and
annotation, which allows to include an easy-to-use RDF editor into the system. The
provided RDF editor does not enforce a schema-first design, but is basically a graph
editor in which node labels are resources or literals and edge labels are resources.
The editor is fully integrated with the overall prefix management and performs simple
consistency checks, such as making sure that subjects are always resources and that
URIs and literals have a valid syntax. This leads to a design, which is well suited
for editing medium size datasets similar to [GMF+03] and [TOP] but is as flexible
as [REJ].

6.2 Automated Data Transformation 3

After a dataset has been made accessible to the integration system and potential
annotation and mapping steps have been performed, complex transformations can
be applied to the data. To this end, a workflow engine is presented in this section. It
allows to formulate transformation and integration processes in a scripting language,
which is able to access the distributed data sources via the querying interface. When
executed, each script can issue queries to the dataspace and relate as well as post-

2Parts of the work presented in this section are based on the student project [Kuc11]
3Parts of the work presented in this section are based on the student projects [Fre12], [Zie12]

and [Web12]

84 Automated Data Transformation

CHAPTER 6: Bridging the Gaps: Semantic Integration and Data Transformation

process the returned result sets. As the underlying system is inherently distributed,
two major optimizations are presented. This includes an algorithm for automatically
deriving a plan, which tries to maximize the level of parallelism when executing the
workflow. Furthermore, a load-balancing component distributes the execution of the
scripts to the available computing nodes in order to leverage all resources.

6.2.1 Related Work
Transforming data and materializing implicit information are common tasks in data
management, e.g., [SDB10]. In the context of the Semantic Web, the most important
approaches include semantic reasoning techniques and rule-based systems for trans-
forming RDF data. The Rule Interchange Format (RIF) is a W3C recommendation
for exchanging rules in the Semantic Web [RIF]. In this context, rules are used to for-
malize knowledge and RIF tries to bridge the gaps between the many dialects available.
It is closely tied to OWL and RDF. Simple statements of the form IF <CONDITION>
THEN <EXPRESSION> form the core dialect of RIF. This is further extended by a Basic
Logic Dialect and a Production Rule Dialect. In general, rule-based systems are based
on simplified first-order-logic, although any rule system can implement its own syntax
and semantics, such as RIF SILK [SIL].

In the context of this thesis, rule-based systems act as a stimulus for the develop-
ment of a more specialized approach, which needs to handle aspects of data access (i.e.,
creating, reading and writing databases) and tries to exploit the fact that the overall
system architecture is inherently distributed. The development of comprehensive se-
mantic reasoning techniques has been started by early work in the area of deductive
database systems [RU93]. Different semantic reasoning approaches for RDF/S and
OWL ontologies have been presented in [JEN,HER,PEL,MS05]. These components
can be integrated into the engine presented in this thesis and will be explained in more
detail in Section 6.3. The main contribution of this section is a workflow engine which
is able to execute data transformation scripts, each of which can utilize external compo-
nents which implement data de-identification, semantic reasoning, data transformation
or entity resolution [GD05]. Analogously to many languages for rule-based systems for
the Semantic Web, our data transformation scripts access the underlying dataspace
via SPARQL queries and construct new knowledge by applying further operators. A
similar approach for ontology-alignment has been proposed in [EPS08].

READS = { DBA, DBB }
WRITES = ∅
CREATES = { DBC }

* Create a new database *\
Database DBC = IO.createDatabase("DBC", "Site1", PERSISTENT);

* Materialize implicit knowledge *\
TF.materialize("DBA", "DBC");

* Add data from DBB *\
IO.add("DBB","DBC");

Figure 6.2: Example data transformation script1

1Here and in the remaining examples, the definition of databases and sites has been simplified

Automated Data Transformation 85

CHAPTER 6: Bridging the Gaps: Semantic Integration and Data Transformation

The individual scripts are executed by a dedicated workflow engine. This approach
has also been taken in many other projects, e.g., [GNTT10,OLHP+10,TAJ+10]. Simi-
lar problems arise in the area of workload management, where the aim is to manage dy-
namic database workloads for meeting complex service level objectives [KSA+08]. Our
approach is different from typical workload managers, as it needs to consider complex
dependencies between the managed entities and is not able to leverage any in-depth
information, e.g., to build a cost model. Various optimization techniques for related
scenarios have been developed in the context of research on data stream management
or complex event processing, e.g., [ABB+04]. Here, the aim is to efficiently process
streaming data, e.g., by sharing data streams between operators [KSKR05]. Our prob-
lem is different from complex event processing, as our operators are not able to process
data in a pipelined manner. For instance, semantic reasoning or data anonymization
processes always require a global view on a materialized dataset.

6.2.2 Basic Concepts
The functional units managed by the workflow engine provide means to define integra-
tion and transformation processes in an expressive scripting language. To this end, we
utilize JavaScript in our prototype, although it would of course be possible to develop a
dedicated Domain Specific Language (DSL) tailored towards the application scenario.
Within these scripts, two interfaces provide important functionality to read and write
data (IO) and to transform data (TF). On a meta-level, each script needs to define
the datasets that it reads, writes and creates. This information is later utilized for
implementing several optimizations. An example is shown in Figure 6.2.

In this script a new database DBC is created which contains all information from
the database DBB as well as all implicit and explicit knowledge from the database
DBA. This means that an OWL reasoner has been executed, which materialized all
implicit knowledge within the dataset. The interfaces IO and TF provide a scripting
environment which consists of several methods for accessing and transforming the
datasets. An overview over the most important operators for reading and writing the
dataspace are shown in Table 6.1.

Method Description
Query(Query) Executes a global query and returns a result set
Query(DB1,...,DBn, Query) Executes the query on the databases and returns a result set
CreateDatabase(Site, Name, Type) Creates a new global database
CreateDatabase(Name, Type) Creates a new local database
Add(DB1, DB2) Adds the data from DB2 to DB1

Add(DB, Triple1,...,Triplen) Adds the triples to the database
Construct(DB, ResultSet, Pattern) Constructs triples and adds them to the database

Table 6.1: Overview over the IO interface provided for scripting

As can be seen the IO interface offers several methods for creating databases
(CreateDatabase(...)), querying an arbitrary subset of the available databases
(Query(...)), adding data to a database (Add(...)) or constructing new data out
of a query’s result set (Construct(...)). The table only shows the most general
specifications of each function, although more specialized variants are provided by

for better readability. In the preamble (READS, WRITES, CREATES), databases are defined by a
unique identifier. This definition is supported by the graphical user interface presented in Chapter 7.
Furthermore, the scripting environment offers interfaces to a registry for accessing databases and sites
via labels or identifiers.

86 Automated Data Transformation

CHAPTER 6: Bridging the Gaps: Semantic Integration and Data Transformation

the interface. The construct method is similar to the construct-variant of SPARQL
queries [PS08] and is used in the example script in Figure 6.17. The methods for cre-
ating new databases have a parameter Type and allow to create four different types of
databases:

• CreateDatabase(Name, VOLATILE) creates a temporary local in-memory data-
base. This means that the database is kept in main-memory and will be dropped
after the script has terminated.

• CreateDatabase(Name, PERSISTENT) creates a temporary local database. This
means that the database is stored on disk and will be dropped after the script
has terminated.

• CreateDatabase(Site, Name, VOLATILE) creates a temporary global database.
This means that it is stored on disk at the specified site and will not be dropped
until all scripts have terminated. The database is not indexed by the mediator
and can thus only be queried by other scripts as a single non-integrated database.

• CreateDatabase(Site, Name, PERSISTENT) creates a persistent global data-
base. This means that the database is stored on disk at the specified site and
will never be dropped. Furthermore, the database is indexed by the mediator
and can be queried in an integrated manner by all other scripts in the workflow.

From the perspective of a workflow engine, the first three ways in which databases
can be created are easy to handle. Creating a global persistent database is more dif-
ficult to implement, however, because the database has to be available to other data
transformation scripts for integrated querying. To this end, the database is indexed
temporarily after the creating script has terminated. Temporary indexing means that
the global prefix tree (see Section 5.2) will not be built in the balanced manner de-
scribed in Section 5.2. Instead the global prefix tree is built incrementally by merging
it with the local prefix trees in an incremental manner. If the overall number of pred-
icates exceeds the limit of about 216, the tree is not re-balanced to include the top-k
prefixes, but instead the overflowing prefixes will be assigned to the unknown category.
In the rare cases where the number of predicates did exceed the limit while executing
the workflow, the global index (including the prefix tree) will be rebuilt from scratch
after the termination (see Chapter 7 for more details). The same mechanism applies
for databases which are altered during the execution of the data transformation phase.

Regarding data transformation, robustness and the principle of loose coupling (see
Section 3.2) are implemented at the level of data transformation scripts. To this end,
the workflow engine guarantees atomicity by ensuring that the results of a script are
either persisted completely or not at all if the script is subject to any errors. This is
implemented by rolling-back all changes created by a script in case of any error. The
workflow engine will always execute all available scripts regardless of any local errors.
On the application level (see Chapter 7), data integrators are informed visually about
any errors, which allows to adjust the scripts in order to fix the problems.

An overview over the most important methods provided for transforming datasets
(TF interface) is shown in Table 6.2. The method Materialize(...) provides
the most important functionality for semantic-integration and executes an RDF/S
and OWL reasoner, which materializes all implicit A-Box (instance-level) and T-Box

Automated Data Transformation 87

CHAPTER 6: Bridging the Gaps: Semantic Integration and Data Transformation

Method Description
Materialize(DBin, DBout) Materializes implicit knowledge
Pseudonymize(DBin, Query,

DBidat, DBpseudo, DBmdat) Pseudonymizes the database DBin

Anonymize(ResultSet, K, Suppression,
Metric, Hierarchy1,...,
Hierarchyn) Creates a k-anonymized version of the result set

GetHierarchy(Type, Name) Creates a generalization hierarchy

Table 6.2: Overview over the TF interface provided for scripting

(schema-level) statements in the specified database. It is explained in more detail in
Section 6.3. The function Pseudonymize(...) creates a pseudonymized version of the
input database. As input it requires a query, which selects all identifying data and in-
cludes variable named id which denotes the resources that identify patients. The result
is written to three datasets. The dataset DBidat will receive a copy of the data selected
via the query, the dataset DBmdat will receive the remaining data in which the patient
identifiers have been substituted with pseudonyms, and the dataset DBpseudo will re-
ceive a mapping between the original identifiers and the pseudonyms. This mechanism
allows to separate different types of data (e.g., identifying and medical data) and to
grant different groups of users access the different types of data without leaking any
of the original identifiers. The method Anonymize(...) provides means to create a
de-identified version of a given result set and will be explain in more detail in Section
6.4. The implemented anonymization algorithm is based upon generalization hierar-
chies, which can be generated automatically for some common attributes by calling
the function GetHierarchy(...). Although the scripting environment only provides
a very small set of methods for data transformation, it offers a powerful mechanism
to implement complex semantic integration tasks. This is due to the integration of a
global view on all datasets, which enables data integrators to issue complex queries
against the dataspace. In combination with user-provided annotations and an expres-
sive scripting language, this allows to automatically evaluate complex expressions in
order to generate new knowledge. The scripting environment can be extended by in-
tegrating many of the available tools for processing RDF data, such as rules engines
or entity resolution techniques (see Section 6.5).

A B

Script1

A C

Script2

B, C D

Script3

D

Script4

C E

Script5

Reads

Creates

Writes
D

Figure 6.3: Example set of transformation scripts

For the workflow engine, each script is a black box with associated data access char-
acteristics. An example scenario is shown in Figure 6.3. It consists of five integration
scripts, which operate on five different databases (A-E). These scripts are executed by
a workflow engine which tries to maximize the level of parallelization and to achieve
a balanced load distribution. These two optimizations are presented in the following
section. They are based on the information about which database is read, written or
created by which script as well as optional user-feedback.

6.2.3 Optimizations
A realistic scenario consists if a large number of integration scripts and a large number
of distributed computing nodes. We have therefore developed an approach, which aims
at leveraging the available resources as much as possible during data transformation.

88 Automated Data Transformation

CHAPTER 6: Bridging the Gaps: Semantic Integration and Data Transformation

To this end, it first computes a parallelized execution plan containing all predefined
integration scripts. This execution plan is built by analyzing the data dependencies
between the scripts and is combined with an optional user-feedback phase. An overview
over this process is shown in Figure 6.4.

Scripts

Dependency

Analysis

Dependency

Graph

Refinement

(Optional)

Revised

Dependency

Graph

Figure 6.4: Optimization of data transformation scripts - Step 1

During the execution phase, the parallelized plan is executed on a single node in a
multithreaded manner. Whenever a transformation script is to be executed, the parent
thread calls a scheduler component and waits until the script has been executed. The
scheduler distributes the plans amongst the computing node in order to balance the
load. This dynamic approach is required, because the the workflow engine does not
have any upfront knowledge about the characteristics of the integration scripts in terms
of resource consumption. The reason for this is, that the scripts are user-defined and
may implement arbitrary transformation processes. In general, it is also not possible to
monitor the scripts’ behaviour and utilize this information for subsequent executions of
the workflow, because the scripts access the underlying datasets, which might change
significantly over time. Finally, a dynamic approach is also important because the
available computing nodes might execute other tasks, such as queries issued by users
(see Section 7.1.3). Although implementing a dynamic approach, the scheduler incor-
porates some static information about the workload, e.g., for prioritization purposes.
An overview over this process is shown in Figure 6.5.

Revised

Dependency

Graph

Parallel-

ization

Execution

Plan

Execution

Scripts

Distribution

Status

Figure 6.5: Optimization of data transformation scripts - Step 2

Parallelization

In a real-world scenario, a large number of integration scripts would be defined. Al-
though there are some dependencies between the scripts, many can be executed in
parallel while still leading to a consistent and correct result. To this end, we have de-
veloped an optimization component which is able to automatically derive a parallelized
execution plan for a set of integration scripts. These execution plans are computed
based upon known dependencies between the data flow characteristics of the scripts.
The dependencies are derived from the defined input- and output-databases and are
shown in Figure 6.6 for the example scripts. Here, the scripts 3 and 5 depend on script
2, script 3 depends on script 1 and script 4 depends on script 3. A script depends on
another script if it queries a database, which is written or created by the other one.
Script 4 depends on itself, as it reads and writes to the same dataset. Circular depen-
dencies between the scripts can not be handled by the workflow engine. For example,

Automated Data Transformation 89

CHAPTER 6: Bridging the Gaps: Semantic Integration and Data Transformation

it would need to be guaranteed that every script reaches a fixpoint when executed re-
peatedly. To this end, circular dependencies are removed from the dependency graph.
This can be done automatically by proposing candidate dependencies for deletion, or
during the user-feedback phase. Afterwards, topological sorting is utilized to derive a
parallelized execution plan [CSRL01].

Script5 Script1

Script2 Script3 Script4

Figure 6.6: Dependencies between the example transformation scripts

The (optional) user-feedback phase allows data integrators to manually alter the
dependency graph in order to reach a higher level or parallelism. For example, a
script might write to a database which is read by another script but both scripts touch
distinct subsets of the contained data. The user is provided with a graphical view
of the dependencies, which allows to remove redundant edges from the graph. It is
important to note that a user has to do this in a cautious way, because removing a
dependency which actually exists yields wrong results when executing the plan.

Script1

Script2
Script5

Script4Script3

Figure 6.7: Example execution plan as a UML activity diagram

The execution plan for the example is shown in Figure 6.7. The system first needs
to execute the scripts 1 and 2, which can be done in parallel. As soon as script 2
has terminated, script 5 can be executed. Script 3 and finally script 4 depend on the
termination of the scripts 1 and 2. The circular dependency of script 4 on itself has
been removed prior to the plan generation. The process halts when the scripts 4 and
5 have terminated.

Scheduling

The overall architecture of the presented integration solution is inherently distributed.
Because many of the involved data transformation scripts could potentially implement
algorithms of high complexity and demand lots of resources, it is important to dis-
tribute the load amongst all computation nodes. The ultimate goal is to leverage the
available resources to execute the plan as fast as possible. In our context, a computing
node is a site and each site can host an arbitrary number of datasets. The scheduling
algorithm is executed by the distribution component from in Figurer 6.5, which is called
dynamically by the component which executes the parallelized execution plan. When
executing a script, each thread calls the scheduler, which dispatches the execution of
the script to one of the available computing nodes. The overall plan which is executed
during a data transformation phase, also contains further step which are automatically
and transparently inserted by the integration system. This includes scripts for creating
an up-to-date RDF snapshot of all exported data sources and scripts for (re-)indexing
each data source before it is accessed by any other script. The scheduler builds upon

90 Automated Data Transformation

CHAPTER 6: Bridging the Gaps: Semantic Integration and Data Transformation

static information about the integration scripts and dynamically adjusted information
about the current state of all computing nodes.

Scope Parameter Type Data type Description
Node Datasets Static Set of DBs Datasets hosted by the node
Node Cores Static Integer Number of CPU cores
Node RAM Static Integer Overall main memory
Script Reads Static Set of DBs Datasets read by the script
Script Writes Static Set of DBs Datasets written by the script
Script Creates Static Set of DBs Datasets created by the script
Script Priority Static Integer Priority of the script
Script MPL Static Integer The number of concurred threads
Script RAM Static Integer The main memory requirements
Script IO-bound Static Boolean Flag for disk-IO-bound processes

Table 6.3: Static and dynamic parameters for load distribution
We make some simplifying assumptions, which are valid for our prototype and our

testbed. We assume that the distributed system of computing nodes is homogeneous,
i.e., all nodes offer the same resources. Furthermore, we assume that the network con-
nection offers the same bandwidth between all nodes. These limitations can easily be
overcome by implementing minor extensions to the presented approach. An overview
over the parameters utilized by our scheduler is shown in Table 6.3. For computing
nodes, static information includes a shallow specification of each node as well as the
hosted datasets. In our prototype, node-specific information is determined by utilizing
Linux command-line tools such as iostat and the SIGAR library [SIG]. For the indi-
vidual scripts, the scheduler utilizes information about the input and output behaviour
in terms of the read, written and created datasets. It also assigns a priority to each
script, which is defined as the number of other scripts which depend on the results of
its execution. Each script is furthermore annotated with information about the num-
ber of concurrent threads (MPL), the required amount of main memory (RAM) and
a flag, which determines whether it is an disk-IO-bound process, i.e., its load profile
is dominated by excessive use of a node’s hard disk. Although the specification of
this information seems to be a rather time-consuming and error-prone requirement to
data integrators, most of these information comes naturally and default values will be
adequate most of the time. The default MPL is one, which is correct for all standard
scripts which utilize the provided interfaces and also for all automatically generated
data export and indexing tasks. In our prototype the required amount of main mem-
ory needs to be specified anyways, because each script is executed within its own JVM
which needs to define its maximum heap size. Realistic parameters for all standard
data transformations can be derived from the evaluations in Section 6.3.2 and Section
6.4.4. Furthermore, all standard data transformations are not IO-bound. Although
they might sporadically create temporary databases or store temporary results on the
hard disk, they perform most tasks in main memory. The automatically generated
scripts which perform data extraction and data indexing are IO-bound, though, as
their load profiles are dominated by on-disk merge-sorts.

For the definition of our scheduling algorithm, we assume that the execution en-
vironment consists of a set of nodes N = {n0, n1, ..., ni} and the workload consists
of a set of scripts S = {s0, s1, ..., sj}. We assume that the properties from Table 6.3
are available for each node and script via functions. For example, cores(n0) returns
the number of CPU cores of the node n0, and creates(s0) returns the set of databases
created by the script s0. The scheduler processes scripts according to the order in-
duced by priority(s). When choosing a potential target node for their execution, the

Automated Data Transformation 91

CHAPTER 6: Bridging the Gaps: Semantic Integration and Data Transformation

nodes are prioritized according to how much of the required data is available locally.
As the scripts are black boxes, the scheduler only knows which datasets are accessed
but not with which selectivity. The priority for assigning a script s to a node n is
therefore defined as the number of datasets hosted by n which are accessed by s, i.e.,
priority(n, s) = |datasets(n) ∩ {reads(s) ∪ writes(s) ∪ creates(s)}|. For each node n
we further maintain a set wload(n) which contains all scripts that are currently being
executed on this node. When dispatching a script s to a node n we add it to this set,
i.e., wload(n) = wload(n) ∪ {s}. Consequently, when a script s has terminated, we
remove it from the set, i.e., wload(n) = wload(n) \ {s}.

Based on this prerequisites we can determine whether the scheduler can dispatch
a script to a node without overloading it. It is desirable to prevent overloading a
node, because parallely executing scripts while exceeding a systems’ resources does not
yield any additional speedup. In contrast, it might even have a negative effect on the
overall performance, e.g., when the system starts trashing due to exhaustive memory
consumption. In this context, it is important to note that the overall integration system
is not paused during the execution of a data transformation workflow. As a result, all
nodes might be executing additional computing tasks, e.g., answering queries issued
by users. However, the aim of not exhausting a node’s resources is not to prevent
affecting these additional tasks, as the workflow engine can be separated from these
process by prioritization on an operating system level. In the Linux-world this can,
e.g., be achieved with programs such as nice (CPU), ionice (Disk-IO) and bandwidth
shapers such as trickle (Network-IO). In terms of the scripts’ memory consumption
we implement a different approach by making sure that the workflow engine does not
consume all local main memory, but leaves a predefined amount maxm for processing
other tasks. The reason is that we want to prevent expensive swapping to occur when
a higher prioritized task (such as a user query) is to be executed on a busy machine.

Algorithm 4: ScheduleWindow(window)
Input: Window window = (si | 0 ≤ i ≤ k)

1 begin
2 sort window descending by priority(si)
3 foreach s ∈ window do
4 nodes← (n ∈ N | available(n, s))
5 sort nodes = (nj | 0 ≤ j ≤ l) descending by priority(nj , s)
6 if nodes is not empty then
7 dispatch s to n0

8 else if window is primary then
9 secondary = secondary ∪ {s}

The scheduler also aims at preventing non-effective parallelism. This applies to
executing a set of disk-IO-bound processes in parallel. In this case, as long as the
processes perform mainly sequential IO (which is true for all standard scripts in our
prototype), executing them in parallel will at best yield the same results as executing
them sequentially. Note that, if a computing node would provide multiple disks that
are not combined in a RAID configuration, scripts could utilize those independent
disks in parallel. This is, however, a rather uncommon configuration, which results in
additional optimization problems. Non-effective parallelism is also relevant for CPU

92 Automated Data Transformation

CHAPTER 6: Bridging the Gaps: Semantic Integration and Data Transformation

resources, as exceeding the number of available physical CPU cores will also not result
in any speedup. In such situations, degrading to (locally) sequential execution will
allow the scheduler to prioritize the execution of the workload.

The maximum amount of main memory that will be consumed by the workload
currently executed on a node n is:

ram(wload(n)) =
∑

s∈wload(n)

ram(s)

Analogously, the current workload of a node n will not utilize more CPU cores than:

mpl(wload(n)) =
∑

s∈wload(n)

mpl(s)

Finally, the current workload of a node n is io-bound if:

io-bound(wload(n)) =
∨

s∈wload(n)

io-bound(s)

Taking all these aspects into consideration, the function which defines whether a
node n has enough resources to process a given script s is defined as follows:

available(n, s) =


false if io-bound(s) ∧ io-bound(wload(n))
false if maxm + ram(s) + ram(wload(n)) > ram(n)
false if mpl(s) +mpl(wload(n)) > cores(n)
true otherwise

In order to allow the scheduler to influence when and where which scripts are to
be executed, it implements a windowing approach. When the scheduler is called to
execute a script s, it will be added to the primary queue. All elements in this queue
will be scheduled on a best-effort basis when the queue reaches a predefined maximum
size (sizew, e.g., 10), or at least at a predefined interval following the last processing
of the queue (timew, e.g., 10 seconds). The scheduler processes the queue of scripts
{si | 0 ≤ i ≤ k} according to the order induced by priority(si). A script s will be
dispatched to a node n, which is currently able to process it without exhausting its
resources, i.e., available(n, s). When multiple such nodes are available, the scheduler
dispatches the scripts according to the order induced over the nodes by priority(n, s).
The automatically generated scripts which export RDF data from primary sources, are
an exception to this rule. They can not be scheduled to another node, because the
primary source will in general only be reachable from a single node. When a script can
not be dispatched to any node due to a lack of resources, it is removed from the primary
queue and added to a secondary queue. The secondary queue is processed whenever
resources become available, i.e., when the execution of a script has terminated. It is
processed in the same way as the primary queue, which is shown in Algorithm 4.

6.2.4 Evaluation
For the evaluation of our scheduler we have implemented a complex scenario which
closely resembles a real-world use case. An overview is shown in Figure 6.8. As can be
seen, the system integrates four primary sources, including a Biobanking application,

Automated Data Transformation 93

CHAPTER 6: Bridging the Gaps: Semantic Integration and Data Transformation

ABox

Ontology

TBox

Ontology HL7 ADT

Pathology ISBiobank CDMS

MPI

Annotations
Patho.

Annotations

Study1

AnnotationsStudy1Pathology ISBiobank

Biobank

Annotations

Node1 Node2 Node3

MPI

Patho.

MDAT

Patho.

IDAT

Biobank

MDAT

Biobank

IDAT

Study1

MDAT

Study1

IDAT

Study1

Pseudo

Patho

Pseudo
Biobank

Pseudo

Pseudo

MPI

HL7 Stream

Data

Extraction

MPI

Creation

Pseudo-

nymization

Pseudo-

nymized MPI

Creation

Normalization

Patho.

Normalized
Biobank

Normalized

Study1

Normalized

K-Anonymized

Extract

Anonymization

2 31 6

5

7 7 76 6 6 8 8 8

9

1110 14

13

12

4

Figure 6.8: Example scenario

a Pathology Information System, a study extracted from a Clinical Data Management
System (all based on relational databases) and ADT data from an HL7 message stream.

These original data sources are depicted by a blue color in the figure, their RDF
representations are depicted by orange. Additionally, the system maintains metadata
for the global dataspace (a global schema-level (TBox) and instance-level (ABox) on-
tology) as well as user-defined annotations (red) in native RDF triple stores. The
primary and additional data sources are distributed over three sites, i.e., computing
nodes. Nine data transformation scripts are utilized to process the data sources and
to derive new knowledge or alternative representations (green). This includes the cre-
ation of a global Master Patient Index (MPI), which maps the local patient identifiers
and takes user-defined annotations into account. Three pseudonymization steps are
utilized to split the primary data into identifying and medical data for fine-grained ac-
cess control. Semantic reasoning is utilized to derive normalized representations of the
medical data from each primary source by taking user-defined annotations as well as
global ontologies into account. Finally, a k-anonymized extract of an integrated view
over the biobanking data and the study data extracted from the CDMS is created for
external access.

Summarized, the scenario consists of four extracts from primary data sources, six
native RDF repositories and 15 derived RDF datasets. In the resulting execution
plan, which is shown in Figure 6.9, the system automatically inserted four scripts for
exporting the data from the primary sources (orange) and 25 scripts which index all
resulting RDF datasets (gray). In total, the execution plan therefore consists of 38
individual operations, which are to be executed in a distributed system with three
nodes. The colors of the steps in Figure 6.9 resemble the colors from Figure 6.8.

The testbed equals the one utilized in Section ?? for benchmarking our distributed
query processor. It consisted of three desktop machines, each of which was equipped
with a 4-core 3.1 GHz Intel Core i5 CPU with 6 MB cache and 8 GB main memory,
running a 64-bit Linux kernel in version 2.6.35. All workflows were executed on an

94 Automated Data Transformation

CHAPTER 6: Bridging the Gaps: Semantic Integration and Data Transformation

Index BB_AN

IN: BB_AN

OUT: BB_AN

Export BB [1]

OUT: BB
Index BB

IN: BB

OUT: BB

Index ABOX

IN: ABOX

OUT: ABOX

Index TBOX

IN: TBOX

OUT: TBOX

Index RDB_AN

IN: RDB_AN

OUT: RDB_AN

Index MPI_AN

IN: MPI_AN

OUT: MPI_AN

Index PAT_AN

IN: PAT_AN

OUT: PAT_AN

Export RDB [4]

OUT: RDB
Index RDB

IN: RDB

OUT: RDB

Export PAT [3]

OUT: PAT

Index PAT

IN: PAT

OUT: HL7

Export HL7 [2]

OUT: HL7

Index HL7

IN: HL7

OUT: HL7

Pseudo BB [6]

IN: BB

OUT: BB_IDAT

OUT: BB_PSN

OUT: BB_MDAT

Build MPI [5]

IN: HL7

IN: MPI_AN

IN: HL7

IN: BB

IN: RDB

OUT: MPI

Index MPI

IN: MPI

OUT: MPI

Pseudo HL7 [7]

IN: HL7

OUT: PAT_IDAT

OUT: PAT_PSN

OUT: PAT_MDAT

Pseudo RDB [8]

IN: RDB

OUT: RDB_IDAT

OUT: RDB_PSN

OUT: RDB_MDAT

Index RDB_PSN

IN: RDB_PSN

OUT: RDB_PSN

Index RDB_IDAT

IN: RDB_IDAT

OUT: RDB_IDAT

Index RDB_MDAT

IN: RDB_MDAT

OUT: RDB_MDAT

Index BB_MDAT

IN: BB_MDAT

OUT: BB_MDAT

Index BB_IDAT

IN: BB_IDAT

OUT: BB_IDAT

Index BB_PSN

IN: BB_PSN

OUT: BB_PSN

Index PAT_PSN

IN: PAT_PSN

OUT: PAT_PSN

Index PAT_IDAT

IN: PAT_IDAT

OUT: PAT_IDAT

Index PAT_MDAT

IN: PAT_MDAT

OUT: PAT_MDAT

Norm RDB_NOR [12]

IN: TBOX

IN: ABOX

IN: RDB_MDAT

IN: RDB_AN

OUT: RDB_NOR

Index RDB_NOR

IN: RDB_NOR

OUT: RDB_NOR

Norm BB_NOR [10]

IN: TBOX

IN: ABOX

IN: BB_MDAT

IN: BB_AN

OUT: BB_NOR

Index BB_NOR

IN: BB_NOR

OUT: BB_NOR

Build PSN_MPI [9]

IN: MPI

IN: MPI_AN

IN: PAT_PSN

IN: BB_PSN

IN: RDB_PSN

OUT: PSN_MPI

Index PSN_MPI

IN: PSN_MPI

OUT: PSN_MPI

Norm PAT_NOR [11]

IN: TBOX

IN: ABOX

IN: PAT_MDAT

IN: PAT_AN

OUT: PAT_NOR

Index PAT_NOR

IN: PAT_NOR

OUT: PAT_NOR

Anon ANON [13]

IN: BB_NOR

IN: RDB_NOR

IN: PSN_MPI

OUT: ANON

Index ANON

IN: ANON

OUT: ANON

Figure 6.9: Example execution plan

Oracle JVM in version 1.6.0 with default settings. The systems were able to perform
sequential reads on their local hard disks with about 100 MB/s and were connected via
Fast Ethernet. The length of the window, sizew, was set to 10, and the timing interval,
timew, was set to 5 seconds. The maximum amount of utilized memory, maxm, was
set to 6 GB, which is 75% of the local main memory. We show the feasibility of our
scheduling approach by incrementally enabling the different heuristics.

 0

 20

 40

 60

 80

 100

Lo
a
d

 [
%

]

N
o
d
e
 1

MEM
IO

CPU
NET

 0

 20

 40

 60

 80

 100

Lo
a
d
 [

%
]

N
o
d

e
 2

2
6

8
8

1 2 3 4 5

 0

 20

 40

 60

 80

 100

0 500 1000 1500 2000 2500

Lo
a
d
 [

%
]

N
o
d
e
 3

Time [s]
3000

Figure 6.10: FIFO scheduling without local parallelism and local execution

Figure 6.10 shows the development of the different load parameters for all three
nodes while executing the workflow with a basic version of our scheduler. Firstly, it

Automated Data Transformation 95

CHAPTER 6: Bridging the Gaps: Semantic Integration and Data Transformation

processes the incoming execution requests in a FIFO manner, i.e., it omits sorting the
scripts according to their priority (line 2 in Algorithm 4) and sets the maximum window
size to sizew = 1. Secondly, it implements locally sequential execution, meaning
that the function available(n, s) will always return false, as soon as the node n is
executing any script (line 4 in Algorithm 4). Finally, it allows only local execution,
i.e., a script can only be dispatched to a node which hosts at least one of the accessed
data sources. This is implemented by only considering nodes with priority(n, s) 6= 0
(line 5 in Algorithm 4). Each plot shows the local load for one node in terms of memory
consumption, disk-IO load, CPU load and network traffic. Disk-IO and network-IO
load are measured in terms of the utilized bandwidth. The spikes in the network
load show, how the nodes exchange data during executing the workload. Above the
plots, the lines indicate when a script is executed on a node. It can be seen that, in
this configuration, the workflow engine needed 2683 seconds to execute the complete
workload.

 0

 20

 40

 60

 80

 100

Lo
a
d

 [
%

]

N
o
d
e
 1

MEM
IO

CPU
NET

1

 0

 20

 40

 60

 80

 100

Lo
a
d

 [
%

]

N
o
d
e
 2

2
1

6
2

2
3 4 5

 0

 20

 40

 60

 80

 100

0 500 1000 1500 2000 2500

Lo
a
d
 [

%
]

N
o
d
e
 3

Time [s]
3000

Figure 6.11: FIFO scheduling with local parallelism and local execution

The red lines indicate those scripts, which are part of the critical path and define
a theoretical optimum for executing the workload. This theoretical optimum is deter-
mined by the longest path from the start-node of the execution plan to its end-node.
In this context, the longest path means that sum of the execution times of all scripts
executed on the path is maximal. The optimum is theoretical, because it is defined by
a sequential execution of the workload, which assumes that there are no side-effects
resulting from a parallel execution of the other (non-critical) paths. It can be seen
that, despite some very short interruptions at the beginning, the path was mainly in-
terrupted by the execution of the scripts annotated as 1, 3 and 4. It is important to
note, that the execution times of this configuration are non-deterministic, because the

96 Automated Data Transformation

CHAPTER 6: Bridging the Gaps: Semantic Integration and Data Transformation

scheduler processes the scripts on a first-come first-served basis and is called by several
threads in parallel. The optimum for the complete workload is about 1882 seconds.

Figure 6.11 shows a configuration of the scheduler with enabled local parallelism.
This means that each node is allowed to execute up to four scripts in parallel. As the
scheduler is not able to prioritize scripts due to its FIFO strategy, we allowed for exe-
cuting several disk-IO-bound processes in parallel in this scenario. It can be seen that
the workload did strongly benefit from local parallelism, as the overall execution time
dropped to 2162 seconds. Due to the parallelism, the critical path was not interrupted
anymore, but the parallel execution of the scripts 3, 4 and 5 did not further decrease
the execution times, as these three scripts had to share the local disk-bandwidth. Due
to the parallelism, the script annotated as 1 could be executed on node 1, which had a
higher priority as it hosted more of its accessed datasets. In this configuration, more
scripts could be executed on a node with higher prioritity, which lead to a reduction
in network communication.

 0

 20

 40

 60

 80

 100

Lo
a
d

 [
%

]

N
o
d
e
 1

MEM
IO

CPU
NET

1

 0

 20

 40

 60

 80

 100

Lo
a
d

 [
%

]

N
o
d
e
 2

2
0

4
8

2
3 5

4

 0

 20

 40

 60

 80

 100

0 500 1000 1500 2000 2500

Lo
a
d
 [

%
]

N
o
d
e
 3

Time [s]
3000

Figure 6.12: Windowed scheduling with local parallelism and local execution

Figure 6.12 shows a configuration of the scheduler which implements the windowing
approach. This means, that it set sizew = 10 and prevented the concurrent execution
of multiple disk-IO-bound processes on a local node, in order to allow for prioritization.
As can be seen, the overall local parallelism decreased due to this restriction. Although
this caused the interruption of the critical path with two IO-bound processes which
could not be scheduled to another node anymore, the overall execution time further de-
creased to 2055 seconds. The reason is, that the IO-bound script 5 could be prioritized
over the IO-bound script 3, while script 4 was executed in parallel to a CPU-bound
process.

Finally, Figure 6.13 shows a configuration of the scheduler which implements all
of the presented heuristics. In addition to the previously presented configuration, this

Automated Data Transformation 97

CHAPTER 6: Bridging the Gaps: Semantic Integration and Data Transformation

Execution Mode Overhead
FIFO, without local parallelism, without remote execution 42.8%
FIFO, with local parallelism, without remote execution 14.9%
Windowed, with local parallelism, without remote execution 8.8%
Windowed, with local parallelism, with remote execution 2.6%

Table 6.4: Comparison to the theoretical optimum (1882 s)

scenario allowed the scheduler to dispatch scripts for execution on a remote node, i.e., a
node which did not host any of the required data sources. It can easily be seen that this
lead to an increase in network communication. As the time required for transferring
relevant data between the nodes, is not dominant in the load profiles of standard
processes, this still resulted in a decreased overall execution time of 1956 seconds. The
critical step 5 was now dispatched to a remote node and that the critical path was
not interrupted anymore. There was, of course, an additional overhead introduced by
transferring the required data to a remote node while executing the script.

 0

 20

 40

 60

 80

 100

Lo
a
d
 [

%
]

N
o
d

e
 1

MEM
IO

CPU
NET

1 4

 0

 20

 40

 60

 80

 100

Lo
a
d
 [

%
]

N
o
d

e
 2

1
9

3
1

2 3

 0

 20

 40

 60

 80

 100

0 500 1000 1500 2000 2500

Lo
a
d
 [

%
]

N
o
d
e
 3

Time [s]
3000

5

Figure 6.13: Windowed scheduling with local parallelism and global execution

Table 6.4 shows a comparison of the theoretical optimum to the execution times of
all four configurations. It can be seen, that the overhead was reduced incrementally
from 43.5% for the FIFO scheduler with locally sequential execution, to 4.6% for the
windowed scheduler with parallel global execution. These numbers show, that the
presented heuristics provide means to dynamically schedule scripts for data transfor-
mation and semantic integration in a way that achieves an efficient execution which
leverages the available resources. The approach requires only very little knowledge
about the characteristics of the individual steps and is therefore able to dynamically
adjust to evolving runtime characteristics caused by changes in primary data.

98 Automated Data Transformation

CHAPTER 6: Bridging the Gaps: Semantic Integration and Data Transformation

6.3 Semantic Reasoning4

The remainder of this chapter presents different operators, which are provided for
use in data transformation scripts. The manual annotation of data with semantic
relationships can be utilized to automatically materialize implicit knowledge contained
in the dataspace. Semantic reasoning techniques are highly valuable in our application
domain, due to the inherent heterogeneity of the data involved.

READS = { biobank, biobank-annotations }
WRITES = ∅
CREATES = { biobank-materialized }

* Create a temporary database *\
Database temp = IO.createDatabase("temp", PERSISTENT);

* Add data to the temporary database *\
IO.add("biobank-annotations", "temp");
IO.add("biobank", "temp");

* Create the output database *\
Database DBC = IO.createDatabase("biobank-materialized", "biobank", PERSISTENT);

* Materialize implicit knowledge and add it to the dataset *\
TF.materialize("temp", "biobank-materialized");

Figure 6.14: Transformation script including OWL reasoning

This section first presents an overview over major vocabularies for formulating se-
mantic relationships between type- and instance level data elements. It then presents
and evaluates several semantic reasoners which can be utilized in data transformation
scripts to perform semantic integration or normalization of heterogeneous data. For
example, it can be stated that two resources with distinct identifiers describe the same
entity, as in the following example:

(Patient1, diagnosis, Bronchial-Carcinoma)

(Patient2, diagnosis, Lung-Cancer)

The equivalence of both diagnoses can be made explicit by adding a triple which states
that both of these resources describe the same entity:

(Bronchial-Carcinoma, same-as, Lung-Cancer)

Due to this additional information, it is also implicitly known that both patients have
the same diagnosis. When this implicit knowledge is made explicit, i.e., materialized,
the dataset would contain the following additional triples:

(Patient1, diagnosis, Lung-Cancer)

(Patient2, diagnosis, Bronchial-Carcinoma)

This section presents an overview over two major vocabularies, which build upon
RDF and allow to express such semantic relationships in RDF data. The process of
materializing the implied knowledge, which is called semantic reasoning, is supported

4Parts of the work presented in this section are based on the student project [vW12]

Semantic Reasoning 99

CHAPTER 6: Bridging the Gaps: Semantic Integration and Data Transformation

by a transformation operator which relies on external software components. We eval-
uate different semantic reasoners for their suitability in this context. An according
operator can be included in any of the transformation scripts described in the previous
section. An example, which utilizes this operator is shown in Figure 6.14.

6.3.1 Vocabularies

The RDF/S Vocabulary

The RDF Schema (RDF/S) vocabulary allows to define a set-oriented class model,
in which classes and properties are modelled separately [RDF]. It can be utilized to
describe simple ontologies which support multiple inheritance for entities and proper-
ties and define a formal vocabulary for a certain domain or dataset. RDF/S separates
all resources into groups, which are called classes. Each member of such a group is
called an instance. Classes can be organized in a taxonomy, which is also possible for
properties. Properties can be related to classes. The vocabulary also provides means
to describe containers, collections and contains a reification vocabulary which allows
to formulate statements about statements. In the following paragraphs we include a
short overview over the expressiveness of this RDF vocabulary.

Important classes:

• <rdfs:Resource>: Defines a class for all RDF resources.

• <rdfs:Class>: Defines an abstract class for all classes.

• <rdfs:Literal>: Defines a class for all RDF literals.

• <rdfs:Datatype>: Defines a class for all typed literals.

• <rdf:Property>: Defines a class for all properties, i.e., predicates.

Important properties:

• <rdfs:subClassOf>: Allows to define a class hierarchy. All instances of the
subclass are also instances of the superclass.

• <rdfs:subPropertyOf>: Allows to define a hierarchy of properties. All RDF
nodes which are related via the sub property are also related via the super prop-
erty.

• <rdfs:range>: Defines the class of allowed objects of a property.

• <rdfs:domain>: Defines the class of allowed subjects of a property.

• <rdf:type>: States that the subject is an instance of the class object.

• <rdfs:label>: Defines a human-readable name of a resource.

• <rdfs:comment>: Defines a human-readable description of a resource.

As can be seen, the RDF/S vocabulary only offers limited ways to fully conceptualize
an application domain but is more oriented towards a definition of the schema of a
dataset in terms of instances, classes and their relationships. The most important
application for semantic reasoners in this context is the materialization of the transitive
closure of a dataset’s class and property hierarchies.

100 Semantic Reasoning

CHAPTER 6: Bridging the Gaps: Semantic Integration and Data Transformation

The OWL Vocabulary

In contrast to RDF/S, the Web Ontology Language (OWL) is a much more expressive
RDF vocabulary for the specification of ontologies [OWLa]. Semantic reasoners for
OWL provide different functionalities, such as consistency checking, deciding concept
membership, answering conjunctive queries, classification or rule support. It builds
upon RDF/S and provides additional means for formulating statements similar to first-
order logic. OWL 2 is a backwards-compatible successor of OWL 1 and specifies three
different tractable fragments, called OWL 2 Profiles [OWLb]. OWL 2 EL enables
PTime algorithms for all common reasoning tasks, OWL 2 QL enables conjunctive
queries to be answered in LogSpace and OWL 2 RL allows to implement all common
reasoning taks in PTime with rule engines. In turn, OWL 1 consists of three layered
subsets:

OWL Lite contains a limited subset of OWL. It allows to formulate concept-hierarchies
as well as simple boundary conditions. This includes, e.g., cardinality restrictions,
which are limited to cardinalities of zero or one. On this layer, OWL reasoning is
much less complex than on the other layers.

OWL DL allows for a maximum of expressiveness, but still guarantees computabil-
ity and decidability. It contains all OWL constructs, but restricts their use in some
contexts. E.g., a class can not be an instance of another class if it is a subclass of
more than one classes. The term "DL" stands for description logics and OWL DL
thus implements a decidable subset of first-order logic.

OWL Full provides maximum expressiveness and syntactic freedom, but does not
guarantee computability. It, e.g., allows an ontology to extend the predefined vocabu-
lary and is the only OWL version that contains the complete RDF/S vocabulary. Due
to its limitations it is only rarely used in practice.

The following paragraphs give a quick overview over the parts of the OWL vocabulary,
which are most important in our context. For a deeper insight into other aspects, e.g.,
the definition of cardinality restrictions for consistency checking, the interested reader
is referred to [OWLa].

Important class definitions:

• <owl:Class>: A class defines a group of individuals which share common prop-
erties.
• <owl:Individual>: Individuals are instances of classes. Properties are utilized

to relate individuals.
• <owl:intersectionOf>: Allows to define classes with instances from an inter-

section of sets of individuals.
• <owl:unionOf>: Allows to define classes with instances from a union of sets of

individuals.

Properties for expressing equivalences:

• <owl:equivalentClass>: Equivalent classes share the same instances. Can be
utilized to model synonyms.
• <owl:equivalentProperty>: Can be utilized to model synonyms.

Semantic Reasoning 101

CHAPTER 6: Bridging the Gaps: Semantic Integration and Data Transformation

• <owl:sameAs>: Expresses the equivalence of two individuals.
• <owl:differentFrom>: States that two individuals are not the same.

Properties and classes for characterizing predicates:

• <owl:ObjectProperty>: A subclass of <rdf:Property> which defines a rela-
tionship between individuals.
• <owl:DatatypeProperty>: A class for properties which define a relationship

between an individual and a literal.
• <owl:TransitiveProperty>: A class for transitive properties.
• <owl:SymmetricProperty>: A class for symmetric properties.
• <owl:FunctionalProperty>: A class for properties that have only one (unique)

value for each individual.
• <owl:InverseFunctionalProperty>: A class for properties whose value uniquely

determines the subject.
• <owl:inverseOf>: States that a property is the inverse of another property.

6.3.2 Evaluation
Semantic reasoning is one of the core functionalities of an ontology-based integra-
tion system. While reasoners normally have to deal with typical TBox (e.g, satisfia-
bility, subsumption checks) or ABox (e.g., consistency checks, conjunctive querying)
reasoning tasks, our system requires a different setup. In order to include implicit
knowledge into the dataspace in a sound way, a reasoner is required to materialize all
inferred statements as specified by an input dataset. As a result, the enriched dataset
can be indexed and queried analogously to all primary data. This functionality is
not extensively covered by previous work which aimed at evaluating different OWL
and RDF/S reasoners, such as [GPH04,GPH05,GTH06,BHJV08,DCtTdK11,LYH12]
and [KLK12]. This is because this task is normally considered impractical, as full rea-
soning over complex ontologies can lead to excessive resource consumption. As large
parts of the inferred knowledge will never be required, e.g., for answering conjunctive
queries, most reasoners will perform semantic reasoning only on demand. Nevertheless,
the full-materialization approach is implemented by some reasoners, e.g., [OWLc] and
partially [HER].

In the context of the integration system presented in this thesis, this approach is
practical, though. The idea of implementing semantic integration and data transforma-
tion in a punctual and incremental manner for these parts of the dataspace for which it
is required is inherent to the underlying concept. To this end, the presented scripting
environment and querying engine provide means to extract exactly those parts of the
data for which semantic reasoning is to be performed. This pay-as-you-go approach
heavily reduces the resource consumption, e.g., compared to materializing all implicit
knowledge in the dataspace. Furthermore, the application of separate, encapsulated
semantic reasoning tasks to different parts of the data, allow to paralellize their exe-
cution to a large extent. Finally, the system filters the resulting implicit knowledge
for redundant basic axioms, which are of little use to the users but might consume
a lot of resources (e.g., every resource is distinct from nothing). The same approach
is, e.g., implemented by [GMF+03]. There are some OWL constructs, though, which

102 Semantic Reasoning

CHAPTER 6: Bridging the Gaps: Semantic Integration and Data Transformation

result in an exponential growth of the implicit knowledge in a dataset and should be
avoided [WLL+07].

As our requirements are not extensively covered by previous work, we have evaluated
several reasoners in order to decide which reasoner is suited best for including it into our
semantic integration component. Because OWL is much more expressive than RDF/S,
we focus on OWL reasoning. To cover different aspects of semantic integration tasks,
we performed benchmarks oriented towards instance data and benchmarks focussed on
schema-level descriptions.

Semantic Reasoners and Setup: We have evaluated several reasoners that come
with an open source or dual license and with which we were able to implement the full-
materialization approach. This includes the Pellet reasoner [PEL] which implements
OWL DL reasoning (with some minor limitations) in Java and utilizes the well-known
Tableau algorithm. The HermiT reasoner is a Java-based open source OWL DL rea-
soner which implements an algorithm called Hypertableau [HER]. Fact++ is an open
source C++ implementation of the Fact OWL DL reasoner which also implements
the Tableau algorithm. Other reasoners, such as OWLIM [OWLc] and the Apache
Jena project, implement a rule-based approach. Although providing OWL reasoning
via a rules engine is rather simple to implement, the systems are only able to pro-
cess less expressive subsets of OWL than the other reasoners and suffer from some
performance limitations. The Jena framework therefore includes different rule-based
reasoners which are able to handle different subset of OWL Full. Because these differ-
ent levels of expressiveness offer different levels of performance (full,mini and micro)
we have chosen this reasoner for our benchmarks. The rules included in Jena Full are
incrementally reduced in order to reduce computational complexity. For example, sup-
port for the <owl:sameAs> predicate is only included in Jena Full and Jena Mini but
not in Jena Micro. There are other well known reasoners which are not included in our
evaluation, such as the KAON2 reasoner [MS05] which implements a novel strategy by
efficiently reducing reasoning processes to recursive datalog programs. We were not
able to implement the full-materialization approach with the API provided by KAON2.

Ontology TBox Class SubC Property SubP Vocabulary ABox Scale
8.519 1

15.143 2
LUBM 293 43 36 31 5 OWL Lite 21.415 3

27.794 4
34.550 5
54.081 1

107.734 2
Vicodi 118.419 167 167 8 5 RDFS(DL) 161.387 3

215.040 4
268.693 5

5.379 1
12.382 2

SWRC 1.817 114 245 127 6 OWL DLP 16.710 3
20.465 4
25.781 5
3.265 1
6.005 2

Wine 1.936 142 126 13 5 OWL DL 8.977 3
12.181 4
15.617 5

Table 6.5: Datasets utilized for ABox reasoning

We distinguished between two different scenarios, ABox and TBox reasoning. The
ABox reasoning benchmarks model scenarios in which a generic OWL DL reasoner

Semantic Reasoning 103

CHAPTER 6: Bridging the Gaps: Semantic Integration and Data Transformation

materializes implicit knowledge about instance data (ABox) of increasing size for a
fixed schema-level description (TBox). This scenario is the most important for seman-
tic integration purposes, as this mostly requires the materialization of relationships
between instance data. In some contexts, the integration of complex schema-level de-
scriptions might also be relevant. This is modelled by our TBox reasoning benchmarks.
Here, the reasoners need to classify complex class hierarchies(i.e., materialize implicit
schema-level descriptions such as inheritance). Some highly specialized solutions also
exist for TBox reasoning [DCtTdK11], but we have chosen generic OWL DL reasoners
as the reasoners will need to perform integrated ABox and TBox reasoning.

All experiments were performed on a desktop machine with a 4-core 3.1 GHz Intel
Core i5 CPU with 6 MB cache running a 64-bit Linux kernel in version 2.6.35. All
reasoners were executed on an Oracle JVM in version 1.6.0 with default settings and
a heap size of 4 GB. For each reasoning task we set a timeout of 120 minutes. The
reported execution times include importing, reasoning and exporting the datasets,
as some reasoners perform excessive pre-processing and on-demand reasoning. We
compared Jena 2.6.4, Pellet 2.3.0, HermiT 1.3.6 and Fact++ 1.6.0.

(1) Execution time and (2) result cardinality for the LUBM dataset

 0.1

 1

 10

 100

1 2 3 4 5

E
xe

cu
tio

n
T

im
e

[s
]

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

1 2 3 4 5

#S
ta

te
m

en
ts

 /
10

00

Input
Fact++

Pellet
HermiT

Jena-Full
Jena-Mini

Jena-Micro

(1) Execution time and (2) result cardinality for the Vicodi dataset

 0.1

 1

 10

 100

 1000

 10000

1 2 3 4 5

E
xe

cu
tio

n
T

im
e

[s
]

X X X X 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

1 2 3 4 5

#S
ta

te
m

en
ts

 /
10

00

X X X X

(1) Execution time and (2) result cardinality for the SWRC dataset

 0.1

 1

 10

 100

 1000

 10000

1 2 3 4 5

E
xe

cu
tio

n
T

im
e

[s
]

XM M M M MM M M M M 0
 100
 200
 300
 400
 500
 600
 700

1 2 3 4 5

#S
ta

te
m

en
ts

 /
10

00

XM M M M MM M M M M

(1) Execution time and (2) result cardinality for the Wine dataset

 0.1

 1

 10

 100

 1000

 10000

1 2 3 4 5

E
xe

cu
tio

n
T

im
e

[s
]

Scale

X X X XX X X X XM M M X XX X XM 0
 50

 100
 150
 200
 250
 300
 350

1 2 3 4 5

#S
ta

te
m

en
ts

 /
10

00

Scale

X X X XX X X X XM M M X XX X XM

Figure 6.15: Materializing implicit knowledge for an ABox of increasing size

104 Semantic Reasoning

CHAPTER 6: Bridging the Gaps: Semantic Integration and Data Transformation

ABox Reasoning: Here, we have chosen four different datasets which have also been
utilized for benchmarking OWL reasoners in [GPH05,BHJV08] and [LYH12]. Each of
the datasets consisted of a TBox of constant size and an ABox with linearly increasing
size. Furthermore, the datasets utilize different fragments of OWL that allow for differ-
ent levels of expressiveness and thus different levels of computational complexity. An
overview over the basic properties of the datasets is shown in Table 6.5. To give an idea
of the complexity of the ontologies, we include the overall size of the TBox, the number
of contained classes, properties, sub-class-of and sub-property-of relationships as
well as the size of the ABox for every scale. The Vicodi dataset utilizes the least ex-
pressive vocabulary, RDFS(DL). It allows to express schema-level knowledge similar to
RDF/S but utilizes a subset of the OWL DL vocabulary. On the other hand, Vicodi is
by far the largest dataset, comprising a TBox of over 100.000 statements and ABoxes
of up to more than 250.000 statements. The Wine dataset comprises the ABox with
the fewest statements (up to around 15.000 statements) but utilizes the most expres-
sive TBox, with around 2.000 statements that fall into OWL DL. Both LUBM and
SWRC utilize vocabularies whose expressiveness lies in between RDFS(DL) and OWL
DL and ABoxes of medium size. The TBox of the SWRC dataset is more than six
times bigger than the TBox of the LUBM dataset. Despite LUBM which has a rather
small TBox, the datasets’ class hierarchies are of comparable size.

The results of our evaluation in terms of execution times and the number of gen-
erated statements are shown in Figure 6.5. We indicate a timeout by "X" and a
termination because of the main memory limit by "M". It can be seen that all rea-
soners perform well on the LUBM dataset and the complexity steadily increases when
processing the Vicodi, SWRC and Wine datasets. The number of timeouts increases
from SWRC, Vicodi to Wine. This complexity does not correlate with the size of
the datasets (ABox or TBox) or the complexity of the class hierarchy, but with the
expressiveness of the utilized OWL vocabulary. Although the Vicodi dataset utilizes
the least expressive OWL subset, its results stand out, because its ABox is an order
of magnitude larger than the other datasets. The fastest reasoner was able to process
the datasets in scale 1 in about 1s for LUBM, 29s for Vicodi, 9s for SWRC and 31s for
Wine. It can be seen that Fact++ is by far the most efficient OWL DL reasoner in our
tests, followed by HermiT. Vicodi is the only dataset in which HermiT outperforms
Fact++. Pellet seems to offer the worst overall performance, but its results are not
always comparable to the Jena reasoners. In contrast to the other reasoners, the Jena
reasoners only process subsets of statements from OWL DL. In some cases they are
therefore able to process a dataset before reaching a timeout, while other reasoners
(e.g., Pellet) reach the timeout limit due to the more complex reasoning task. We have
included the Jena reasoners into our evaluation, because they might be suitable for
some reasoning tasks and their performance is thus relevant.

Although all reasoners despite Jena implement the most important parts of the OWL
DL vocabulary, they support slightly different subsets. This is also reflected by the
differing numbers of statements created when processing the benchmark datasets as can
be seen in Figure 6.15. The number of statements materialized by the Jena reasoner
decreases with the capabilities of the specific implementation (full, mini or micro).
Despite that, the differences in the resulting cardinalities mainly show the different
basic axioms which are generated by the reasoners (e.g., each class is a subclass of
itself). As these statements are presumably not relevant to our use cases, they can

Semantic Reasoning 105

CHAPTER 6: Bridging the Gaps: Semantic Integration and Data Transformation

Ontology TBox Class SubC EquiC Property SubP Overlap Scale
15.140 1.518 1.581 19 3 11 – 1
30.148 2.921 3.425 34 4 11 12% 2

Gene Ontology 45.366 4.318 5.390 79 4 11 15% 3
60.694 5.761 7.487 188 6 13 16% 4
76.047 7.095 9.534 239 7 14 22% 5
15.056 2.458 1.655 430 306 312 – 1
30.056 5.361 4.344 896 382 388 0% 2

GALEN Ontology 45.072 8.734 6.572 1.480 470 476 11% 3
60.075 11.971 8.539 2.072 510 518 13% 4
75.076 15.347 10.589 2.745 542 546 15% 5
50.011 2.913 4.989 0 32 0 – 1
100.039 5.960 9.891 0 36 0 18% 2

NCI Thesaurus 150.048 8.856 15.055 0 42 0 21% 3
200.067 11.949 19.954 0 44 0 23% 4
250.067 14.966 25.161 0 48 0 25% 5

Table 6.6: Datasets utilized for TBox reasoning

and should be removed from the resulting datasets. After this clean-up process, all
reasoners which implement OWL DL, produce roughly the same results. There are
some slight differences, though, e.g., if a reasoner generates OWL 2 output.

TBox Reasoning: For our evaluation of the systems’ TBox reasoning capabilities we
chose three biomedical ontologies, which lie in the OWL 2 EL fragment. OWL EL is an
important subset of OWL 2, which is sufficiently expressive to cover many biomedical
ontologies and allows the implementation of polynomial algorithms for all standard
reasoning tasks [OWLb, DCtTdK11]. Important ontologies in this fragment include
SNOMED CT, the Gene Ontology, the NCI Thesaurus and the GALEN Ontology,
from which we have chosen the latter three for our benchmarks.

(1) Execution time and (2) result cardinality for the Gene Ontology

 0.1

 1

 10

 100

 1000

 10000

1 2 3 4 5

E
xe

cu
tio

n
T

im
e

[s
]

X XX XX X X X XX X X X 0

 5000

 10000

 15000

 20000

 25000

 30000

1 2 3 4 5

#S
ta

te
m

en
ts

 /
10

00 Input
Fact++

Pellet
HermiT

Jena-Full
Jena-Mini

Jena-Micro

X XX XX X X X XX X X X

(1) Execution time and (2) result cardinality for the GALEN Ontology

 0.1

 1

 10

 100

 1000

 10000

1 2 3 4 5

E
xe

cu
tio

n
T

im
e

[s
]

M M M X XX X X X XX X X X XX X X X XM M M M X 0
 20
 40
 60
 80

 100
 120
 140

1 2 3 4 5

#S
ta

te
m

en
ts

 /
10

00

M M M X XX X X X XX X X X XX X X X XM M M M X

(1) Execution time and (2) result cardinality for the NCI Thesaurus

 0.1

 1

 10

 100

 1000

 10000

1 2 3 4 5

E
xe

cu
tio

n
T

im
e

[s
]

Scale

X X X XX X X X XX X X X X X 0

 200

 400

 600

 800

 1000

 1200

1 2 3 4 5

#S
ta

te
m

en
ts

 /
10

00

Scale

X X X XX X X X XX X X X X X

Figure 6.16: Materializing implicit knowledge for a TBox of increasing size

106 Semantic Reasoning

CHAPTER 6: Bridging the Gaps: Semantic Integration and Data Transformation

An overview over the basic properties of these datasets is shown in Table 6.6. In
addition to the properties presented for the ABox evaluation datasets, we provide the
number of equivalent-class relationships. On average, the datasets are larger and
model much more complex class definitions as the datasets utilized in the ABox bench-
marks. In order to derive datasets of different scales, TBoxes can not be simply split
into disjunct subsets, as these might be inconsistent. The process of splitting ontologies
into smaller subsets is called Segmentation or Modularization. Dedicated algorithms
normally start at a specific concept and extract all knowledge which is relevant in this
context. Previous work has proposed different types of algorithms which interpret the
data to derive complete results, e.g., [SR06] and [GHKS08]. As we wanted to extract
lightweight subsets, which do not contain any knowledge which was not already con-
tained in the original dataset, we implemented a different approach. Starting from each
concept in the ontology, we derived a subset by including all resources and statements
which could be reached by traversing the underlying directed RDF graph. In this way,
the resulting subsets are consistent but might lack some additional information, e.g.,
from equivalent-class definitions that were defined by an incoming edge to any of
the contained concepts. The union of all subsets exactly matches the original dataset.
We have merged the individual subsets to derive five different scales for each dataset.
The complexity of the subsets does not only increase due to the increasing size, but
also because the subsets of the class hierarchy share some concepts and the complexity
of the resulting hierarchy thus increases with every additional subset. This is indicated
by the overlap property in Table 6.6, which shows how much of the concepts in an in-
dividual scale were already contained in the previous scale. At scale five, the subsets’
sizes compared to the original datasets is ca. 5% for the Gene Ontology, 30 % for the
Galen Ontology and 50% for the NCI Thesaurus. The GALEN dataset is considerably
more complex than the other datasets [GHKS08].

The results are shown in Figure 6.16. Similar to the other scenario, Fact++ offers the
best performance and is the only reasoner which is able to handle at least some scales of
all datasets. Pellet offers the second best overall performance and is the only OWL DL
reasoner that can handle all scales of the Gene Ontology. The Hypertableau algorithm
implemented by HermiT seems to be not very well suited for this scenario. Jena-
Micro performs reasonably well, but interprets only some of the contained statements.
In these benchmarks, the size and complexity of the tested ontologies clearly takes
the reasoners to their limits. Although TBox reasoning is relevant, the classification of
large and highly complex class hierarchies is unlikely to be a requirement for real-world
integration scenarios, as these normally require the materialization of dependencies
between individuals and classes from different datasets. This is more closely resembled
by our ABox benchmarks.

The presented benchmarks are not intended to provide an exhaustive evaluation
of semantic reasoners for OWL, but to give hints on which reasoners are suited best
for fully materializing implicit knowledge for semantic integration purposes. In this
context, all of the OWL DL reasoners contained in our comparison support the most
important statements, i.e., defining class hierarchies with multiple inheritance for en-
tities and properties and for formulating the relationships between schema-level and
instance-level data elements. Many reasoners generate a large amount of redundant
statements. The utilization of open source reasoners allows to tailor their implemen-
tation to the specific functionality required by the system (full materialization) and

Semantic Reasoning 107

CHAPTER 6: Bridging the Gaps: Semantic Integration and Data Transformation

prevent redundant statements from being generated. Some reasoners also provide
specific interfaces for this tasks, e.g., Pellet. Fact++ offers by far the best overall
performance. Due to the differing capabilities we have included Fact++ and the Pellet
reasoner into our framework. By default, semantic reasoning is performed by Fact++,
whereas Pellet can be utilized in the rare cases where it is better suited for the re-
quirements. In [DCtTdK11] a comprehensive overview over scalable TBox reasoners is
presented, which can be utilized if large-scale TBox reasoning is required.

6.4 Data De-Identification
The de-identification of sensitive datasets is an important technique for protecting an
individuals’ privacy when integrating data [Gar01]. Different incidents (e.g., [NS08,
ZB06, Swe01]) have shown that simply removing all directly identifying information
(e.g., a persons name) is not sufficient to protect an individual’s privacy. In addi-
tion, researchers need high-quality and fine-grained data collections. In this context,
anonymization is an important building block for balancing the individuals’ privacy
and the researchers’ needs. To this end k-anonymity is a wide-spread technique. The
basic idea is to protect a dataset against re-identification by generalizing and suppress-
ing the quasi identifiers, which are the attributes that could be used in a linkage attack.
This attack tries to link anonymized data to additional identified data, which can re-
sult in identity disclosure [Swe01]. A dataset is considered k-anonymous if each data
item can not be distinguished from at least k − 1 other data items [SS98]. An exam-
ple dataset with quasi identifiers age, gender and zipcode as well as a two-anonymous
transformation are shown in Figure 6.7. Without the loss of generality we assume a
tabular data structure. Although various other methods are currently under discussion
(e.g., differential privacy [Dwo06]), k-anonymization is still considered the option of
choice for in many domains, especially in the area of medicine [DE12].

Age Gender Zipcode
34 female 81667
45 female 81675
66 male 81925
70 male 81931
34 female 81931
70 male 81931
45 female 81931

Age Gender Zipcode
]25-50] female 816??
]25-50] female 816??
]50-75] male 819??
]50-75] male 819??
]25-50] female 819??
]50-75] male 819??
]25-50] female 819??

Table 6.7: Example dataset

Within our platform for incremental ontology-based integration, data
de-identification is provided as an operator, which can be included into the trans-
formation scripts presented in the previous section. An example is shown in Figure
6.17. This script implements a simple data pseudonymization and de-identification
process. Before the script is executed, the database biobank contains identified data of
individuals. For this example, we assume the presence of the attributes gender, zipcode
and date of birth (dob) and the existence of a class Patient, which is instantiated by
resources describing individuals. When executed, the script creates two more data-
bases. The database biobank-anonymized contains an anonymized and pseudonymized
version of the original dataset. First, it is ensured that the data in biobank-anonymized
is 5-anonymous over the contained attributes and that all URIs identifying patients
are replaced with a pseudonym. Second, the database biobank-pseudonymized contains
a mapping from the pseudonyms to the original identifiers.

108 Data De-Identification

CHAPTER 6: Bridging the Gaps: Semantic Integration and Data Transformation

READS = { biobank }
WRITES = ∅
CREATES = { biobank-anonymized, biobank-idat, biobank-pseudonyms, biobank-mdat}

* Define pattern describing individuals *\
String PATTERN = "?id <rdf:type> <biobank:Patient>.

?id <biobank:patid> ?patid.
?id <biobank:gender> ?gender.
?id <biobank:dob> ?dob.
?id <biobank:zipcode> ?zipcode.";

* Create the output databases *\
Database anonymized = IO.createDatabase("biobank-anonymized", "biobank", PERSISTENT);
Database idat = IO.createDatabase("biobank-idat", "biobank", PERSISTENT);
Database pseudonyms = IO.createDatabase("biobank-pseudonyms", "biobank", PERSISTENT);
Database mdat = IO.createDatabase("biobank-mdat", "biobank", PERSISTENT);

* Pseudonymize the data *\
TF.pseudonymize("biobank", "select * where {"+PATTERN+"}",

"biobank-idat", "biobank-pseudonyms", "biobank-mdat");

* Execute pattern on the medical database *\
rs = IO.executeQuery("biobank-mdat",

"select * where {"+PATTERN+"}");

* Anonymize the temporary data with DM* metric" *\
rs = TF.anonymize(rs, 5, 0.0d

TF.getHierarchy(TF.GENDER, "gender")),
TF.getHierarchy(TF.DOB, "dob")),
TF.getHierarchy(TF.ZIPCODE, "zipcode")));

* Store the anonymized and pseudonymized data in "biobank-anonymized" *\
Database anon = IO.createDatabase("biobank-anonymized", "biobank", PERSISTENT);
IO.construct(anon, rs, PATTERN);

Figure 6.17: Transformation script including data de-identification

6.4.1 Related Work
Generally, there are multiple ways to transform a dataset into a k-anonymous repre-
sentation and different algorithms have been proposed. These can be classified accord-
ing to different axes. First, some algorithms implement global recoding (also called
full-domain anonymization), whereas others implement local recoding. Local recoding
means that, within a column, different generalization rules can be applied to equal val-
ues, whereas global recoding guarantees to apply the same rule. Local recoding is often
used by clustering algorithms (e.g., [APF+10]), whereas global recoding is mostly used
by algorithms which utilize generalization hierarchies. Some algorithms do not find an
optimal solution, whereas others do. Optimal is defined as the solution which results
in minimal information loss according to a given metric. Solving this problem has been
proven to be NP-hard [MW04]. Some algorithms (e.g., [AFK+05]) approximate the
problem and only find a solution that is within a guaranteed distance to the optimum.
Various extensions to the k-anonymity concept exist. The most prominent examples
are l-diversity [MKGV07], t-closeness [LLV07] and d-presence [N+07]. To derive the
appropriate parameters for these algorithms risk based anonymization [Ema10] can
be used. An extensive overview over previous privacy models and algorithms can be
found in [CdVFS08] and [FWCY10]. As long as they utilize global recoding with gen-
eralization hierarchies, they can all be implemented within our generic framework and
our novel algorithm. Without loss of generality we focus on the basic k-anonymity
problem.

Data De-Identification 109

CHAPTER 6: Bridging the Gaps: Semantic Integration and Data Transformation

In [EDI+09] it has been shown that algorithms, which find an optimal solution
by applying global recoding with user-defined generalization hierarchies, are to be
preferred in the biomedical domain. The main reasons for this are that an optimal
solution guarantees minimal information loss, which is important for the usefulness
of the result. Furthermore, global recoding delivers the best result in terms of sta-
tistical properties. Finally, the utilization of user-defined generalization hierarchies
allows to define different generalization strategies for different use-cases. [LQS11] even
showed that algorithms based upon generalization hierarchies can, under certain cir-
cumstances, guarantee a better degree of privacy than the ones based on clustering
and local recoding.

Generalization and Monotonicity

Generalization hierarchies define a way of iteratively generalizing the values of an
attribute. Figure 6.18 shows generalization hierarchies for the quasi identifiers in the
example dataset. In the remainder of this section we assume that the height of the
generalization hierarchy for the attribute age is 2. In the two-anonymous version from
Figure 6.7 the age is transformed to intervals of length 50 (level 1), the attribute gender
is suppressed (level 1) and the two least significant digits are dropped from the zipcode
(level 2).

male female head(5)

head(4)

head(3)

head(2)

0

1

2

3

5

zipcodegender

head(1) 4

]0-25]

0 ...

age

*

*

*]25-50]

26 ...

]50-75]

51 ...

]76-100]

76 ...

]0-50]]50-100]

Figure 6.18: Generalization hierarchies
Most algorithms which utilize generalization hierarchies operate on a data struc-

ture called Generalization Lattice. It is shown in Figure 6.19 for our example dataset
and hierarchies. An arrow denotes that a state is a direct generalization of a more
specialized state and can be created by incrementing the generalization level of one of
its predecessors’ quasi identifiers. The state with minimal generalization (0, 0, 0) is at
the bottom and represents the original input dataset, whereas the state with maximal
generalization (2, 1, 5) is at the top. The state that has been applied to anonymize the
dataset from Figure 6.7 is (1, 1, 2).

Monotonicity is a very important property, which enables several optimizations for
globally optimal k-anonymity algorithms. First, the authors of [LDR05] have intro-
duced the notion of monotonic generalization hierarchies. In a monotonic generaliza-
tion hierarchy the groups at level l + 1 are built by merging groups from level l. This
allows prune large parts of the search space, because all states which are successors
of an anonymous state are also anonymous. Furthermore, all predecessors of a non-
anonymous state are also non-anonymous. This is because generalization is monotonic
for the complete dataset, if it is monotonic for each quasi identifier. An example is
shown in Figure 6.19, where the fact that (2, 1, 1) is non-anonymous implies that all
of its predecessors are also non-anonymous (dark gray). Furthermore, all successors
of the anonymous state (1, 1, 2) are also anonymous (light gray). Second, the authors

110 Data De-Identification

CHAPTER 6: Bridging the Gaps: Semantic Integration and Data Transformation

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

Level 8

(0,0,0)

(2,1,5)

(1,0,0) (0,1,0) (0,0,1)

(2,0,0) (1,1,0) (1,0,1) (0,1,1) (0,0,2)

(2,1,0) (2,0,1) (1,1,1) (1,0,2) (0,1,2) (0,0,3)

(2,1,1) (2,0,2) (1,1,2) (1,0,3) (0,1,3) (0,0,4)

(2,1,2) (2,0,3) (1,1,3) (1,0,4) (0,1,4) (0,0,5)

(2,1,3) (2,0,4) (1,1,4) (1,0,5) (0,1,5)

(2,1,4) (1,1,5)(2,0,5)

Figure 6.19: Lattice and predictive tagging

of [EDI+09] proposed to utilize monotonic metrics. The monotonicity criterion for
metrics requires that on each path from the bottom node to the top node of the gen-
eralization lattice the values for information loss increase monotonically. This implies
that if a generalization lattice is divided into a set of (potentially overlapping) paths the
global optimum can be determined by only comparing the local optima. Furthermore,
there is no need to evaluate the metrics for nodes that have been tagged predictively
because they can never be a local or global optimum.

Metrics

In this section we briefly cover the most important monotonic metrics. The interested
reader is referred to [EDI+09,DW99,LDR05,Sam01,Swe97,BA05] for further details.
One of the earliest monotonic metrics is the Height Metric, which is utilized by the
algorithm presented in [Sam01]. This metric, as well as the Precision Metric [Swe02],
measure information loss solely based upon a state itself (i.e., its generalization levels)
and are therefore independent of the actual input dataset. In [EDI+09] a monotonic
version of the Discernibility Metric [BA05] has been presented, which estimates infor-
mation loss based on the equivalence classes induced by a transformation. Another
metric is the Entropy Metric [DW99], which compares the original input dataset with
the transformed representation. In the following sections we quickly review the two
major previous algorithms, which are relevant in our context. The algorithm of Sama-
rati [Sam01] is an early optimal k-anonymity algorithm. Because it is only able to find
an optimal solution for a very limited metric (Height) we will not discuss the algorithm
in further detail. Incognito implements a horizontal traversal strategy (i.e., traversing
the lattice level by level), whereas OLA implements a vertical traversal strategy (i.e.,
jumping between levels).

The Incognito Algorithm

LeFevre et al. proposed the Incognito algorithm [LDR05], which implements an ap-
proach related to dynamic programming. The general idea is that if a transformed
subset of the quasi identifiers is not k-anonymous, the transformation of the complete
dataset can not be k-anonymous either. Therefore it constructs generalization lattices
for each individual subset of n quasi identifiers and traverses them by performing a

Data De-Identification 111

CHAPTER 6: Bridging the Gaps: Semantic Integration and Data Transformation

bottom-up, breadth-first search. It utilizes predictive tagging, to prune parts of the
local search space. The states that have been found to be not anonymous in a subset of
size m < n, can not be anonymous in a subset of size m+1. This allows to predictively
tag states of the generalization lattices which are constructed in subsequent iterations.
The algorithm halts when the lattice for all n quasi identifiers has been processed.

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

Level 8

(0,0)

(1,0) (0,1)

(2,0) (1,1) (0,2)

(2,1) (1,2) (0,3)

(2,2) (1,3) (0,4)

(2,3) (1,4) (0,5)

(2,4) (1,5)

(2,5)

(0,0)

(1,0) (0,1)

(2,0) (1,1)

(2,1)

(0,0)

(1,0) (0,1)

(1,1) (0,2)

(1,2) (0,3)

(1,3) (0,4)

(1,4) (0,5)

(1,5)

(0)

(1)

(2)

(3)

(4)

(5)

(0)

(1)

(2)

(0)

(1)

[age] [gender] [zipcode] [age, zipcode] [age, gender] [gender, zipcode] [age, gender, zipcode]

checked

anonymous

non-anonymous

non-anonymous

(inferred)

(0,0,0)

(2,1,5)

(1,0,0) (0,1,0) (0,0,1)

(2,0,0) (1,1,0) (1,0,1) (0,1,1) (0,0,2)

(2,1,0) (2,0,1) (1,1,1) (1,0,2) (0,1,2) (0,0,3)

(2,1,1) (2,0,2) (1,1,2) (1,0,3) (0,1,3) (0,0,4)

(2,1,2) (2,0,3) (1,1,3) (1,0,4) (0,1,4) (0,0,5)

(2,1,3) (2,0,4) (1,1,4) (1,0,5) (0,1,5)

(2,1,4) (1,1,5)(2,0,5)

Figure 6.20: Example for the Incognito algorithm
An example is shown in Figure 6.20. It shows the lattices built by Incognito for

the example dataset. The algorithm starts by focusing on the quasi identifier age. It
builds a lattice and checks if the column is anonymous for the state (0). As this state
is not k-anonymous, the algorithm proceeds with the state (1), which is k-anonymous.
This results in predictive tagging of the state (2). The same procedure is applied to the
quasi identifiers gender and zipcode. After checking all subsets of size one, Incognito
proceeds with all subsets of size two. In this step it is possible to tag all nodes as non-
anonymous that contain substates that were not anonymous in a previous iteration.
E.g., in the lattice for the columns age and zipcode all nodes which define level 0 for
age and level 0 or 1 for zipcode are tagged as being non-anonymous. Therefore the
first state that is processed by Incognito in this lattice is the state (1, 2). As this
state represents a k-anonymous transformation, predictive tagging can be applied to
all other nodes in this lattice. The other lattices are processed analogously [LDR05].

The OLA Algorithm

El Emam et al. proposed a k-anonymization algorithm, calledOptimal Lattice Anonymiza-
tion (OLA) [EDI+09] and showed that it outperforms the approaches presented in
[Sam01] and [LDR05]. It implements a divide & conquer approach. The idea is to
decompose a lattice into smaller sublattices and utilize predictive tagging to prune
parts of the search space. A sublattice (b, t) is defined by a bottom node b and a
top node t and contains b and t as well as all nodes that are generalizations of b and
specializations of t. OLA starts by processing the complete lattice. It then constructs
sublattices by enumerating all nodes M on level b1

2
(b.level + t.level)c of the current

lattice. If a node m ∈ M has not been tagged already, it is checked for k-anonymity
and predictive tagging is applied. If m is tagged as anonymous the algorithm proceeds
with the lower sublattice (b, m), otherwise it proceeds with the upper sublattice (m,
t). This process halts when all sublattices have been enumerated.

The first iteration of the algorithm for our example dataset is shown in Figure 6.21.
It starts by enumerating all nodes on level 4 and we assume that it starts with node

112 Data De-Identification

CHAPTER 6: Bridging the Gaps: Semantic Integration and Data Transformation

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

Level 8

(0,0,0)

(2,1,5)

(1,0,0) (0,1,0) (0,0,1)

(2,0,0) (1,1,0) (1,0,1) (0,1,1) (0,0,2)

(2,1,0) (2,0,1) (1,1,1) (1,0,2) (0,1,2) (0,0,3)

(2,1,1) (2,0,2) (1,1,2) (1,0,3) (0,1,3) (0,0,4)

(2,1,2) (2,0,3) (1,1,3) (1,0,4) (0,1,4) (0,0,5)

(2,1,3) (2,0,4) (1,1,4) (1,0,5) (0,1,5)

(2,1,4) (1,1,5)(2,0,5)

Figure 6.21: Example for the OLA algorithm

(2, 1, 1). As this node has not been processed before, it is checked for anonymity.
Because the state does not represent an anonymous transformation, (2, 1, 1) as well
as all of its specializations (dark gray) are tagged as non-anonymous. The algorithm
then proceeds to the upper sublattice ((2, 1, 1), (2, 1, 5)), which contains the light gray
nodes. In the subsequent steps, it would construct the sublattices ((2, 1, 1), (2, 1, 3))
and ((2, 1, 1), (2, 1, 2)), effectively checking the nodes (2, 1, 1), (2, 1, 3) and (2, 1, 2) to
find the locally optimal two-anonymous node (2, 1, 2). The algorithm would further
proceed to the next node on level 4 which is (2, 0, 2) and construct the according lower
sublattice as this state is anonymous [EDI+09].

6.4.2 Implementation Framework
Our approach is based upon a generic framework for the efficient implementation of
k-anonymity algorithms. This section presents the framework and describes the fun-
damental ideas behind it:

1. The process of checking individual states for k-anonymity is the main bottleneck
for this class of anonymization algorithms and should be as efficient as possible.

2. General purpose database systems are not well suited for k-anonymity algorithms,
because they have been designed for much more complex query and transaction
processing.

3. Given the current trend towards main-memory data management as well as the
applicability of data compression techniques, a main-memory based approach is
feasible.

The groundwork of this framework is a carefully designed memory layout, which en-
ables the efficient application of different generalization strategies to an input dataset.
Additionally, the anonymization operators are problem-aware and interwoven with the
rest of the algorithm. This allows for several further optimizations. The basic im-
plementation including the first optimization can be used for all generalization-based
anonymization algorithms which use global recoding. The other optimizations further
require monotonic generalization hierarchies.

Data De-Identification 113

CHAPTER 6: Bridging the Gaps: Semantic Integration and Data Transformation

Basic implementation

The framework holds all data in main memory and implements dictionary compression
on all data items. Generalization hierarchies are represented in a tabular manner. An
example for the generalization hierarchy of the attribute age from Figure 6.18 is shown
in Figure 6.8.

Level 0 Level 1 Level 2 Level 3
1]1-25]]1-50] ?
...]1-25]]1-50] ?
25]1-25]]1-50] ?
26]25-50]]1-50] ?
...]25-50]]1-50] ?
50]25-50]]1-50] ?
51]50-75]]50-100] ?
...
100]75-100]]50-100] ?

Table 6.8: Tabular generalization hierarchy
One dictionary dic0, ..., dicn−1 per quasi identifier is used to map the values contained

in the corresponding column onto integer values. By encoding the values from the input
dataset before the values contained in the higher levels of the generalization hierarchies
it is guaranteed that the original values of a column with m distinct values get assigned
the numbers 0 to m−1. This allows for an efficient representation of the generalization
hierarchies hier0, ..., hiern−1 as two-dimensional arrays. An excerpt of the resulting
memory layout for the example dataset is shown in Figure 6.22. The values of the
attribute age from column 0 and the relevant values from the generalization hierarchy
are encoded in the corresponding dictionary dic0.

0 4

1 4

2 5

3 5

6

6

6

6

0 1 2

0

1

2

3

hier0

level

c
o
d
e

34

45

66

70

<50

≥50

*dic0

0

1

2

3

4

5

6

c
o
d
e

value

0

00 0

11 1

22 0

33 1

30 1

33 0

31 0

0

1

2

3

4

5

6

0 1 2

ro
w

column
data

hier2

dic2

...

...

Figure 6.22: Example data representation
The associated generalization hierarchy hier0 is represented as a two dimensional

array in which the i-th row contains the values for the original data item which is
encoded as i in the dictionary. The j-th column stores the corresponding transformed
value at the j-th level of the hierarchy. The other quasi identifiers are handled analo-
gously. The input dataset itself is represented as a row-oriented integer array (data).
Additionally an equal data structure buffer is maintained which is used to store a
transformed representation of the original data. Based on this memory layout, trans-
forming a value from the input data in cell (row, col) to the value defined on level level
of its generalization hierarchy and storing it in the buffer is a simple assignment:

buffer[row, col]← hiercol[data[row, col], level] (6.1)

When checking a state, the algorithm iterates over all rows in the dataset and
applies the assignment (1) to each cell. Afterwards, the transformed row is passed to

114 Data De-Identification

CHAPTER 6: Bridging the Gaps: Semantic Integration and Data Transformation

a groupify operator, which computes the equivalence classes by adding the rows to a
hash table. Finally, the k-anonymity check is applied by checking whether all classes
are of size ≥k. Furthermore, a suppression parameter s can be specified. It defines an
upper bound for the number of rows that can be suppressed in order to still consider
a dataset k-anonymous. This further reduces information loss, as the minimum size k
is not enforced for all equivalence classes. Instead, classes of size < k are removed
from the dataset as long as the total number of suppressed rows remains under the
threshold.

This basic implementation is already very efficient. As can be seen in the following
complexity analysis, it has an amortized runtime complexity of O(n ∗m), where m is
the number of rows and n is the number of columns.

• Step 1 The transformation of a single row from the input dataset is of complexity
O(1) as it is simply an assignment including indirections. This adds up to a
complexity of n ∗ O(1) = O(n) for transforming the complete dataset.

• Step 2 Building the equivalence classes is implemented based on a hash table
by sequentially adding all tuples to the hash table and updating an associated
counter. Adding an element to a hash table has an amortized run-time complexity
of O(1). Therefore building the equivalence classes for the complete dataset has
an amortized run-time complexity of n ∗ O(1) = O(n).

• Step 3 Testing whether the equivalence classes fulfil the k-anonymity criterion is
implemented by iterating over all entries in the hash table which has a worst-case
complexity of O(n).

The amortized runtime complexity of checking an individual state for k-anonymity
is therefore O(n) + O(n) + O(n) = O(n). The run-time complexity does not only
depend on the number of rows n but also on the number of columns m. As the number
of columns influences the run-time complexity of step 1 and step 2 by a linear factor
of m the overall amortized runtime complexity depending on n and m is O(n ∗m).

Optimizations

The following section presents some further optimizations that exploit similarities be-
tween states, which are checked consecutively by an algorithm.

2

2

2

2

2

2

2

s2:=(2,1,3)

96

96

86

96

96

86

96

s1:=(2,1,1)

76 2

76 2

46 2

76 2

76 2

56 2

66 2

0 1 20 1 2

0

1

2

3

4

5

6

0

1

2

3

4

5

6

4

1

1

1

c

Figure 6.23: Roll-up and Projection

Data De-Identification 115

CHAPTER 6: Bridging the Gaps: Semantic Integration and Data Transformation

Projection: Because the transformed data is materialized in a buffer, it is possible
to only transform those parts of the data that actually change. A projection can be
applied if two consecutive states s1 and s2 define the same level of generalization for
some quasi-identifiers. These columns are already represented in the correct state in the
buffer and do not need to be transformed again. An example is shown in Figure 6.23.
Here, the columns 0 and 1 are already in the correct state when moving from the state
(2, 1, 1) to (2, 1, 3) leaving only the column 2 subject to transformation. It is important
to notice that an efficient implementation of this optimization can not just iterate over
the set of active columns when processing each row. The overhead induced by this
additional indirection generally exceeds the positive effect of not having to transform
some cells. The implementation is therefore based on a branch table, which redirects
the control flow to a parametrized implementation for each possible number of active
columns. E.g., the implementation that transforms two columns takes the arguments
col1 and col2 and executes the following for each row in the dataset:

buffer[row, col1]← hiercol1[data[row, col1], levelcol1]

buffer[row, col2]← hiercol2[data[row, col2], levelcol2]

Roll-Up: When an algorithm moves from a state s1 to a state s2 which is a gener-
alization of s1, the equivalence classes for s2 can be built by merging the equivalence
classes of s1 if the generalization hierarchies are monotonic. This is called roll-up
and our implementation is very efficient because we do not operate on top of a data-
base (which is a black box) but are able to interweave the groupify operator with the
anonymization algorithm. To this end we store the index of a representative (the first
row that has been added for an equivalence class) in each entry in the hash table and
manage a second groupify operator. We then iterate over the hash table entries that
have resulted from the previous check and transform only the representative rows.
Because we use an index into the original dataset instead of the actual equivalence
classes we only introduce a very small space overhead and are again able to apply
the assignment (1) instead of an actual join. The representative rows are then passed
to the second groupify operator together with the size of their original classes. The
operators are swapped (references are exchanged) prior to each check. A roll-up is also
possible for the transition shown in Figure 6.23. In this figure, the classes are denoted
by different shades of gray. We assume that the previous check resulted in the classes
{0}, {1}, {2} and {3,4,5,6}. The representatives and sizes (r, c) are (0,1), (1,1), (2,1)
and (3,4) as indicated by the additional rightmost column. To compute the classes for
s2 it is only necessary to transform and group four rows, whereas seven rows had to
be processed to check the state s1.

Taking snapshots: A series of roll-up operations can only be performed on a path
of non-anonymous nodes. A similar technique can be applied in other state transitions,
if a buffer is managed which contains snapshots of the equivalence classes of previous
states (called history). The equivalence classes for a state s can then be built by
merging the classes defined by a more specialized state s′. If multiple suitable snapshots
are available, we pick the one that contains the fewest classes. Due to the presence
of pointers to representative rows in our groupify operator we are able to only store
references to the representative and the size for each equivalence class. This compact
representation (8 bytes per class) allows us to efficiently maintain a large number of

116 Data De-Identification

CHAPTER 6: Bridging the Gaps: Semantic Integration and Data Transformation

snapshots. Furthermore, it is only necessary to store snapshots for non-anonymous
nodes, because otherwise all generalizations will be tagged predictively. A snapshot
can also be pruned if all nodes that could possibly utilize it are already tagged. A
simple check that covers parts of this restriction is to look at all direct generalizations
of the state and discard the snapshot if these are all tagged as k-anonymous.

To further limit the memory consumption and prevent performance degradation we
introduce two parameters that control the buffer. A threshold defines the maximum
number of equivalence classes (relative to the number of data items in the original
dataset) a snapshot is allowed to contain in order to be stored. A second parameter
defines an upper bound for the number of entries that can be stored in the buffer at
the same time. When this limit is reached we first check all contained snapshots for
whether they can be dropped by looking at their direct generalizations. Otherwise, the
least recently used snapshot is dropped. Those parameters allow to tune the solution
according to a space-time trade-off. The described buffering of snapshots does not fully
replace the roll-up optimization but complements it, as it only stores a limited amount
of snapshots of a predefined maximum size.

Putting it all together: The individual optimizations can be combined with each
other. The transition from Figure 6.23 can, e.g., benefit from performing a roll-up as
well as a projection. There are several limitations for valid sate changes that ensure that
the data is always in a consistent state, though. For example, if a roll-up optimization
was performed in the previous iteration, but can not be applied in the current iteration,
it is not possible to only transform a subset of the columns. A tabular representation
of valid state transitions is shown in Table 6.9.

AR, AC AR, CC RU, AC RU, CC SS, AC SS, CC
AR, AC ≺ � � � ∃ � ∃ �
AR, CC ≺ � � � ∃ � ∃ �
RU, AC ≺,� - � � ∃ �,∃ � -
RU, CC ≺,� - � � ∃ �,∃ � -
SS, AC ≺,� - � � ∃ �,∃ � -
SS, CC ≺,� - � � ∃ �,∃ � -

Table 6.9: Possible transitions

The possible combinations of the described optimizations are denoted by a combina-
tion of labels: AR =̂ All Rows, RU =̂ Roll-Up, SS =̂ Snapshot,
AC =̂ All Columns and CC =̂ Changed Columns. Furthermore state transitions de-
pend on the relationship between the previous state s and the current state s′ which
we denote by different operators in Table 6.9. s′ � s denotes that s′ is a generalization
of s, s′ ≺ s denotes that s′ is a specialization of s, s′ � s implies s′ � s and s′ � s
implies s′ ≺ s but with at least one equal generalization level for any quasi identifier.
∃s : s′ � s and ∃s : s′ � s denotes that a snapshot s with s′ � s or s′ � s is stored in
the buffer. Despite the existence of snapshots, the relationships are mutually exclusive.
If it is possible to perform a roll-up or utilize a snapshot, we always perform a roll-up.
Otherwise utilizing a snapshot is always preferred over other implementations. As can
be seen in Table 6.9 state transitions are mainly limited in case of projections. This
can only be done if the current state allows to perform a roll-up or all rows have been
transformed in the previous state.

Data De-Identification 117

CHAPTER 6: Bridging the Gaps: Semantic Integration and Data Transformation

6.4.3 The FLASH Algorithm
In this section we present our novel FLASH algorithm. It traverses the lattice in
a bottom-up breadth-first manner and constantly generates paths, which ramify like
flashes of lightnings. It is based upon the following observations:

1. Predictive tagging can be exploited best if the lattice is traversed vertically and in
a binary fashion.

2. When traversing a lattice vertically, the execution time becomes volatile regarding
the representation of the input dataset (e.g., the order of the columns). This has
to be prevented by implementing a stable strategy.

3. In order to achieve the best performance, the algorithm should prefer nodes that
allow to apply the previously presented optimizations.

Basic Algorithm

As shown in Algorithm 5, FLASH iterates over all levels in the lattice. It enumerates
all nodes on each level and calls FindPath(node) if a node is not tagged. As shown in
Algorithm 6, this function implements a depth-first search towards the top node. The
search terminates at the top node or when a node does not have an untagged successor.

Algorithm 5: Outer loop of the FLASH algorithm
Input: Lattice lattice

1 begin
2 pq ← new priority queue
3 for l = 0→ lattice.height− 1 do
4 foreach node ∈ level[l] do
5 if !node.tagged then
6 path← FindPath(node)
7 CheckPath(path, pq)
8 while !pq.isEmpty do
9 node← pq.extractMin

10 foreach up ∈ node.successors do
11 if !up.tagged then
12 path← FindPath(up)
13 CheckPath(path, pq)

When a path has been built the function CheckPath(path, pq) is called on it. As
can be seen in Algorithm 7, it implements a binary-search. It starts by checking the
node at position b1

2
(path.size− 1)c. Whenever a node is checked for k-anonymity, we

also apply predictive tagging within the whole generalization lattice. Depending on
the result of the check, the algorithm then proceeds with the lower or upper half of the
path. Whenever a node is explicitly checked and determined to be non-anonymous,
we add it to a priority queue (pq). If a node is explicitly checked and determined to
be anonymous, we store a reference to it, as it could be the local optimum. There
is no need to check whether a node has already been tagged, because by definition

118 Data De-Identification

CHAPTER 6: Bridging the Gaps: Semantic Integration and Data Transformation

Algorithm 6 always returns a path of untagged nodes. Furthermore, predictive tagging
is always applied in the direction opposite to the one taken by the algorithm. Another
important thing to notice is that after the search terminates the variable optimum will
always hold a reference to the optimal anonymous node on the path (if there is any).
The globally optimal node is determined by comparing the current local optimum with
the current global optimum in Store(optimum).

After a path has been checked, the nodes in the priority queue are utilized to build
new paths starting from the successors of the non-anonymous nodes that have been
explicitly checked when processing the previous path. The general idea behind this is
that these paths increases the potential to apply the roll-up and snapshot optimizations.
Somewhat simplified (see Section 9), the priority queue returns the nodes according
to their level in the lattice. We start with the minimal element as this potentially
increases the length of the created path. This in turn increases the potential to apply
predictive tagging to other nodes in the lattice.

In case of an empty priority queue, the algorithm proceeds with the outer loop. The
algorithm terminates when the outer loop terminates. As explained in the following
section, our algorithm further implements a general strategy that induces a total order
on all nodes in the lattice. Whenever we iterate over a set of nodes we follow this order.
This includes all steps which are highlighted in gray in the presented pseudocodes.

Algorithm 6: FindPath(node)
Input: Start node node
Result: Path of untagged nodes path

1 begin
2 path← new list
3 while path.head() 6= node do
4 path.add(node)
5 foreach up ∈ node.successors do
6 if !up.tagged then
7 node← up
8 break

9 return path

Traversal Strategy

An important property of an algorithm that implements a vertical traversal strategy is
stability in terms of execution time. This is due to the fact that the order in which nodes
are enumerated influences the order in which the nodes are checked. In combination
with a vertical strategy and predictive tagging this leads to different lattice traversals,
which leads to a varying number of k-anonymity checks. This finally leads to differences
in the algorithms’ execution times. In practice these differences can, e.g., be triggered
by changing the order of the columns in the input dataset (see Section 6.4.4). The
solution to this problem is to apply a fixed strategy whenever nodes are enumerated.
The idea behind our strategy is to prefer nodes with a lower degree of generalization.

A node is a tuple n = (n0, ..., nk) with 0 ≤ ni ≤ mi for all 0 ≤ i ≤ k, where mi

defines the maximum level in the hierarchy of the i-th quasi identifier. Furthermore,

Data De-Identification 119

CHAPTER 6: Bridging the Gaps: Semantic Integration and Data Transformation

Algorithm 7: CheckPath(path, pq)
Input: Path path, priority queue pq

1 begin
2 low ← 0; high← path.size− 1; optimum← null
3 while low ≤ high do
4 mid← b12(low + high)c
5 node← path.get(mid)
6 if CheckAndTag(node) then
7 optimum← node; high = mid− 1

8 else
9 pq.add(node); low = mid+ 1

10 Store(optimum)

distinct(i, l) = |{hieri[x][y] | y = l}| returns the distinct number of values on level l
of the i-th generalization hierarchy. We define three criteria for each node n. The
criterion c1(n) returns the relative height of the node in the lattice:

c1(n) =
k∑

i=0

ni (6.2)

The criterion c2(n) is used to differentiate between nodes on the same level and
resembles the Precision metric. It returns the average generalization over all quasi
identifiers:

c2(n) =
1

k

k∑
i=0

ni

mi

(6.3)

Finally, the criterion c3(n) is utilized to differentiate between nodes on the same
level which also describe the same average generalization. It represents the average
over the number of distinct values on the current level of each quasi identifier:

c3(n) = 1− 1

k

k∑
i=0

distinct(i, ni)

distinct(i, 0)
(6.4)

These three criteria are then combined into a vector in R3:

c(n) =

c1(n)
c2(n)
c3(n)

 (6.5)

The nodes are traversed according to the totally ordered vector space induced by
the lexicographical order, i.e. c(n1) ≤ c(n2) iff:

• c1(n1) < c1(n2), or

• c1(n1) = c1(n2) ∧ c2(n1) < c2(n2), or

• c1(n1) = c1(n2) ∧ c2(n1) = c2(n2) ∧ c3(n1) ≤ c3(n2).

120 Data De-Identification

CHAPTER 6: Bridging the Gaps: Semantic Integration and Data Transformation

We apply this order when enumerating nodes on a level in the outer loop and when
enumerating successors of a node in FindPath. Finally, the priority function also
serves as the key for the entries in the heap. The strategy has to be implemented
carefully. Sorting all levels in the lattice and all pointers to successors prior to the
execution of the algorithm is too expensive. We therefore evaluate the priority function
lazily and sort a nodes’ successors only when needed. Analogously, a level is sorted
directly before iterating over it. This allows to exclude all nodes from sorting which
are already tagged.

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

Level 8

(1,0,0) (0,1,0)

(2,0,0) (1,1,0) (1,0,1) (0,1,1)

(2,1,0) (2,0,1) (1,1,1) (1,0,2) (0,1,2)

(2,1,1) (2,0,2) (1,1,2) (1,0,3) (0,1,3)

(2,1,2) (2,0,3) (1,1,3) (1,0,4)

(2,1,3) (2,0,4) (1,1,4)

(2,1,4)

(0,0,0)

(2,1,5)

(0,0,1)

(0,0,2)

(0,0,3)

(0,0,4)

(0,1,4) (0,0,5)

(1,0,5) (0,1,5)

(1,1,5)(2,0,5)

Figure 6.24: Example for the FLASH algorithm

Example

The first two iterations of the FLASH algorithm can be seen in Figure 6.24. It starts
by building a path from the bottom node (0, 0, 0) to the top node (2, 1, 5). This results
in the rightmost path that is indicated by the dotted lines. This path is then checked
in a binary-manner which results in explicit checks of the nodes (0, 0, 4), (1, 0, 5) (non-
anonymous) and (2, 0, 5) (anonymous). The states of the other non-anonymous nodes
(dark gray) are determined by applying predictive tagging from (0, 0, 4) and (1, 0, 5).
The top-node is predictively tagged as being anonymous from the node (2, 0, 5). After
checking the first path, the heap contains the nodes (1, 0, 5) and (0, 0, 4). As (0, 0, 4)
is prioritized according to our general strategy, we start to build an new path from
(0, 0, 4), which is denoted by the dashed lines. When the heap is empty, the algorithm
builds the next path starting from (2, 0, 0) because (0, 1, 0) has already been tagged.

Dataset QIs Records States Size [MB] Init [ms]
ADULT 1 9 30,162 12,960 2.52 86
CUP 2 8 63,441 45,000 7.11 334
FARS 3 8 100,937 20,736 7.19 152
ATUS 4 9 539,253 34,992 84.03 1,031
IHIS 5 9 1,193,504 25,920 107.56 1,627

Table 6.10: Evaluation datasets
1http://archive.ics.uci.edu/ml/datasets/adult
2http://kdd.ics.uci.edu/databases/kddcup98/kddcup98.html
3http://www-fars.nhtsa.dot.gov/main/index.aspx
4http://atusdata.org/index.shtml
5http://www.ihis.us/

Data De-Identification 121

CHAPTER 6: Bridging the Gaps: Semantic Integration and Data Transformation

6.4.4 Evaluation
For the evaluation we used five real-world datasets, most of which have already been
utilized for benchmarking previous work on k-anonymity.

 0

 20

 40

 60

 80

 100

E
xe

cu
tio

n
T

im
e

[%
]

Incognito

Projection

83 86 86 84 85

Rollup

82 85 86 84 85

History

75
81

72
65 69

 0

 20

 40

 60

 80

 100

E
xe

cu
tio

n
T

im
e

[%
]

OLA

74 71 75 75 78
68 67 67 69

77

53
46 48

55 60

 0

 20

 40

 60

 80

 100

ADULT CUP FARS ATUS IHIS

E
xe

cu
tio

n
T

im
e

[%
]

Flash

73
67

76 75 77

58 56 55
61 62

20

35

21 19
25

Figure 6.25: Effectiveness of optimization levels

Datasets

The datasets include the 1994 US census database (ADULT), KDD Cup 1998 data
(CUP), NHTSA crash statistics (FARS), the American Time Use Survey (ATUS) and
the Integrated Health Interview Series (IHIS). The ADULT dataset serves as a de-
facto standard for the evaluation of k-anonymity algorithms. An overview over the
datasets is shown in Figure 6.10. They cover a wide spectrum, ranging from about
30k to 1.2M rows (2.52 MB to 107.56 MB) consisting of eight or nine quasi identifiers.
The associated generalization hierarchies have a height between 1 and 5 levels. The
number of states in the generalization lattice, which is defined by the number of quasi
identifiers as well as the height of the associated hierarchies, ranges from 12,960 for
the ADULT dataset to 45,000 for the CUP dataset.

Setup

The benchmarks were performed on a Desktop machine equipped with a 4-core 3.1
GHz Intel Core i5 CPU running a 64-bit Linux 3.0.14 kernel. The algorithm was im-
plemented in Java and executed on a 64-bit Sun JVM (1.6.0_26) with a heap size of
512 MB. We anonymized each of the datasets with 2 ≤ k ≤ 10, suppression rates s
of 0%, 2% and 4% and the monotonic Discernibility Metric (DM*). We furthermore
incrementally enabled the optimizations, resulting in four different configurations. We
executed each of these configurations five times for each algorithm (Incognito, OLA
and FLASH) and combination of the parameters k and s, which resulted in 135 runs
per dataset. The threshold for the maximum size of a snapshot was set to 20% and the
size of the history was limited to 200 entries. The results are reported without the time

122 Data De-Identification

CHAPTER 6: Bridging the Gaps: Semantic Integration and Data Transformation

needed for initialization, which includes reading the entire data from disk and perform-
ing dictionary encoding (see Figure 6.10). The execution time of all three algorithms
is dominated by the time spent on k-anonymity checks. As these are implemented
analogously for all algorithms, the comparison is fair.

Overview

Figure 6.25 shows the workload averages (geometric mean over all values of k and s) for
each dataset and algorithm. The basic implementation, which does not implement any
optimizations, defines the 100% baseline. The optimizations are enabled incrementally
and it can be seen, that all optimizations have a positive effect on the execution
times of all algorithms for all datasets. Although we only show workload averages
due to the limited space, it is important to note that none of the optimizations yields
any overhead for any configuration. The FLASH algorithm benefits the most, as it
was explicitly designed to fully exploit the framework. Incognito benefits the least,
because of its horizontal traversal strategy, which, e.g., completely prevents the roll-
up optimization. Figure 6.26 presents a comparison of the algorithms in terms of
the geometric mean (logarithmic scale) of the execution times in seconds. FLASH
outperforms all algorithms and the speedup compared to the state-of-the-art (OLA)
ranges from about 37% for CUP to a factor of 2.7 for IHIS.

 0.1

 1

 10

 100

 1000

ADULT CUP FARS ATUS IHIS

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
es

 [s
] Flash

0.3
0.5

1.0

12.4

27.5

OLA

0.7
0.8

2.1

32.1

74.7
Incognito

7.3

4.0

9.2

165.2
266.4

Figure 6.26: Comparison of average execution times
Details

Figure 6.27 shows a comparison of the actual execution times of the algorithms for
2 ≤ k ≤ 10 on selected configurations and datasets. It can be seen that the execution
times of the algorithms do not only differ by a constant factor, but follow different
trends. In the context of an individual configuration, FLASH offers an almost constant
execution time and outperforms the other algorithms for each value of k. As can be
seen in the Table 6.11 and 6.12, this is also true for the other configurations. Table 6.11
shows the minimum and the maximum of the execution times of FLASH for 2 ≤ k ≤ 10
on all datasets and suppression rates in seconds. It can be seen that FLASH is able to
find the optimal solution in well under 4 seconds for all configurations despite ATUS
and IHIS with 2% and 4% suppression rates. In these cases, more checks have to be
performed to find the optimal solution, which leads to execution times in the order of
a minute.

Table 6.12 compares the performance of Incognito and OLA to our algorithm. It
shows the minimum and maximum factors between the execution times of the other
algorithms and FLASH over 2 ≤ k ≤ 10 for each configuration. It can be seen, that
FLASH outperforms the other algorithms for all configurations on all datasets. The

Data De-Identification 123

CHAPTER 6: Bridging the Gaps: Semantic Integration and Data Transformation

largest performance gain in comparison to the Incognito algorithm exists for a 0%
suppression rate with a factor of more than 70 for ATUS (k = 8). FLASH especially
outperforms OLA on the two largest datasets at a 0% suppression rate, with a factor
of about 4 for ATUS (k = 8) and a factor of about 5 for IHIS (k = 10).

ADULT CUP FARS ATUS IHIS
s=0% 0.04 – 0.05 0.07 – 0.08 0.10 – 0.17 1.20 – 1.80 2.72 – 3.79
s=2% 0.50 – 1.35 0.83 – 1.92 2.31 – 3.74 33.55 – 40.95 73.22 – 89.04
s=4% 0.74 – 1.70 0.94 – 2.69 2.75 – 3.99 17.11 – 38.65 80.51 – 88.63

Table 6.11: Execution times of the FLASH algorithm [s]

The experiments also show that our generic framework is suitable for the efficient im-
plementation of other algorithms for optimal k-anonymity. Furthermore, OLA clearly
outperforms the Incognito algorithm, even up to an order of magnitude in some cases.
We have not implemented the SuperRoots variant of Incognito, because our experiments
revealed that it is only beneficial without suppression and decreases the performance
in all other cases. FLASH outperforms OLA in all cases, although our implementation
is already highly efficient and includes several optimizations [KPE+12b].

ADULT CUP FARS ATUS IHIS
s=0%

OLA 2.4 – 3.0 1.3 – 1.6 2.0 – 2.5 3.0 – 3.9 3.8 – 4.9
Incognito 51.2 – 61.3 14.8 – 18.2 21.8 – 25.8 55.4 – 72.2 27.0 – 32.9

s=2%
OLA 1.7 – 2.2 1.5 – 2.3 1.5 – 2.7 2.1 – 2.6 1.7 – 2.6
Incognito 10.2 – 24.0 5.1 – 8.2 3.9 – 8.2 4.7 – 9.6 3.8 – 7.9

s=4%
OLA 1.6 – 2.0 1.9 – 2.6 1.7 – 2.9 1.2 – 2.8 1.4 – 2.4
Incognito 7.1 – 17.9 4.0 – 6.7 2.9 – 6.1 3.5 – 7.5 2.8 – 6.1

Table 6.12: Performance of Incognito and OLA compared to FLASH [factor]

Table 6.13 presents a comparison of the algorithms’ memory consumption. The
snapshots stored by the history optimization dominate the overall memory footprint.
Incognito uses the least memory, whereas OLA uses the most. Incognito has the
lowest memory usage, because many nodes in the largest generalization lattice (for
all quasi identifiers) are already tagged when the lattice is traversed. It therefore
creates significantly fewer snapshots than the other algorithms. FLASH is designed
to immediately exploit snapshots, which leads to early eviction of many entries in the
buffer and a memory consumption between Incognito and OLA.

Although the FLASH algorithm has been designed to leverage our implementation
framework as much as possible, it also offers competitive performance in other im-
plementation scenarios. This can be seen by comparing FLASH and OLA when all
optimizations are disabled and the execution times are basically defined by the number
of k-anonymity checks, which are performed by the algorithms. In this case, FLASH
is up to 30% slower for the ADULT and FARS dataset with a 0% suppression rate.
As this are the cases in which the execution times are very low, FLASH still provides
very good performance, though. In all other cases (including the larger datasets),
the performance of FLASH and OLA differs only by up to 10% and there is no clear
winner. As soon as the optimizations are enabled, FLASH outperforms OLA in all
configurations by large margins. Furthermore, FLASH offers algorithmic stability as
is described in the following section.

124 Data De-Identification

CHAPTER 6: Bridging the Gaps: Semantic Integration and Data Transformation

 1.8
 2

 2.2
 2.4
 2.6

M
ea

n
of

 e
xe

cu
tio

n
tim

es
 [s

]

ADULT suppression=0%

 0

 0.05

 0.1

 0.15

2 3 4 5 6 7 8 9 10

 1.2

 1.3
CUP suppression=0%

 0

 0.05

 0.1

2 3 4 5 6 7 8 9 10

 3

 3.5

 4
FARS suppression=0%

 0
 0.1
 0.2
 0.3
 0.4

2 3 4 5 6 7 8 9 10

 90

 100

 110
ATUS suppression=0%

 0

 2

 4

 6

 8

2 3 4 5 6 7 8 9 10

 90

 100

 110
IHIS suppression=0%

 0

 5

 10

 15

2 3 4 5 6 7 8 9 10

 12

 13

 14

 15

M
ea

n
of

 e
xe

cu
tio

n
tim

es
 [s

]

ADULT suppression=2%

 0

 1

 2

2 3 4 5 6 7 8 9 10
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

2 3 4 5 6 7 8 9 10

CUP suppression=2%

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

2 3 4 5 6 7 8 9 10

FARS suppression=2%

 0

 50

 100

 150

 200

 250

 300

 350

2 3 4 5 6 7 8 9 10

ATUS suppression=2%

 0

 100

 200

 300

 400

 500

 600

2 3 4 5 6 7 8 9 10

IHIS suppression=2%

Flash
OLA

Incognito

 13

 14

 15

M
ea

n
of

 e
xe

cu
tio

n
tim

es
 [s

]

ADULT suppression=4%

 0

 1

 2

 3

2 3 4 5 6 7 8 9 10
 0

 2

 4

 6

 8

 10

 12

2 3 4 5 6 7 8 9 10

CUP suppression=4%

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

2 3 4 5 6 7 8 9 10

FARS suppression=4%

 0

 50

 100

 150

 200

 250

 300

2 3 4 5 6 7 8 9 10

ATUS suppression=4%

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

2 3 4 5 6 7 8 9 10

IHIS suppression=4%

Figure 6.27: Execution times for 2 ≤ k ≤ 10

Algorithmic Stability

In contrast to Incognito, FLASH and OLA implement a vertical traversal strategy but
only FLASH offers a stable execution time. Stable means that, the execution time
of the algorithm does not depend on the order of the columns in the input dataset
or the algorithm that is used to build the generalization lattice. E.g., a node (1, 0, 0)
represents a different transformation if the first column is swapped with another column
in the dataset. This is an important property, because otherwise the behaviour of an
algorithm is not reproducible without explicit definition these surrounding conditions.

Dataset FLASH OLA Incognito
ADULT 8 – 15 10 – 18 8 – 13
CUP 39 – 55 44 – 79 37 – 43
FARS 20 – 46 22 – 55 20 – 37
ATUS 81 – 155 87 – 163 80 – 146
IHIS 166 – 432 172 – 471 162 – 376

Table 6.13: Memory consumption [MB]

As this property has not been discussed in any previous work, we assume that the
experiments therein have been performed based on a natural ordering. First, the order
of the columns in the input datasets has been preserved as is. Second, the successors
of a node are ordered according to which quasi identifier has been incremented. Third,
the nodes on a level are enumerated in the same way, assuming a breadth-first strategy
during the lattice building process. This strategy has also been used for all example
lattices in this section and in our experiments (see, e.g., Figure 6.19). We were able to
closely reproduce the previously published results.

The distribution of OLA’s execution times can be determined, if a fixed lattice
building algorithm is used and OLA is executed for all permutations of the columns in
the input datasets. Unfortunately this is not feasible, as the number of permutations is
factorial in the number of columns (e.g. 9! = 362, 880). Instead, we precomputed the

Data De-Identification 125

CHAPTER 6: Bridging the Gaps: Semantic Integration and Data Transformation

anonymity property for all states in the lattices and used this information to simulate
the execution of OLA for all permutations. The simulations take all optimizations from
our framework into account. Each simulation results in a sequence of k-anonymity
checks T , which were performed while processing one permutation. Each check t ∈ T
is defined by the number of active columns (tc), as induced by a projection, and the
number of active rows (tr), as induced by the roll-up and history optimizations. c is
the overall number of columns in the dataset. Based on this information we developed
a cost model, which estimates the overall execution time. For one check t ∈ T , the
costs for transforming the data are defined as costst(t) = tc · tr, which is the number
of cells that had to be transformed. Furthermore, the costs for grouping the data are
costsg(t) = c · tr, because the costs of grouping always depends on the total number of
columns in the dataset. In order to fit the resulting costs to the actual times measured
in the experiments, we divided the results by a constant factor. The overall costs for
a simulation T were defined as:

costs(T) =
∑
t∈T

costst(t) + costsg(t) =
∑
t∈T

tc · tr + c · tr

Figure 6.28 shows the distribution of the costs for different values of k and selected
datasets. The frequency of a cost estimate is represented by colors ranging from white
(lowest) to black (highest). The dashed lines (OLA) represent the costs of the standard
OLA algorithm with natural ordering, which has been used in the other experiments
(e.g., in Figure 6.27). The dotted lines (StableOLA) show the costs of an implemen-
tation of OLA, which uses the same strategy as the FLASH algorithm and is thus
stable. To this end, the nodes on level b1

2
(b.level + t.level)c for a sublattice (b, t) are

enumerated in the order induced by our traversal strategy (see Section 9). The solid
lines represent the costs of FLASH.

ADULT s=0%

2 3 4 5 6 7 8 9 10

0

0,1

0,2

0,3

0,4

0,5
CUP s=0%

2 3 4 5 6 7 8 9 10

0

0,1

0,2

FARS s=0%

2 3 4 5 6 7 8 9 10

0

0,5

1

1,5

2

2,5
ATUS s=0%

2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

IHIS s=0%

FLASH

OLA

StableOLA

2 3 4 5 6 7 8 9 10

0

25

50

75

100

125

ADULT s=2%

2 3 4 5 6 7 8 9 10

0

1,5

3

4,5

6

7,5
CUP s=2%

2 3 4 5 6 7 8 9 10

0

5

10

15

20

25

FARS s=2%

2 3 4 5 6 7 8 9 10

0

5

10

15

20

25
ATUS s=2%

2 3 4 5 6 7 8 9 10

0

65

130

195

260

325

IHIS s=2%

2 3 4 5 6 7 8 9 10

0

100

200

300

400

500

F
re

q
u

e
n

c
y

ADULT s=4%

2 3 4 5 6 7 8 9 10

0

1,5

3

4,5

6

7,5
CUP s=4%

2 3 4 5 6 7 8 9 10

0

5

10

15

20

25

FARS s=4%

2 3 4 5 6 7 8 9 10

0

5

10

15

20

25
ATUS s=4%

2 3 4 5 6 7 8 9 10

0

50

100

150

200

250

IHIS s=4%

2 3 4 5 6 7 8 9 10

0

100

200

300

400

500

Figure 6.28: Distribution of the execution times of OLA for 2 ≤ k ≤ 10

126 Data De-Identification

CHAPTER 6: Bridging the Gaps: Semantic Integration and Data Transformation

As can be seen when comparing Figure 6.28 to Figure 6.27, our cost model closely
resembles the actual execution times of the algorithms. Despite for the FARS dataset
at 2% and 4% suppression rates, the trends of the resulting frequencies are very similar
to the trends measured in our experiments. In contrast, the costs estimated for Stable-
OLA, always follows the overall trend. On average, this variant does not outperform
standard OLA. The costs of OLA vary greatly, e.g., by up to a factor of 38 for IHIS
with s=0%. The performance with natural ordering is sometimes very good (e.g. CUP,
s=4%) and sometimes very bad (e.g. IHIS, s=2%). In contrast, the FLASH algorithm
offers a stable execution time, which outperforms OLA with natural ordering and OLA
with the same stable strategy in all cases. FLASH even outperforms the best run of
OLA (fastest permutation) in 114 out of 135 cases.

In the original work on OLA, the authors reported a total execution time of 20 s
for the ADULT dataset (k = 5, s = 1%) on a comparable testbed [Ema10]. With our
framework, OLA was able to compute the optimal solution for the exact same configu-
ration in 550 ms, whereas FLASH needed 310 ms (both numbers include initialization).
In [LDR05] the authors also published results for the ADULT dataset (k = 5, s = 0%)
and an implementation of Incognito on top of a relational database system. In con-
trast to more than 3 minutes in the original work, our implementation of Incognito was
able to solve this problem in less than 1s (including initialization) for the exact same
configuration. FLASH needed about 100 ms. This shows that a large performance
gain can be achieved by implementing a dedicated data management framework for
k-anonymity algorithms.

6.5 Conclusions and Suggestions for Further Work
In this chapter, several methods for browsing, editing and transforming RDF data have
been proposed. These allow to enrich the dataspace with comprehensive annotations,
to materialize implicit relationships between the data items and to anonymize sensitive
datasets. We have provided extensive evaluations, which were utilized to choose the
appropriate external tools for inclusion into our scripting environment and which pro-
vide important information for data integrators to estimate the complexity of common
data integration tasks.

Future work on navigating RDF data could investigate how a prioritization of predi-
cates can be utilized to provide a better overview over the currently displayed subgraph
to the user. This means that the component would, e.g., prioritize predicates from the
RDF/S schema definition vocabulary over instance-level predicates to increase the
available context information.

User-defined data transformation scripts are executed by a dedicated workflow en-
gine, which applies application-specific heuristics for distributing the load amongst the
available computing nodes in order to achieve good performance. It is able to consider
complex relationships and requires almost no knowledge about the characteristics of
the individual operations.

Possible directions for further improving the workflow engine include investigating
how real-time load data could be utilized to prevent dispatching a script to a node which
is currently under heavy load due to query processing. In the described configuration,
the engine is also able to allocate scripts to nodes which do not host any of the required
data sources. This is based upon the (valid) assumption that data access is not a

Conclusions and Suggestions for Further Work 127

CHAPTER 6: Bridging the Gaps: Semantic Integration and Data Transformation

dominant operation in most scripts. The engine could presumably make more informed
decisions if the volume of the required data would be known. In this context, cardinality
estimations could be performed if the queries issued by the scripts would be available in
advance, e.g., by requiring the user to explicitly annotate scripts with these metadata.

The querying interface and the scripting language are provided for extracting rele-
vant data from the dataspace. In the context of semantic reasoning, further research
could be oriented towards executing complex ontology segmentation or modularization
algorithms in a distributed environment. These operators would potentially allow data
integrators to much more easily extract and access relevant data.

The scripting environment offers a powerful data anonymization operator. This
operator is based upon a generic implementation framework for globally-optimal full-
domain k-anonymity and a novel k-anonymity algorithm. It clearly outperforms previ-
ous approaches and offers algorithmic stability by solely relying on a consistent strategy
that implies a total order among the nodes in the generalization lattice. Even when it
is not implemented on top of the presented framework, it offers a highly competitive
performance. An additional feature of the framework is that, monotonic metrics can
be evaluated with nearly no additional costs. As all locally optimal nodes are explicitly
checked for k-anonymity, complex metrics, which are based on the data itself or the
resulting equivalence classes (e.g, Entropy), can directly access the transformed data
in the buffer or the equivalence classes in the hash table.

In the context of data anonymization, it would be interesting to investigate how the
l-diversity and t-closeness properties could be integrated into the presented framework.
As those properties rely on building frequency sets over a set of predefined sensitive
attributes, a major challenge consists in integrating this process into the presented
optimizations. Future work could also try to better leverage the capabilities of modern
multi-core processors by parallelizing the implementation framework and the FLASH
algorithm. In case of limited availability of main memory or very large datasets, a
disk-based implementation of a k-anonymity algorithm might be needed. Although
this can be implemented on top of a relational database system, future work could
investigate how the presented optimizations can be integrated into a disk-based version
of the framework. The integration solution presented in this thesis is based upon a
distributed graph structure. It would therefore be interesting to investigate to which
extend distributed k-anonymity algorithms and algorithms for anonymizing graph-
structured data could be applied in our context.

The scripting environment could also be extended by providing further operators.
For example, the Silk Link Discovery Framework implements a rule-based system for
discovering relationships between data items in the Web of Data [JIB10]. The links are
specified in an XML vocabulary called Link Specification Language (LSL). Similar to
the approach presented in this thesis, the SILK framework is able to access several RDF
datasets via a SPARQL interface. It then automatically performs record linkage and
duplicate detection based on the link specification provided by the user. It provides
different metrics which can be used for comparing data items and also allows the user
to provide rules that split the data into different blocks in order to avoid processing
the complete cartesian product [IJB11]. In our context, the Silk framework would be
interesting as a component for performing record linkage and entity resolution. In
order to decide which further operators could be useful, a concrete use-case with a
clear definition of the requirements would be required, though.

128 Conclusions and Suggestions for Further Work

CHAPTER 7

Putting It All Together: A Prototypical Implementation

In the previous sections, individual components have been proposed for building an in-
cremental ontology-based integration solution for translational medical research. This
section presents a prototypical implementation called VIOLIN (Virtual Incremental
OntoLogy-Based INtegration). It integrates the presented components into a com-
prehensive integration system, which utilizes a tailored network protocol. The system
further provides a graphical user interface (GUI) called VIOLIN Workbench. The
workbench is oriented towards data integrators and supports data integration and
maintenance tasks. Additionally, the querying interface, which is exhaustively utilized
by the internal components of the system itself, is exposed to users and applications.

7.1 Implementation Details
In this section we describe the most important implementation details of our proto-
type. We start by giving an overview over the data architecture, which encapsulates
the individual components into primitives that can be altered by data integrators to
manage the dataspace. We then cover the underlying permission model, describe the
network protocol and give a detailed description of the overall system architecture of
the prototype.

7.1.1 Data Architecture
A UML class diagram covering the basic data architecture is shown in Figure 7.1. The
individual primitives are structured in an hierarchical manner. As the overall system
is inherently distributed, the most important primitive is a Site. A site represents a
specific node within the system, which is reachable via a dedicated network endpoint.
Within the application domain, a site is also the major primitive for the separation of
data in terms of organizational structures. To this end, each site can represent a specific
institution, department or research project, which is completely under local control.
Conceptually, the central node itself (Global) is also an instance of a site, which is the
parent of all other sites. Each site is allowed to export an arbitrary number of RDF
graphs (Sources). A Schema is a specification of a source, which does only contain
high-level metadata. If a schema exists, it is directly related to one of the site’s sources.
A schema can only exist for non-native RDF datasets, which have been created by an
Extraction process. An extraction is utilized to derive an RDF-representation of a
non-RDF dataset. Within the overall system, this is implemented for Relational data-
bases as well as HL7 message streams (see Chapter 4). A Transformation is another
important architectural primitive, which represents a data transformation script (see

129

CHAPTER 7: Putting It All Together: A Prototypical Implementation

Chapter 6). Each primitive is an instance of the class Element. Each element has a
unique identifier which is utilized to implement a fine-grained permission model, as
will be described in the following section.

Site Transformation

Source

Schema

ExtractionGlobal

* * *

*

*

Native Relational HL7

Element

Figure 7.1: UML class diagram of the data architecture

7.1.2 Permission Model
The permission model consists of roles, which encapsulate a set of basic access rights
for a set of primitives from the data architecture. With the exception of data trans-
formation scripts, this light-weight concept offers a fine-grained mechanism to control
the access rights of all registered users. As shown in Figure 7.2 the groundwork of
the system’s permission model is laid by three additional primitives. The class User
represents a user of the system and encapsulates the user’s credentials. A Permission
is a specific permission regarding a certain primitive that can be granted or revoked.
The system is able to distinguish between four different kinds of permissions: Create,
Read, Update and Delete. The semantics of read, update and delete permissions are
straight forward. If the according permission is granted to a user, she is able to read,
update or delete the information associated with the primitive. In case of sources,
this includes the actual data provided by the source as well as its configuration. In
case of transformations or extractions, this covers all of the primitives configuration
data. The create permission on a primitive states that the user is allowed to add child
elements to it and is therefore only available for sites (including the global node). A
Role represents a set of a permissions for a set of primitives. Each user’s permissions
are modeled as an aggregation of a set of roles. Because rights, roles, groups and users
are also primitives from the data architecture, the same mechanism can be used for
managing the whole permission model itself.

Because data transformation scripts are able to alter the dataspace, they are also
subject to permission management. To this end, scripts conceptually extend the user
class, which means that it is possible to associate them with roles. When a script is
executed, it accesses the dataspace via the scripting environment. If it tries to create,
read or write a dataset for which it does not have the required permissions, an access
violation error is raised and the script is terminated. When defining the preamble of
a script (i.e., the specification of its input and output behaviour), a data integrator
is only able to choose databases in conformance to the script’s associated roles. To

130 Implementation Details

CHAPTER 7: Putting It All Together: A Prototypical Implementation

enable the specification of the databases created by a script, these can be added to
the sites in the same way as regular sources but with a flag which indicates that this
database is to be generated by a transformation script.

1*

Element

-UID

-Name

Permission

Create Read Update Delete

Role

-Name

User

-Name

-Password
*

*

Figure 7.2: UML class diagram of the permission model
Because the permissions of the users can only be altered by data administrators

(which have create, update and delete rights on all permission management primitives),
there is a central point at which changing access rights can be controlled, monitored
and documented. Furthermore, the model allows to represent permissions on a very
fine-grained level if the data is partitioned accordingly. For example, the data of a
research-specific collection could be separated into pseudonymized identifying data
and medical data as well as a set of links between them. It would then be possible to
define an administrative role for the according site which is allowed to create and delete
datasets but is not allowed to view their contents. Additionally, it would be possible to
distinguish between users which are allowed read-only access to either the identifying
data, the medical data or the links between them. Another role could model users
which are allowed to annotate the datasets. By combining these roles, fine-grained
permission structures can be modelled that adhere to legal requirements and respect
the intellectual property rights of data owners.

7.1.3 System Architecture
The internal architecture of the services deployed on the distributed computing nodes
is shown in Figure 7.3. They extend the mediator/wrapper architecture from Figure
5.13 in Chapter 5, which enables distributed query processing. All further components
are built around this core functionality. Each site is required to host at least one wrap-
per instance, which is responsible for performing all local operations such as reading,
writing, editing, extracting, transforming, indexing and querying the local datasets.
The mediator’s task is to manage all data primitives and configuration information,
such as data extraction specifications and transformation scripts. The mediator fur-
thermore maintains the global index (see Chapter 5) and provides the global view on
all data sources via a querying interface. The mediator and the wrappers communi-
cate via a network protocol. This protocol consists of several classes of messages which
are associated to the different functional units. Between each pair of wrapper and
mediator a single connection is utilized and messages are classified according to their
class and forwarded to the relevant component for further processing. Similar to the
distributed querying engine, all of these components are multithreaded and therefore
able to process several requests in parallel. Access permissions are solely enforced by

Implementation Details 131

CHAPTER 7: Putting It All Together: A Prototypical Implementation

the mediator. It requires the users to authenticate themselves and ensures that they
are only able to perform operations in conformance with the permission model.

Query Execution

Wrapper1

MediatorSocket

Wrappern

Transformation

Extraction

Indexing

Querying

Socket

Transformation

Extraction

Indexing

Querying

Socket

Network

AdministrationQuerying

Index

User Management

Source Management

Extraction Management

Transformation Management

Indexing

Extraction

Querying

...

Editing Editing

Data and Metadata Management

Figure 7.3: Mediator and wrapper architecture

Figure 7.4 shows a layered representation of how these different functional units
depend on each other. RDF datasets can either be user-generated, provided by the
data extraction layer, or generated by executing data transformation workflows. The
data access layer is utilized by all higher-level layers for accessing the datasets. A
graphical interface utilizes four functional units, which are integrated with the lower-
level layers. An access control component is integrated by all layers.

Wrappers: Regarding data and metadata management, each wrapper provides means
to create, read, write and update its local RDF data sources. Each site is further able
to expose an arbitrary number of non-RDF data sources. These data sources can be
exported into an RDF representation by applying the techniques presented in Chapter
4. Any data source which is to be exported has to be accessible from the physical ma-
chine, which hosts the wrapper that exposes the site to the mediator. The wrappers
are able to execute data extraction processes based on mapping definitions provided
by the mediator. To assist the user in building such mapping definitions (e.g., by
automatically generating an initial mapping), the wrappers are able to export schema
information from local RDBMSs to the mediator. For data transformation purposes
each wrapper is also able to execute a provided transformation script. If a wrapper
needs to issue a query (i.e., while executing a transformation script), it sends a request
to the mediator. The mediator optimizes the query and initiates query processing
but informs the participating wrappers that the local results are to be sent to the
wrapper that issued the query. Because each wrapper contains a local copy of the
global prefix tree and the query execution component, it is able to compute the global
result from the local results. As described in Chapter 6 the transformation rules are
distributed amongst the wrappers by the mediator in order to perform load balancing.
The indexing and querying components provided by the wrappers are similar to the
components described in Chapter 5 for distributed query processing. The functional-
ity of the wrappers can be summarized as enabling access to different functional units,
which are executed locally. In contrast, the mediator is responsible for utilizing these
units for querying, maintaining and semantically integrating the dataspace.

132 Implementation Details

CHAPTER 7: Putting It All Together: A Prototypical Implementation

Data Extraction Layer

A
c
c
e

s
s
 C

o
n

tro
l

Browsing &

Annotation
Querying

Data

Transformation

Data

Extraction

Node1 Node2 Node3

Data Access Layer

Data Transformation and Integration Layer

Graphical User Interface

Anonymization

Pseudonymization

Semantic Reasoning

Parallelization

Distributed Query

Processing

RDF

RDBMS

HL7

etc.

Users

Roles

Permissions

Permission

Management

Figure 7.4: Conceptual architecture

Mediator: Firstly, on a meta-level, the mediator enables data integrators to manage
the dataspace by configuring the access to all data sources and defining transformation
scripts. This includes all metadata, i.e., the definition and specification of sites, data
extraction and transformation processes as well as their hierarchical structure. It
enforces the permission model presented in the previous section and provides means
to create new users and roles as well as to assign permissions for the primitives in
the dataspace. Secondly, regarding the execution of data annotation, extraction and
transformation processes, the mediator acts as an orchestration component. To this
end, it ensures the consistency of the data by considering dependencies between the
individual integration steps and guaranteeing atomicity. Thirdly, the mediator is also
responsible for providing consistency via concurrency control, e.g., in a multi-user
environment. In our prototype we make some simplifying assumptions. To this end,
we assume that the dataspace is maintained in two consecutive phases, which are
executed repeatedly. These phases also resemble the circular methodology presented
in Figure 3.2 in Chapter 3 as the conceptual basis of the incremental ontology-based
integration approach:

1. Export, transform and index (ETI): In this phase, all data extraction and trans-
formation processes are executed and the resulting state of the dataspace is in-
dexed.

2. Browse, query and edit (BQE): In this phase, data integrators perform semantic
integration tasks by annotating the datasets, providing transformation scripts or
adding new datasets.

During the execution of the ETI process, the system still provides read access to
the previous state of the dataspace. This step can either be executed automatically in
predefined intervals (e.g., once every 24 hours) in order to incorporate changes in the
underlying databases. Or it can be executed manually if it is required to immediately
include new or updated datasets, annotations or transformation scripts. During the
BQE phase, datasets can either be read (queried) by multiple users, or updated by
one user. In this context, write access means that a dataset is opened for browsing

Implementation Details 133

CHAPTER 7: Putting It All Together: A Prototypical Implementation

Message

Indexing

Querying

Extraction

Transformation

Auxiliary

PrefixTree

PartitionTree

PrefixTreeRequest

PrefixTreeResponse

PartitionTreeRequest

PartitionTreeResponse

EOSResponse
GlobalQueryRequest

LocalQueryRequest

LocalQueryResponse

EOSResponse

Metadata

Extraction

MetadataRequest

MetadataResponse

ExtractionRequest

ExtractionResponse TransformationRequest

TransformationResponse

ErrorMessage

Figure 7.5: Important message types of the network protocol

and editing. It is recommended to store user-provided annotations in additional data-
bases separated from the primary data. In this way, they are not overwritten during
subsequent data extraction steps. Additionally, exported data is not altered exter-
nally, which resembles a traditional federated solution in which the local databases are
accessed directly. Due to this design, it is not possible to concurrently edit a dataset.

Another important functionality of the mediator is the orchestration of data extrac-
tion and data transformation processes during the execution of the ETI process. To
this end, the mediator utilizes the optimizations presented in Chapter 6 to parallelize
the execution of transformation scripts and to utilize all computing nodes in the dis-
tributed system. The mediator also ensures that the resulting datasets are indexed
before they are accessed by any subsequent transformation script. Furthermore, the
mediator incorporates the data extraction operators into this process in order to ensure
that all data required by the transformation scripts is available prior to their execution.

7.1.4 Network Protocol
The mediator and the wrappers communicate via a tailored network protocol which
consists of several classes of messages as shown in Figure 7.5. Each class is associated to
a certain functional unit. Incoming messages are classified accordingly and forwarded
to the relevant component. Regarding the top level of the taxonomy, messages are
utilized for Indexing, Querying, Extraction, Transformation or Auxiliary functionality
such as error handling.

For indexing, the system further distinguishes between messages which are utilized
to build the global prefix tree (see Chapter 5) and messages which are required to build
the partition tree. When building the prefix tree, the system sends a PrefixTreeRequest
to each wrapper, which is answered by a PrefixTreeResponse that contains the local pre-
fix tree. When building the global index, the mediator sends a PartitionTreeRequest
to each wrapper. This request includes the previously computed global prefix tree,
which is stored by the wrapper for reducing the volume of intermediate results during

134 Implementation Details

CHAPTER 7: Putting It All Together: A Prototypical Implementation

query processing. Each wrapper then responds with a series of PartitionTreeResponse
messages, each of which contains the partition tree for one partition in the local in-
dex. The termination of the local index generation process is signaled by sending an
EOSResponse (End Of Stream).

Query processing relies on three different classes of messages. A LocalQueryRequest
message is sent by the mediator in order to request the local execution of a given
SPARQL query. The request furthermore includes the reducer generated by the medi-
ator during query optimization (see Chapter 5). The wrapper implements row blocking
by responding with a set of LocalQueryResponse messages, each of which contains a
set of tuples with a predefined maximum size. When all tuples have been sent, the
wrapper sends an EOSResponse. When a remote site needs to issue a global query
while executing a transformation script, it sends a GlobalQueryRequest message to the
mediator. This message contains the query, an optional set of relevant datasets and
the script’s unique identifier. The identifier is required to check whether the script is
allowed to access the requested datasets. In this case, the mediator optimizes the query
and initiates query execution by sending LocalQueryRequest messages to the according
wrappers. These messages further contain the address of the wrapper which originally
issued the query and is responsible for computing the global result. This wrapper will
receive all subsequent LocalQueryResponse and EOSResponse messages.

For defining and executing data extraction processes the system implements four
different types of messages. During the creation of a mapping definition, the mediator
can request a description of the schema of a local RDBMS by sending a MetadataRe-
quest message. This message needs to define and endpoint at which the local database
is reachable via JDBC by the wrapper. The wrapper replies with a MetadataResponse
which encapsulates the according relational schema. The same messages can also be
utilized to ensure that the specification of a native local RDF database (i.e., its path or
SPARQL endpoint) is correct, or to ensure that a folder which is to be monitored for
incoming Hl7 messages does exist. For the execution of a data extraction process, the
mediator sends an ExtractionRequest which contains the complete mapping definition.
When data extraction has terminated the wrapper replies with an ExtractionResponse.

Two classes of messages are utilized to orchestrate the execution of data transfor-
mation scripts. The execution of a single script can be started at a wrapper by sending
a TransformationRequest message. When the script has been executed, the wrapper
replies with a TransformationResponse. An ErrorResponse can be sent by any compo-
nent to signal a problem during the handling of a request from the mediator.

7.2 A Graphical User Interface 1

In this section we present the VIOLIN Workbench. It implements a graphical user
interface to the components provided by the mediator and allows to manage all as-
pects of the dataspace. It is organized into different perspectives, each of which allows
to access one of the functional components. The workbench is organized in panels,
which are located at the left, right, bottom or center part of the workbench. The user
interface is separated into a set of modules, which can be attached to the panels. Each
perspective consists of a distinct set of modules, which display all relevant information

1Parts of the work presented in this section are based on the student projects [Kuc11], [Kuh11]
and [Web12]

A Graphical User Interface 135

CHAPTER 7: Putting It All Together: A Prototypical Implementation

and allow to perform associated actions. The modules themselves are connected via a
publisher-subscriber mechanism. Each component registers for a certain set of events
and can thus react to changes triggered by the other modules. The workbench requires
user authentication and displays information in conformance to the granted permis-
sions. Users which are a member of the group Administrators are allowed to access
and alter all data and meta-data managed by the integration system. This means that,
e.g., a user is only able to see a site, dataset, transformation or extraction for which
at least read access has been granted. Each perspective shows an overview over all
relevant primitives which are visible to the user. This includes all sites, extractions,
transformations, datasets and metadata. These are displayed in a tree-structured hier-
archical view. The workbench is implemented in the Java programming language and
utilizes the Swing component library for its graphical user interface.

Users and Permissions: This perspective is only available to users with adminis-
trative rights. It allows the creation and editing of roles, which are a set of permissions
regarding a specific set of primitives. To this end, each role is associated to a matrix
in which each row is a primitive and each column represents one distinct type of per-
mission (i.e., create, read, update or delete). The perspective is integrated with the
hierarchical overview over all primitives. This means that clicking on a primitive in
the hierarchical view highlights the according row in the matrix and vice versa. In
addition, the perspective allows to create and alter user accounts and to assign roles.

Figure 7.6: Editing data elements

Data Elements: A screenshot of this perspective is shown in Figure 7.6. It allows
to manage a set of data items and prefixes, which are utilized in all other perspectives.
This includes the definition of common resources, properties or literals which are then
available for editing and creating datasets and annotations. Additionally, it allows to
define prefixes, which are utilized to more compactly represent URIs when browsing,
editing or querying datasets. It is also fully integrated with the global index structure.
This means that the perspective automatically recommends abbreviations for the most
common prefixes in the dataspace, which are determined during the indexing process.

136 A Graphical User Interface

CHAPTER 7: Putting It All Together: A Prototypical Implementation

For other perspectives, a comprehensive toolbox is provided, which contains all pre-
defined namespaces, resources and literals, e.g., for inserting them into a dataset. The
defined data elements are shared by all users of the system.

Figure 7.7: Browsing and editing the dataspace

Data and Metadata: This perspective gives access to all components which al-
low data integrators to query, browse, edit and annotate data and metadata in the
dataspace. It contains a query interface and an editor for low-volume RDF graphs.
It furthermore provides a browsing component, which allows to browse and edit large
distributed RDF datasets in an integrated manner. Depending on the size of a dataset,
the system automatically decides whether it can be opened in the integrated editor or
is available for browsing only. The browser not only allows to view a single dataset
but also offers an integrated view on an arbitrary subset of the data in the datas-
pace. Browsing is supported by a module which displays and enables editing of the
incoming and outgoing edges of the currently selected node. The toolbox containing
the available data elements is integrated for editing and inserting data. A screenshot
of this component is shown in Figure 7.7. For data integrators with the according
permissions, this perspective also provides means to edit the hierarchical view over all
primitives, including means to add, edit or remove available sites and datasets. The
graph editor and the browsing component are implemented based on the Java Universal
Network/Graph Framework [MFS+05].

Data Extractions: Within the data extraction perspective it is possible to edit the
data extraction processes for relational databases and HL7 message streams as well as
to add existing RDF datasets to the dataspace. Figure 7.8 shows a screenshot of the
most complex of these operations, i.e., editing a mapping definition for a relational
database. Here, the left panel displays the mapping definition and allows to add, edit
and remove fragments as well as operators. These fragments can be edited in the
center panel, which also allows to view the resulting schema for the currently selected
operator (as shown in the screenshot). The RDF schema definition is rendered with

A Graphical User Interface 137

CHAPTER 7: Putting It All Together: A Prototypical Implementation

Graphviz [EGK+02]. In the bottom panel, the SQL expression, which results from
compiling the subgraph defined by the currently selected operator, is displayed. Further
modules for extracting data from SQL databases allow to edit the vocabulary of the
resulting RDF graph by altering the generated production rules and to define the
endpoint for the JDBC connection.

Figure 7.8: Extracting data from a SQL database

Data Transformations: This perspective allows to edit and create data transfor-
mation scripts. To this end, it provides a module containing a text editor for Javascript
code and a graphical editor for the definition of the scripts’ preambles. Another mod-
ule allows to manually alter the dependency graph, which is utilized for generating a
parallelized global execution plan. Finally, a module allows to view the resulting exe-
cution plan and highlights all transformation scripts which were terminated because of
local errors during the last ETI phase. Editing the dependency graph is implemented
with the Java Universal Network/Graph Framework [MFS+05] and the execution plan
is rendered with Graphviz [EGK+02].

System Internals: Finally, this perspective displays system internals for demon-
stration and debugging purposes. This includes an overview over the system status,
consisting of the volume of available main memory, the number of active threads,
network statistics and the current state of each node. Furthermore, it is possible to
visually browse the global index structure, including the global prefix tree, the parti-
tions, partition trees and bitmasks for each dataset. An example is shown in Figure
7.9. Here, the left panel displays information about the currently selected leaf node
in the partition tree, which is shown in the center panel. This panel allows to switch
between the datasets via tabs and shows a list of partitions for each dataset. The
bottom panel displays the identifiers of all known literal data types.

138 A Graphical User Interface

CHAPTER 7: Putting It All Together: A Prototypical Implementation

Figure 7.9: Browsing the index structure

7.3 Conclusions and Suggestions for Further Work
In this chapter, a prototypical system has been proposed which unifies the individual
building blocks into a common information integration architecture. The described
functionalities and the graphical user interface are oriented towards data integrators
and provide means to manage and administrate all aspects of the dataspace. The only
interface that is provided for end-users or applications is a SPARQL endpoint that
allows to query the dataspace.

In future work it would be important to investigate which further interfaces could be
useful for end-users. This includes, e.g., the ability of the user to give feedback about
the data provided and to provide annotations and metadata. To this end, successful
frontends for researchers, such as the i2b2 workbench, could serve as a starting point.
In the spirit of dataspace applications, this interface could also aim at leveraging user
interactions for semantic integration. First, this can be implemented implicitly, e.g., by
evaluating the acceptance of results sets returned by the querying enginge. Second, the
users could be asked to give explicit feedback, e.g, by actively ranking results according
to their preferences.

The prototypical implementation is a standalone application, that communicates
with the integration system via a network interface but also implements some applica-
tion logic, e.g., caching intermediate results when browsing the dataspace. This design
decision is mainly motivated by the comprehensive data visualization features that
can be provided in a rich client setup. For real-world applications, especially in a dis-
tributed environment, a web-based implementation that consequently implements the
Model View Controller (MVC) design pattern could be beneficial in many ways. First,
transactional guarantees can be provided more easily if all application logic is clearly
separated from the rest of the system. Second, the system becomes independent of
client-side hardware and can be scaled up on the server-side. Furthermore, software
updates can be distributed in a more reasonable manner which ensures that all users
are running the latest version of the frontend.

Conclusions and Suggestions for Further Work 139

CHAPTER 8

Summary and Outlook

In this thesis, a first step towards a comprehensive and incremental ontology-based inte-
gration solution for translational medical research has been proposed. The methodolog-
ical concept has been implemented based upon generic and domain-specific components
as well as the RDF data model. The major contributions include novel techniques for
indexing and querying distributed autonomous RDF databases, for transforming rela-
tional databases into an RDF representation, for executing data transformation scripts
in a distributed environment and for de-identifying biomedical datasets. We have fur-
ther presented an overall architecture which integrates the individual components and
proposed a comprehensive graphical user interface for data integrators.

The prototype has been tailored to meet the specific requirements of the applica-
tion domain (see Section 2.2) and the most common use cases (see Section 2.1). It
supports data retrieval and the integration of knowledge bases. To this end, the sys-
tem allows to access important primary data from research and patient care. This
data can be annotated and integrated with existing domain-specific metadata, as the
expressive RDF data model is frequently used for knowledge bases or ontologies. Fur-
thermore, the graph-structured data model is a natural representation for several types
of biomolecular data, such as metabolic pathways. Patient recruitment can be sup-
ported by estimating patient accrual rates based on comprehensive information from
patient care and clinical research. The system is able to access clinical information
systems, such as ADT Systems, Clinical Repositories, Pathology Information Systems
or Laboratory Information Systems, which are implemented on top of relational data-
bases. It is further able to retrieve data via the HL7 messaging standard, which is
frequently used in clinical environments. Clinical systems provide important data for
the characterization of patient cohorts, such as demographics, diagnoses, procedures
or laboratory results. Research systems can be utilized to determine the availability of
biosamples, whether a patient is already enrolled in a trial (Clinical Trial Management
System, CTMS) or to include highly-structured medical data (Clinical Data Manage-
ment System, CDMS). Even if a system does not encode information in a natural
representation (e.g., utilizing the EAV model), the tools presented in this thesis can
be utilized to transform the data accordingly.

The system further offers flexible interfaces for the incremental manual annotation
of data. Powerful data de-identification and pseudonymization algorithms are included
and allow data integrators to ensure that the patients’ privacy is protected. Further-
more, the separation of data can be utilized to implement fine-grained permission
models, which balance the researchers’ needs to share data and their willingness to

141

CHAPTER 8: Summary and Outlook

maintain full control over their local datasets.
The prototypical implementation presented in this thesis has been developed for

presentation purposes only and is not intended to be deployed for real-world use cases.
Several directions for further research regarding the individual components have been
described in Sections 4.6, 5.6 and 6.5. For the overall concept and implementation
approach, further challenges especially arise in the context of data security and pri-
vacy. The prototype assumes that access rights are complex but remain rather static.
In some scenarios it might be necessary to incorporate highly dynamic authorization
structures, though. In this case, it would be required to access the information sys-
tems on application level and retrieve data via dedicated interfaces [WLP+09]. A
related concept for integrating Webservices into an RDF graph has been presented
in [PKS+10].

Due to the incremental methodology the dataspace is never completely integrated
or its state is not entirely known. Queries might therefore return inconsistent results.
However, this is still useful for many application scenarios. For example, an incomplete
result might still corroborate a hypothesis when estimating accrual rates for clinical
trials. It can be assumed that a high degree of consistency and semantic integration
has to be provided for most use cases, which requires in-depth domain-knowledge from
data integrators. To lower these efforts, future work could investigate techniques for
learning relationships about the data from user feedback [FHM05,BPE+10,BPF+11].

This thesis focussed on conceptual and technical aspects of an integration solution
for translational medical research. In future work, it is important to evaluate the con-
cept and potential implementations within the scope of a concrete application scenario
and concrete use cases. This includes aspects of user acceptance and the usability of
the interface for data integrators. Besides impulses given for related research areas, the
concepts and techniques proposed in this thesis can act as a stimulus for the further de-
velopment of novel types of integration solutions that are thoroughly oriented towards
the requirements of the application domain. Although it is unlikely that the diverse
types of use cases allow for implementing a single solution that fits all requirements,
the domain could benefit from more comprehensive approaches. This could ultimately
help to accelerate the translational cycle, from bench to bedside to community and
back.

142

Bibliography

[AAT08] Joan S. Ash, Nicholas R. Anderson, and Peter Tarczy-Hornoch. People
and organizational issues in research systems implementation. Journal
of the American Medical Informatics Association, 15(3):283–289, May
2008.

[ABB+04] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito, R Mot-
wani, U. Srivastava, and J. Widom. STREAM: The stanford data
stream management system. Technical Report 2004-20, Stanford Uni-
versity, 2004.

[ABB+07] Ashiq Anjum, Peter Bloodsworth, Andrew Branson, Tamas Hauer,
Richard McClatchey, Kamran Munir, Dimtry Rogulin, and Jetendr
Shamdasani. The requirements for ontologies in medical data integra-
tion: A case study. In Proceedings of the 11th International Database
Engineering and Applications Symposium, 2007.

[ADB04] Jos Aarts, Hans Doorewaard, and Marc Berg. Understanding imple-
mentation: the case of a computerized physician order entry system
in a large dutch university medical center. Journal of the American
Medical Informatics Association, 11(3):207–216, June 2004.

[ADL+09] Sören Auer, Sebastian Dietzold, Jens Lehmann, Sebastian Hellmann,
and David Aumüller. Triplify: light-weight linked data publication from
relational databases. Proceedings of the 18th International World Wide
Web Conference, 2009.

[AFK+05] Gagan Aggarwal, Tomas Feder, Krishnaram Kenthapadi, Rajeev Mot-
wani, Rina Panigrahy, Dilys Thomas, and An Zhu. Approximation
algorithms for k-Anonymity. In Proceedings of the 10th International
Conference on Database Theory, 2005.

[AFMPdlF11] Mario Arias, Javier D. Fernández, Miguel A. Martínez-Prieto, and
Pablo de la Fuente. An empirical study of real-world SPARQL queries.
CoRR, abs/1103.5043, 2011.

[AMMH07] Daniel J. Abadi, Adam Marcus, Samuel Madden, and Katherine J.
Hollenbach. Scalable semantic web data management using vertical

143

CHAPTER 8: BIBLIOGRAPHY

partitioning. In Proceedings of the 33rd International Conference on
Very Large Data Bases, pages 411–422, 2007.

[APF+10] Gagan Aggarwal, Rina Panigrahy, Tomás Feder, Dilys Thomas, Krish-
naram Kenthapadi, Samir Khuller, and An Zhu. Achieving anonymity
via clustering. ACM Transactions on Algorithms, 6(3), 2010.

[BA05] Roberto J. Bayardo and Rakesh Agrawal. Data privacy through optimal
k-Anonymization. In Proceedings of the 21st International Conference
on Data Engineering, 2005.

[Bar07] Albert-László Barabási. Network medicine — from obesity to the “dis-
easome”. New England Journal of Medicine, 357(4):404–407, 2007.

[BB10] Cosmin Basca and Abraham Bernstein. Avalanche: putting the spirit
of the web back into semantic web querying. In Proceedings of the 9th
International Semantic Web Conference, 2010.

[BCGP04] Jesus Barrasa, Oscar Corcho, and Asuncion Gomez-Perez. R2O, an
extensible and semantically based database-to-ontology mapping lan-
guage. In Proceedings of the 2nd Workshop on Semantic Web and Data-
bases, 2004.

[BEF10] J. Bisbal, G. Engelbrecht, and A. Frangi. Archetype-based semantic
mediation: Incremental provisioning of data services. In Proceedings
of the 2010 IEEE 23rd International Symposium on Computer-Based
Medical Systems, 2010.

[BHJV08] Jürgen Bock, Peter Haase, Qiu Ji, and Raphael Volz. Benchmarking
OWL reasoners. In Proceedings of the 2008 Workshop on Advancing
Reasoning on the Web, 2008.

[Biz03] Christian Bizer. D2R map - a database to RDF mapping language.
In Proceedings of the 12th International World Wide Web Conference,
2003.

[Biz09] Christian Bizer. The emerging web of linked data. IEEE Intelligent
Systems, 24(5):87–92, October 2009.

[BLHL01] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web.
Scientific American, pages 28–37, may 2001.

[BLNT07] J. Bauckmann, U. Leser, F. Naumann, and V. Tietz. Efficiently de-
tecting inclusion dependencies. In Proceedings of the 23rd International
Conference on Data Engineering, 2007.

[BML+09] Richard L. Bradshaw, Susan Matney, Oren E. Livne, Bruce E. Bray,
Joyce A. Mitchell, and Scott P. Narus. Architecture of a federated
query engine for heterogeneous resources. In Proceedings of the AMIA
Annual Symposium, 2009.

144 BIBLIOGRAPHY

CHAPTER 8: BIBLIOGRAPHY

[BNT+08] François Belleau, Marc-Alexandre Nolin, Nicole Tourigny, Philippe
Rigault, and Jean Morissette. Bio2RDF: towards a mashup to build
bioinformatics knowledge systems. Journal of Biomedical Informatics,
41(5):706–716, October 2008.

[BPE+10] Khalid Belhajjame, Norman W. Paton, Suzanne M. Embury, Alvaro
A. A. Fernandes, and Cornelia Hedeler. Feedback-based annotation,
selection and refinement of schema mappings for dataspaces. In Pro-
ceedings of the 13th International Conference on Extending Database
Technology, 2010.

[BPF+11] Khalid Belhajjame, Norman W. Paton, Alvaro A. A. Fernandes, Cor-
nelia Hedeler, and Suzanne M. Embury. User feedback as a first class
citizen in information integration systems. In Proceedings of the 5th
Biennial Conference on Innovative Data Systems Research, 2011.

[Bre09] Frank Breitling. A standard transformation from XML to RDF via
XSLT. Astronomische Nachrichten, 7(7):4, 2009.

[BS09] Christian Bizer and Andreas Schultz. The Berlin SPARQL bench-
mark. International Journal on Semantic Web and Information Sys-
tems, 5(2):1–24, 2009.

[But08] Atul J. Butte. Translational bioinformatics: coming of age. Journal of
the American Medical Informatics Association, 15(6):709–714, Decem-
ber 2008.

[CCR] Continuity of Care Record (CCR) Standard. Website. Available online
at http://www.ccrstandard.com/; visited on July 1st 2012.

[CCSS07] R. Chirkova, D. Chen, F. Sadri, and T. J. Salo. Pay-as-you-go informa-
tion integration: The semantic model approach. Technical report, NC
State University, 2007.

[CDI] CDISC. Website. Available online at http://www.cdisc.org/; visited
on July 1st 2012.

[CdVFS08] Valentina Ciriani, Sabrina De Capitani di Vimercati, Sara Foresti, and
Pierangela Samarati. k-Anonymous data mining: A survey. In Privacy-
Preserving Data Mining, pages 105–136. Springer, 2008.

[CFM+09] Kei-Hoi Cheung, H. Robert Frost, M. Scott Marshall, Eric
Prud’hommeaux, Matthias Samwald, Jun Zhao, and Adrian Paschke.
A journey to semantic web query federation in the life sciences. BMC
Bioinformatics, 10(S-10):10, 2009.

[CRS+07] Michael J. Cafarella, Christopher Ré, Dan Suciu, Oren Etzioni, and
Michele Banko. Structured querying of web text: A technical chal-
lenge. In Proceedings of the 3rd Biennial Conference on Innovative
Data Systems Research, 2007.

BIBLIOGRAPHY 145

http://www.ccrstandard.com/
http://www.cdisc.org/

CHAPTER 8: BIBLIOGRAPHY

[CSF+07] M. K. Campbell, C. Snowdon, D. Francis, D. Elbourne, A.M. McDon-
ald, R. Knight, V. Entwistle, J. Garcia, I. Roberts, and A. Grant.
Recruitment to randomised trials: strategies for trial enrollment and
participation study. the STEPS study. Health Technology Assessment,
11(48):iii, ix–105, November 2007.

[CSRL01] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E.
Leiserson. Introduction to Algorithms. McGraw-Hill Higher Education,
2nd edition, 2001.

[CTS] Clinical and translational science awards: Home. Website. Available
online at http://ctsaweb.org/; visited on July 1st 2012.

[CVF+06] Dario Cerizza, Emanuele Della Valle, Doug Foxvog, Reto Krummen-
acher, and Martin Murth. Towards european patient summaries based
on triple space computing. In Proceedings of the 2006 European Con-
ference on eHealth, pages 143–154, 2006.

[DCtTdK11] Kathrin Dentler, Ronald Cornet, Annette ten Teije, and Nicolette
de Keizer. Comparison of reasoners for large ontologies in the OWL
2 EL profile. Semantic Web, 2(2):71–87, 2011.

[DDH08] Anish DasSarma, Xin Dong, and Alon Y. Halevy. Bootstrapping pay-
as-you-go data integration systems. In Proceedings of the 2008 ACM
SIGMOD International Conference on Management of Data, 2008.

[DE12] Fida K. Dankar and Khaled El Emam. The application of differen-
tial privacy to health data. In Proceedings of the 15th International
Conference on Extending Database Technology, 2012.

[DH07] Xin Dong and Alon Y. Halevy. Indexing dataspaces. In Proceedings of
the 2007 ACM SIGMOD International Conference on Management of
Data, 2007.

[DK08] J. Dokulil and J. Katreniakova. Navigation in RDF data. In Proceedings
of the 12th International Conference on Information Visualisation, July
2008.

[DLMT+10] Martin Dugas, Matthias Lange, Carsten Müller-Tidow, Paulus Kirch-
hof, and Hans-Ulrich Prokosch. Routine data from hospital information
systems can support patient recruitment for clinical studies. Clinical
Trials, 7(2):183–189, April 2010.

[DMM09] Vikrant G. Deshmukh, Stéphane M. Meystre, and Joyce A. Mitchell.
Evaluating the informatics for integrating biology and the bedside sys-
tem for clinical research. BMC Medical Research Methodology, 9(1):70,
2009.

[Don07] Xin Dong. Providing best-effort services in dataspace systems. PhD
thesis, University of Washington, Seattle, WA, USA, 2007.

146 BIBLIOGRAPHY

http://ctsaweb.org/

CHAPTER 8: BIBLIOGRAPHY

[DPA] Bundesbeauftragter für den Datenschutz und die Informationsfreiheit -
Data Protection Acts. Website. Available online at http://www.bfdi.
bund.de/EN/DataProtectionActs/DataProtectionActs_node.html;
visited on July 1st 2012.

[DS06] Jens-Peter Dittrich and Marcos Antonio Vaz Salles. iDM: a unified and
versatile data model for personal dataspace management. In Proceedings
of the 32nd International Conference on Very Large Data Bases, 2006.

[DW99] Ton DeWaal and Leon Willenborg. Information loss through global
recoding and local suppression. In Special issue on SDC 14, pages 17–
20. Netherlands Official Statistics, 1999.

[Dwo06] Cynthia Dwork. Differential privacy. In Proceedings of the 33rd Inter-
national Colloqium on Automata, Languages and Programming, 2006.

[EDI+09] Khaled El Emam, Fida Kamal Dankar, Romeo Issa, Elizabeth Jonker,
Daniel Amyot, Elise Cogo, Jean-Pierre Corriveau, Mark Walker, Sadrul
Chowdhury, Regis Vaillancourt, Tyson Roffey, and Jim Bottomley.
A globally optimal k-Anonymity method for the de-identification of
health data. Journal of the Amererican Medical Informatics Associa-
tion, 16(5):670–682, 2009.

[EGK+02] John Ellson, Emden Gansner, Lefteris Koutsofios, Stephen North, and
Gordon Woodhull. Graphviz - open source graph drawing tools. In
Graph Drawing, volume 2265 of Lecture Notes in Computer Science,
pages 594–597. Springer Berlin / Heidelberg, 2002.

[EJC+05] Peter J. Embi, Anil Jain, Jeffrey Clark, Susan Bizjack, Richard Hor-
nung, and Martin C. Harris. Effect of a clinical trial alert system
on physician participation in trial recruitment. Archives of Internal
Medicine, 165(19):2272–2277, October 2005.

[EKP09] Peter J. Embi, Stanley E. Kaufman, and Philip R. O. Payne. Biomedical
informatics and outcomes research: Enabling knowledge-driven health-
care. Circulation, 120(23), December 2009.

[Ema10] Khaled El Emam. Risk-based de-identification of health data. IEEE
Security & Privacy, 8(3):64–67, 2010.

[EP09] Peter J. Embi and Philip R. O. Payne. Clinical research informatics:
challenges, opportunities and definition for an emerging domain. Jour-
nal of the American Medical Informatics Association, 16(3):316–327,
June 2009.

[EPS08] Jérôme Euzenat, Axel Polleres, and François Scharffe. Processing ontol-
ogy alignments with SPARQL. In Proceedings of the 2008 International
Conference on Complex, Intelligent and Software Intensive Systems,
2008.

BIBLIOGRAPHY 147

http://www.bfdi.bund.de/EN/DataProtectionActs/DataProtectionActs_node.html
http://www.bfdi.bund.de/EN/DataProtectionActs/DataProtectionActs_node.html

CHAPTER 8: BIBLIOGRAPHY

[FBR+10] Isabel Fortier, Paul R Burton, Paula J Robson, Vincent Ferretti, Ju-
lian Little, Francois L’Heureux, Mylène Deschênes, Bartha M Knop-
pers, Dany Doiron, Joost C Keers, Pamela Linksted, Jennifer R Harris,
Geneviève Lachance, Catherine Boileau, Nancy L Pedersen, Carol M
Hamilton, Kristian Hveem, Marilyn J Borugian, Richard P Gallagher,
John McLaughlin, Louise Parker, John D Potter, John Gallacher,
Rudolf Kaaks, Bette Liu, Tim Sprosen, Anne Vilain, Susan A Atkinson,
Andrea Rengifo, Robin Morton, Andres Metspalu, H Erich Wichmann,
Mark Tremblay, Rex L Chisholm, Andrés Garcia-Montero, Hans Hil-
lege, Jan-Eric Litton, Lyle J Palmer, Markus Perola, Bruce H R Wolf-
fenbuttel, Leena Peltonen, and Thomas J Hudson. Quality, quantity
and harmony: the DataSHaPER approach to integrating data across
bioclinical studies. International Journal of Epidemiology, 39(5):1383–
1393, October 2010.

[FEHM08] Douglas B. Fridsma, Julie Evans, Smita Hastak, and Charles N. Mead.
The BRIDG project: a technical report. Journal of the American Med-
ical Informatics Association, 15(2):130–137, April 2008.

[Fei01] Manning Feinleib. A dictionary of epidemiology. American Journal of
Epidemiology, 154(1):93 –94, July 2001.

[FHM05] Michael Franklin, Alony Y. Halevy, and David Maier. From databases to
dataspaces: a new abstraction for information management. SIGMOD
Record, 34(4):27–33, December 2005.

[FM11] Pit Fender and Guido Moerkotte. A new, highly efficient, and easy to
implement top-down join enumeration algorithm. In Proceedings of the
27th International Conference on Data Engineering, 2011.

[Fre12] Andre Freitag. Effiziente Parallelisierung von Transformationswork-
flows in einer ontologiebasierten Integrationslösung für biomedizinis-
che Daten. Interdisciplinary project (IDP), Technische Universität
München, 2012. Supervised by Fabian Praßer.

[FW97] Charles P. Friedman and Jeremy Wyatt. Evaluation methods in medical
informatics. Springer, 1997.

[FWCY10] Benjamin C. M. Fung, Ke Wang, Rui Chen, and Philip S. Yu. Privacy-
preserving data publishing: A survey of recent developments. ACM
Computing Surveys, 42(4), 2010.

[Gar01] Simson L. Garfinkel. Database nation - the death of privacy in the 21th
century. O’Reilly, 2001.

[GC07] R. Ghawi and N. Cullot. Database-to-ontology mapping generation
for semantic interoperability. In Proceedings of the 3rd International
Workshop on Database Interoperability, 2007.

148 BIBLIOGRAPHY

CHAPTER 8: BIBLIOGRAPHY

[GCP] EMEA ICH Topic E 6 (R1) - guideline for good clinical practice. Web-
site. Available online at http://www.ema.europa.eu/docs/en_GB/
document_library/Scientific_guideline/2009/09/WC500002874.
pdf; visited on July 1st 2012.

[GCV+07] Kwang-Il Goh, Michael E. Cusick, David Valle, Barton Childs, Marc
Vidal, and Albert-László Barabási. The human disease network. Pro-
ceedings of the National Academy of Sciences, 104(21):8685 –8690, May
2007.

[GD05] Lise Getoor and Christopher P. Diehl. Link mining: a survey. ACM
SIGKDD Explorations Newsletter, 7(2):3–12, December 2005.

[GHKS08] Bernardo Cuenca Grau, Ian Horrocks, Yevgeny Kazakov, and Ulrike
Sattler. Modular reuse of ontologies: Theory and practice. Journal of
Artificial Intelligence Research, 31:273–318, 2008.

[GMF+03] John H. Gennari, Mark A. Musen, Ray W. Fergerson, William E.
Grosso, Monica Crubézy, Henrik Eriksson, Natalya F. Noy, and Sam-
son W. Tu. The evolution of protégé: an environment for knowledge-
based systems development. International Journal of Human-Computer
Studies, 58(1):89–123, January 2003.

[GNTT10] Jeremy Goecks, Anton Nekrutenko, James Taylor, and The Galaxy
Team. Galaxy: a comprehensive approach for supporting accessible, re-
producible, and transparent computational research in the life sciences.
Genome Biology, 11(8):R86, August 2010.

[GPH04] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. An evaluation of knowl-
edge base systems for large OWL datasets. In Proceedings of the 3rd
International Semantic Web Conference, 2004.

[GPH05] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. LUBM: A benchmark for
OWL knowledge base systems. Journal of Web Semantics, 3(2-3):158–
182, October 2005.

[GRD] GRDDL use cases: Scenarios of extracting RDF data from XML
documents. Website. Available online at http://www.w3.org/TR/
grddl-scenarios/; visited on July 1st 2012.

[Gru93] Thomas R. Gruber. A translation approach to portable ontology spec-
ification. Knowledge Acquisition, 5(2):199–220, June 1993.

[GS11] Olaf Görlitz and Steffen Staab. SPLENDID: SPARQL Endpoint Fed-
eration Exploiting VOID Descriptions. In Proceedings of the 2nd Inter-
national Workshop on Consuming Linked Data, 2011.

[GTH06] Tom Gardiner, Dmitry Tsarkov, and Ian Horrocks. Framework for an
automated comparison of description logic reasoners. In Proceedings of
the 5th International Semantic Web Conference, 2006.

BIBLIOGRAPHY 149

http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500002874.pdf
http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500002874.pdf
http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500002874.pdf
http://www.w3.org/TR/grddl-scenarios/
http://www.w3.org/TR/grddl-scenarios/

CHAPTER 8: BIBLIOGRAPHY

[Gut84] Antonin Guttman. R-trees: A dynamic index structure for spatial
searching. In Proceedings of the 6th International Conference on Man-
agement of Data, 1984.

[Hal01] Alon Y. Halevy. Answering queries using views: A survey. VLDB
Journal, 10(4):270–294, 2001.

[HAP] Free and open-source HL7 java parser and library. Website. Available
online at http://hl7api.sourceforge.net/; visited on July 1st 2012.

[HAR11] Jiewen Huang, Daniel Abadi, and Kun Ren. Scalable SPARQL querying
of large RDF graphs. In Proceedings of the 37th International Confer-
ence on Very Large Data Bases, 2011.

[HB11] Tom Heath and Christian Bizer. Linked Data: Evolving the Web into a
Global Data Space. Synthesis Lectures on the Semantic Web. Morgan
& Claypool Publishers, 2011.

[HBF09] Olaf Hartig, Christian Bizer, and Johann Christoph Freytag. Executing
SPARQL queries over the web of linked data. In Proceedings of the 8th
International Semantic Web Conference, pages 293–309, 2009.

[HCL] Semantic Web Health Care and Life Sciences (HCLS) Interest Group.
Website. Available online at http://www.w3.org/2001/sw/hcls/; vis-
ited on July 1st 2012.

[HER] HermiT reasoner: Home. Website. Available online at http://
hermit-reasoner.com/; visited on July 1st 2012.

[HFM06] Alon Y. Halevy, Michael J. Franklin, and David Maier. Principles of
dataspace systems. In Proceedings of the 25th ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, 2006.

[HHBN10] Shan He, John F. Hurdle, Jeffrey R. Botkin, and Scott P. Narus. Inte-
grating a federated healthcare data query platform with electronic IRB
information systems. In Proceedings of the AMIA Annual Symposium,
volume 2010, pages 291–295, 2010.

[HHK+10] Andreas Harth, Katja Hose, Marcel Karnstedt, Axel Polleres, Kai-Uwe
Sattler, and Jürgen Umbrich. Data summaries for on-demand queries
over linked data. In Proceedings of the 19th International World Wide
Web Conference, 2010.

[HHUD07] Aidan Hogan, Andreas Harth, Jürgen Umrich, and Stefan Decker. To-
wards a scalable search and query engine for the web. In Proceedings of
the 16th International World Wide Web Conference, 2007.

[HKK+07] Katja Hose, Marcel Karnstedt, Anke Koch, Kai-Uwe Sattler, and Daniel
Zinn. Processing rank-aware queries in P2P systems. In Proceedings
of the 2005/2006 International Workshop on Databases, Information
Systems, and Peer-to-Peer Computing, 2007.

150 BIBLIOGRAPHY

http://hl7api.sourceforge.net/
http://www.w3.org/2001/sw/hcls/
http://hermit-reasoner.com/
http://hermit-reasoner.com/

CHAPTER 8: BIBLIOGRAPHY

[HKL+09] Oktie Hassanzadeh, Anastasios Kementsietsidis, Lipyeow Lim, Renée J.
Miller, and Min Wang. Linkedct: A linked data space for clinical trials.
CoRR, abs/0908.0567, 2009.

[HL7] About health level seven international. Website. Available online at
http://www.hl7.org/about/index.cfm; visited on July 1st 2012.

[HMRR08] Bill Howe, David Maier, Nicolas Rayner, and James Rucker. Quarrying
dataspaces: Schemaless profiling of unfamiliar information sources. In
Proceedings of the 24th International Conference on Data Engineering,
2008.

[HSR+08] Nils Homer, Szabolcs Szelinger, Margot Redman, David Duggan, Waib-
hav Tembe, Jill Muehling, John V. Pearson, Dietrich A. Stephan,
Stanely F. Nelson, and David W. Craig. Resolving individuals con-
tributing trace amounts of DNA to highly complex mixtures using
high-density SNP genotyping microarrays. PLoS Genetics, 4(8), Au-
gust 2008.

[IJB11] Robert Isele, Anja Jentzsch, and Christian Bizer. Efficient multidimen-
sional blocking for link discovery without losing recall. In Proceedings
of the 14th International Workshop on the Web and Databases, 2011.

[JB04] Dongwon Jeong and Doo-Kwon Baik. Incremental data integration
based on hierarchical metadata registry with data visibility. Information
Sciences, 162(3-4):147–181, June 2004.

[JDG07] Alpa Jain, AnHai Doan, and Luis Gravano. Sql queries over unstruc-
tured text databases. In Proceedings of the 23rd International Confer-
ence on Data Engineering, 2007.

[JEN] Apache jena. Website. Available online at http://jena.apache.org/;
visited on July 1st 2012.

[JFH08] Shawn R. Jeffery, Michael J. Franklin, and Alon Y. Halevy. Pay-as-you-
go user feedback for dataspace systems. In Proceedings of the 2008 ACM
SIGMOD International Conference on Management of Data, 2008.

[JIB10] Anja Jentzsch, Robert Isele, and Chris Bizer. Silk - generating RDF
links while publishing or consuming linked data. In Proceedings of the
9th International Semantic Web Conference, November 2010.

[JS12] Priya Jayaratna and Kamran Sartipi. HL7 v3 message extraction using
semantic web techniques. International Journal of Knowledge Engi-
neering and Data Mining, 2(1):89–115, 2012.

[Kas11] Vipul Kashyap. Semantic web and translational medicine : Cre-
ating the next generation healthcare enterprise - asian hospital
and healthcare management. Website, 2011. Available online
at http://www.asianhhm.com/information_technology/semantic_
web_translational_medicine.htm; visited on July 1st 2012.

BIBLIOGRAPHY 151

http://www.hl7.org/about/index.cfm
http://jena.apache.org/
http://www.asianhhm.com/information_technology/semantic_web_translational_medicine.htm
http://www.asianhhm.com/information_technology/semantic_web_translational_medicine.htm

CHAPTER 8: BIBLIOGRAPHY

[KB09] Sarah Killcoyne and John Boyle. Managing chaos: lessons learned devel-
oping software in the life sciences. Computing in Science & Engineering,
11(6):20–29, November 2009.

[KEG] KEGG: Kyoto Encyclopedia of Genes and Genomes. Website. Available
online at http://www.genome.jp/kegg/; visited on July 1st 2012.

[KG00] M. Kanehisa and S. Goto. KEGG: kyoto encyclopedia of genes and
genomes. Nucleic Acids Research, 28(1):27–30, January 2000.

[KLK12] Yong-Bin Kang, Yuan-Fang Li, and Shonali Krishnaswamy. A rigorous
characterization of reasoning performance – a tale of four reasoners. In
Proceedings of the 2012 OWL Reasoner Evaluation Workshop, 2012.

[Kos00] Donald Kossmann. The state of the art in distributed query processing.
ACM Computing Surveys, 32(4):422–469, 2000.

[KPE+12a] Florian Kohlmayer1, Fabian Prasser1, Claudia Eckert, Alfons Kemper,
and Klaus A. Kuhn. Flash: efficient, stable and optimal k-Anonymity.
In Proceedings of the 4th IEEE International Conference on Information
Privacy, Security, Risk and Trust, 2012. .

[KPE+12b] Florian Kohlmayer1, Fabian Prasser1, Claudia Eckert, Alfons Kemper,
and Klaus A. Kuhn. Highly efficient optimal k-Anonymity for biomedi-
cal datasets. In Proceedings of the 25th IEEE International Symposium
on Computer-Based Medical Systems, 2012.

[KRA06] Jan Kunze, Thomas Riechert, and Sören Auer. Eine schnittstelle für
arztpraxisdaten mittels einer ontologie auf basis von HL7 version 3. In
Tagungsband XML-Tage, September 2006.

[KSA+08] Stefan Krompass, Andreas Scholz, Martina-Cezara Albutiu, Harumi A.
Kuno, Janet L. Wiener, Umeshwar Dayal, and Alfons Kemper. Qual-
ity of service-enabled management of database workloads. IEEE Data
Engineering Bulletin, 31(1):20–27, 2008.

[KSKR05] Richard Kuntschke, Bernhard Stegmaier, Alfons Kemper, and Angelika
Reiser. StreamGlobe: Processing and sharing data streams in grid-
based P2P infrastructures. In VLDB, 2005.

[Kuc11] Jan Kucera. Implementierung eines leichtgewichtigen Werkzeugs für die
Bearbeitung verteilter RDF Datenätze. Interdisciplinary project (IDP),
Technische Universität München, 2011. Supervised by Fabian Praßer.

[Kuh11] Martin Kuhn. Implementierung einer generischen Naviagationskompo-
nente für verteilte RDF Datenquellen. Interdisciplinary project (IDP),
Technische Universität München, 2011. Supervised by Fabian Praßer.

[Laz02] Yuri Lazebnik. Can a biologist fix a radio?–or, what i learned while
studying apoptosis. Cancer Cell, 2(3):179–182, September 2002.

1Both authors contributed equally to this work

152 BIBLIOGRAPHY

http://www.genome.jp/kegg/

CHAPTER 8: BIBLIOGRAPHY

[LDR05] Kristen LeFevre, David J. DeWitt, and Raghu Ramakrishnan. Incog-
nito: Efficient full-domain k-Anonymity. In Proceedings of the 2005
ACM SIGMOD International Conference on Management of Data,
2005.

[LDW05] Man Li, Xiaoyong Du, and Shan Wang. A semi-automatic ontology
acquisition method for the semantic web. In Advances in Web-Age
Information Management, volume 3739 of Lecture Notes in Computer
Science, pages 209–220. Springer Berlin / Heidelberg, 2005.

[LEL97] Scott T. Leutenegger, J. M. Edgington, and Mario A. Lopez. STR: A
simple and efficient algorithm for R-tree packing. In Proceedings of the
13th International Conference on Data Engineering, 1997.

[LH10] Yingjie Li and Jeff Heflin. Using reformulation trees to optimize queries
over distributed heterogeneous sources. In Proceedings of the 9th Inter-
national Semantic Web Conference, 2010.

[LIN] Linked data - design issues. Website. Available online at http://www.
w3.org/DesignIssues/LinkedData.html; visited on July 1st 2012.

[LK04] Richard Lenz and Klaus A. Kuhn. Towards a continuous evolution and
adaptation of information systems in healthcare. International Journal
of Medical Informatics, 73(1):75–89, February 2004.

[LLV07] Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. t-
Closeness: Privacy beyond k-Anonymity and l-Diversity. In Proceedings
of the 23rd Interational Conference on Data Engineering, 2007.

[LMM+05] S. Liu, Wei Ma, R. Moore, V. Ganesan, and S. Nelson. RxNorm: pre-
scription for electronic drug information exchange. IT Professional,
7(5), October 2005.

[LMMS+07] Brenton Louie, Peter Mork, Fernando Martin-Sanchez, Alon Y. Halevy,
and Peter Tarczy-Hornoch. Data integration and genomic medicine.
Journal of Biomedical Informatics, 40(1):5–16, February 2007.

[LQS11] Ninghui Li, Wahbeh Qardaji, and Dong Su. Provably private data
anonymization: Or, k-Anonymity meets differential privacy. Technical
Report TR-2010-27, Purdue University, 2011.

[LT10] Günter Ladwig and Thanh Tran. Linked data query processing strate-
gies. In Proceedings of the 9th International Semantic Web Conference,
2010.

[LW09a] Andreas Langegger and Wolfram Woss. RDFStats - an extensible RDF
statistics generator and library. In Proceedings of the 2009 20th Inter-
national Workshop on Database and Expert Systems Application, 2009.

[LW09b] Andreas Langegger and Wolfram Wöß. XLWrap — querying and inte-
grating arbitrary spreadsheets with SPARQL. In Proceedings of the 8th
International Semantic Web Conference, 2009.

BIBLIOGRAPHY 153

http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html

CHAPTER 8: BIBLIOGRAPHY

[LWB08] Andreas Langegger, Wolfram Wöß, and Martin Blöchl. A semantic web
middleware for virtual data integration on the web. In Proceedings of
the 5th European Semantic Web Conference, 2008.

[LYH12] Yingjie Li, Yang Yu, and Jeff Heflin. Evaluating reasoners under realis-
tic semantic web conditions. In Proceedings of the 2012 OWL Reasoner
Evaluation Workshop, 2012.

[MBG+09] Konstantinos Makris, Nikos Bikakis, Nektarios Gioldasis, Chrisa Tsi-
naraki, and Stavros Christodoulakis. Towards a mediator based on
OWL and SPARQL. In Proceedings of the 2nd World Summit on the
Knowledge Society, 2009.

[MFS+05] J. Madadhain, D. Fisher, P. Smyth, S. White, and Y. B. Boey. Analysis
and visualization of network data using JUNG. Journal of Statistical
Software, 10:1–35, 2005.

[Mil06] Jerry L. Miller. The EHR solution to clinical trial recruitment in physi-
cian groups. Health Management Technology, 27(12):22–25, December
2006.

[MJC+07] Jayant Madhavan, Shawn R. Jeffery, Shirley Cohen, Xin (Luna) Dong,
David Ko, Cong Yu, and Alon Halevy. Web-scale data integration: You
can only afford to pay as you go. In Proceedings of the 3rd Biennial
Conference on Innovative Data Systems Research, 2007.

[MKGV07] Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthu-
ramakrishnan Venkitasubramaniam. l-Diversity: Privacy beyond k-
Anonymity. ACM Transactions on Knowledge Discovery from Data,
1(1), 2007.

[MKM09] Matthias Löbe Magnus, Knuth, and Ronald Mücke. TIM: A semantic
web application for the specification of metadata items in clinical re-
search. In Scott M. Marshall, Albert Burger, Paolo Romano, Adrian
Paschke, and Andrea Splendiani, editors, Proceedings of the Semantic
Web Applications and Tools for Life Sciences Workshop, volume 559,
2009.

[MM04] Frank Manola and Erric Miller. RDF primer. Website, 2004. Avail-
able online at http://www.w3.org/TR/rdf-primer/; visited on July
1st 2012.

[MPB+09] James P. McCusker, Joshua A. Phillips, Alejandra Beltrán, Anthony
Finkelstein, and Michael Krauthammer. Semantic web data warehous-
ing for caGrid. BMC Bioinformatics, 10(Suppl 10):S2, 2009.

[MPL07] Juha Muilu, Leena Peltonen, and Jan-Eric Litton. The federated
database–a basis for biobank-based post-genome studies, integrating
phenome and genome data from 600,000 twin pairs in europe. Euro-
pean Journal of Human Genetics, 15(7):718–723, July 2007.

154 BIBLIOGRAPHY

http://www.w3.org/TR/rdf-primer/

CHAPTER 8: BIBLIOGRAPHY

[MS05] B. Motik and R. Studer. Kaon2 - a scalable reasoning tool for the seman-
tic web. In Proceedings of the 2nd European Semantic Web Conference,
2005.

[Mus08] Adnan Muslimovic. Design and implementation of a dataspace model
for e-science applications. Master’s thesis, Universität Wien, 2008.

[MW04] Adam Meyerson and Ryan Williams. On the complexity of optimal
k-Anonymity. In Proceedings of the 32rd ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, 2004.

[MWM+10] Shawn N. Murphy, Griffin Weber, Michael Mendis, Vivian Gainer,
Henry C. Chueh, Susanne Churchill, and Isaac S. Kohane. Serving
the enterprise and beyond with informatics for integrating biology and
the bedside (i2b2). Journal of the American Medical Informatics Asso-
ciation, 17(2):124–130, April 2010.

[MZV+09] Parsa Mirhaji, Min Zhu, Mattew Vagnoni, Elmer V. Bernstam, Jiajie
Zhang, and Jack W. Smith. Ontology driven integration platform for
clinical and translational research. BMC Bioinformatics, 10(S-2), 2009.

[N+07] Mehmet Ercan Nergiz et al. Hiding the presence of individuals from
shared databases. In Proceedings of the 2007 ACM SIGMOD Interna-
tional Conference on Management of Data, 2007.

[NBHH08] Andrew Newman, Chris Bouton, Jane Hunter, and Jane Hunter. A
scale-out RDF molecule store for distributed processing of biomedical
data. In Proceedings of the 2008 Semantic Web for Health Care and
Life Sciences Workshop, 2008.

[ND08] Wang Ning and Xu De. Resource summary for pay-as-you-go dataspace
systems. In Proceedings of the 9th International Conference on Signal
Processing, 2008.

[NIH] Translational research - overview. Website. Available on-
line at http://commonfund.nih.gov/clinicalresearch/
overview-translational.aspx; visited on July 1st 2012.

[NM11] Thomas Neumann and Guido Moerkotte. Characteristic sets: Accurate
cardinality estimation for RDF queries with multiple joins. In Proceed-
ings of the 27th International Conference on Data Engineering, 2011.

[NMC+99] P. M. Nadkarni, L. Marenco, R. Chen, E. Skoufos, G. Shepherd, and
P. Miller. Organization of heterogeneous scientific data using the
EAV/CR representation. Journal of the American Medical Informatics
Association, 6(6):478–493, December 1999.

[NS08] Arvind Narayanan and Vitaly Shmatikov. Robust de-anonymization of
large sparse datasets. In Proceedings of the 29th IEEE Symposium on
Security and Privacy, 2008.

BIBLIOGRAPHY 155

http://commonfund.nih.gov/clinicalresearch/overview-translational.aspx
http://commonfund.nih.gov/clinicalresearch/overview-translational.aspx

CHAPTER 8: BIBLIOGRAPHY

[NW09] Thomas Neumann and Gerhard Weikum. Scalable join processing on
very large RDF graphs. In Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, 2009.

[NW10] Thomas Neumann and Gerhard Weikum. The RDF-3X engine for scal-
able management of RDF data. VLDB Journal, 19(1):91–113, 2010.

[ODC+08] Eyal Oren, Renaud Delbru, Michele Catasta, Richard Cyganiak, Hol-
ger Stenzhorn, and Giovanni Tummarello. Sindice.com: a document-
oriented lookup index for open linked data. International Journal of
Metadata, Semantics and Ontologies, 3:37–52, November 2008.

[ODD06] Eyal Oren, Renaud Delbru, and Stefan Decker. Extending faceted nav-
igation for RDF data. In Proceedings of the 5th International Semantic
Web Conference, 2006.

[OK07] Christian Ohmann and Wolfgang Kuchinke. Meeting the challenges of
patient recruitment: A role for electronic health records. International
Journal of Pharmaceutical Medicine, 21(4):263–270, 2007.

[OLHP+10] Kristian Ovaska, Marko Laakso, Saija Haapa-Paananen, Riku Louhimo,
Ping Chen, Viljami Aittomäki, Erkka Valo, Javier Núñez-Fontarnau,
Ville Rantanen, Sirkku Karinen, Kari Nousiainen, Anna-Maria
Lahesmaa-Korpinen, Minna Miettinen, Lilli Saarinen, Pekka Kohonen,
Jianmin Wu, Jukka Westermarck, and Sampsa Hautaniemi. Large-scale
data integration framework provides a comprehensive view on glioblas-
toma multiforme. Genome Medicine, 2(9):65, September 2010.

[OMBB+12] Lucila Ohno-Machado, Vineet Bafna, Aziz A Boxwala, Brian E Chap-
man, Wendy W Chapman, Kamalika Chaudhuri, Michele E Day,
Claudiu Farcas, Nathaniel D Heintzman, Xiaoqian Jiang, Hyeoneui
Kim, Jihoon Kim, Michael E Matheny, Frederic S Resnic, and Staal A
Vinterbo. iDASH: integrating data for analysis, anonymization, and
sharing. Journal of the American Medical Informatics Association,
19(2):196–201, April 2012.

[OMI] OMIM home. Website. Available online at http://www.ncbi.nlm.nih.
gov/omim; visited on July 1st 2012.

[OWLa] OWL web ontology language overview. Website. Available online at
http://www.w3.org/TR/owl-features/; visited on July 1st 2012.

[OWLb] OWL 2 Web Ontology Document Overview. Website. Available online
at http://www.w3.org/TR/owl2-overview/; visited on July 1st 2012.

[OWLc] OWLIM: Ontotext. Website. Available online at http://www.
ontotext.com/owlim/; visited on July 1st 2012.

[PAG09] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and
complexity of SPARQL. ACM Transactions on Database Systems,
34(3), September 2009.

156 BIBLIOGRAPHY

http://www.ncbi.nlm.nih.gov/omim
http://www.ncbi.nlm.nih.gov/omim
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl2-overview/
http://www.ontotext.com/owlim/
http://www.ontotext.com/owlim/

CHAPTER 8: BIBLIOGRAPHY

[PBS+10] Philip R. O. Payne, Tara B. Borlawsky, William Stephens, Matthew C.
Barrett, Tri Nguyen-Pham, and Andrew W. Greaves. The TRITON
project: Design and implementation of an integrative translational re-
search information management platform. AMIA Annual Symposium
Proceedings, 2010:617–621, 2010.

[PEL] Pellet: OWL 2 reasoner for java. Website. Available online at http:
//clarkparsia.com/pellet/; visited on July 1st 2012.

[PES09] Philip R. O. Payne, Peter J. Embi, and Chandan K. Sen. Translational
informatics: enabling high-throughput research paradigms. Physiologi-
cal Genomics, 39(3):131–140, November 2009.

[PKK12] Fabian Prasser, Alfons Kemper, and Klaus A. Kuhn. Efficient dis-
tributed query processing for autonomous RDF databases. In Pro-
ceedings of the 15th International Conference on Extending Database
Technology, 2012.

[PKKK12] Fabian Prasser, Florian Kohlmayer, Alfons Kemper, and Klaus A.
Kuhn. A generic transformation of HL7 messages into the Resource
Description Framework data model. In GI-Jahrestagung, LNI, 2012.

[PKS+10] Nicoleta Preda, Gjergji Kasneci, Fabian M. Suchanek, Thomas Neu-
mann, Wenjun Yuan, and Gerhard Weikum. Active knowledge: dynam-
ically enriching RDF knowledge bases by web services. In Proceedings
of the 2010 ACM SIGMOD International Conference on Management
of Data, 2010.

[PRO] Health level seven. Website. Available online at http://protege.
stanford.edu/ontologies/HL7RIM/; visited on July 1st 2012.

[PS08] Eric Prud’hommeaux and Andy Seaborne. SPARQL query language
for RDF. Website, 2008. Available online at http://www.w3.org/TR/
rdf-sparql-query/; visited on July 1st 2012.

[PV11] Francois Picalausa and Stijn Vansummeren. What are real SPARQL
queries like? In Proceedings of the 3rd International Workshop on Se-
mantic Web Information Management, 2011.

[PVS10] E. D. Perakslis, J. VanDam, and S. Szalma. How informatics can po-
tentiate precompetitive open-source collaboration to jump-start drug
discovery and development. Clinical pharmacology and therapeutics,
87(5):614–616, May 2010.

[PWL+11a] Fabian Prasser, Sebastian H. R. Wurst, Gregor Lamla, Alfons Kem-
per, and Klaus A. Kuhn. Inkrementelle ontologiebasierte informa-
tionsintegration für die translationale medizinische forschung. In GI-
Jahrestagung, LNI, 2011.

BIBLIOGRAPHY 157

http://clarkparsia.com/pellet/
http://clarkparsia.com/pellet/
http://protege.stanford.edu/ontologies/HL7RIM/
http://protege.stanford.edu/ontologies/HL7RIM/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/

CHAPTER 8: BIBLIOGRAPHY

[PWL+11b] Fabian Prasser, Sebastian H. R. Wurst, Gregor Lamla, Florian
Kohlmayer, Rainer Blaser, Dominik Schmelcher, Bernd Vögele, and
Klaus A. Kuhn. Informatics and translational medical research: chal-
lenges and developments. it - Information Technology, 53(5):217–226,
2011.

[QL08] Bastian Quilitz and Ulf Leser. Querying distributed RDF Data sources
with SPARQL. In Proceedings of the 5th European Semantic Web Con-
ference, 2008.

[Qua07] Dennis Quan. Improving life sciences information retrieval using se-
mantic web technology. Briefings in Bioinformatics, 8(3):172–182, May
2007.

[RCB+07] Alan Ruttenberg, Tim Clark, William Bug, Matthias Samwald, Olivier
Bodenreider, Helen Chen, Donald Doherty, Kerstin Forsberg, Yong Gao,
Vipul Kashyap, June Kinoshita, Joanne Luciano, M Scott Marshall,
Chimezie Ogbuji, Jonathan Rees, Susie Stephens, Gwendolyn T Wong,
Elizabeth Wu, Davide Zaccagnini, Tonya Hongsermeier, Eric Neumann,
Ivan Herman, and Kei-Hoi Cheung. Advancing translational research
with the semantic web. BMC Bioinformatics, 8(Suppl 3):S2, 2007.

[RDF] RDF vocabulary description language 1.0: RDF schema. Website.
Available online at http://www.w3.org/TR/rdf-schema/; visited on
July 1st 2012.

[REJ] Rej. Website. Available online at http://infinitesque.net/
projects/Legere/components/Rej/; visited on July 1st 2012.

[RGP06] Jesús Barrasa Rodriguez and Asunción Gómez-Pérez. Upgrading re-
lational legacy data to the semantic web. In Proceedings of the 15th
International World Wide Web Conference, 2006.

[RIF] RIF overview. Website. Available online at http://www.w3.org/TR/
rif-overview/; visited on July 1st 2012.

[RPB+08] D. M. Roden, J. M. Pulley, M. A. Basford, G. R. Bernard, E. W.
Clayton, J. R. Balser, and D. R. Masys. Development of a large-scale
de-identified DNA biobank to enable personalized medicine. Clinical
Pharmacology and Therapeutics, 84(3):362–369, September 2008.

[RTCS10] Jessica Ross, Samson W. Tu, Simona Carini, and Ida Sim. Analysis of
eligibility criteria complexity in clinical trials. Proceedings of the AMIA
Summits on Translational Science, 2010:46–50, March 2010.

[RU93] Raghu Ramakrishnan and Jeffrey D. Ullman. A survey of research on
deductive database systems. Journal of Logic Programming, 23:125–
149, 1993.

158 BIBLIOGRAPHY

http://www.w3.org/TR/rdf-schema/
http://infinitesque.net/projects/Legere/components/Rej/
http://infinitesque.net/projects/Legere/components/Rej/
http://www.w3.org/TR/rif-overview/
http://www.w3.org/TR/rif-overview/

CHAPTER 8: BIBLIOGRAPHY

[Sam01] Pierangela Samarati. Protecting respondents’ identities in microdata
release. IEEE Transactions on Knowledge and Data Engineering,
13(6):1010–1027, 2001.

[Sar10] Indra N. Sarkar. Biomedical informatics and translational medicine.
Journal of translational medicine, 8:22, 2010.

[Sch09] Klaus-Benedikt Schultis. Extraktion von Informationen aus HL7-
Nachrichtenströmen. Interdisciplinary project (IDP), Technische Uni-
versität München, 2009. Supervised by Fabian Praßer.

[SCT+10] Ida Sim, Simona Carini, Samson Tu, Rob Wynden, Brad H. Pollock,
Shamim A. Mollah, Davera Gabriel, Herbert K. Hagler, Richard H.
Scheuermann, Harold P. Lehmann, Knut M. Wittkowski, Meredith
Nahm, and Suzanne Bakken. The human studies database project:
Federating human studies design data using the ontology of clinical
research. Proceedings of the 2010 AMIA Summits on Translational Sci-
ence, 2010:51–55, March 2010.

[SCY+07] Andrew K. Smith, Kei-Hoi Cheung, Kevin Y. Yip, Martin Schultz, and
Mark B. Gerstein. LinkHub: a semantic web system that facilitates
cross-database queries and information retrieval in proteomics. BMC
Bioinformatics, 8(Suppl 3):S5, 2007.

[SDB10] Marcos Antonio Vaz Salles, Jens Dittrich, and Lukas Blunschi. Inten-
sional associations in dataspaces. In Proceedings of the 26th Interna-
tional Conference on Data Engineering, 2010.

[SGH+11] Michael Schmidt, Olaf Görlitz, Peter Haase, Günter Ladwig, Andreas
Schwarte, and Thanh Tran. FedBench: A benchmark suite for federated
semantic data query processing. In Proceedings of the 10th International
Semantic Web Conference, 2011.

[SGK+08] Lefteris Sidirourgos, Romulo Goncalves, Martin L. Kersten, Niels Nes,
and Stefan Manegold. Column-store support for rdf data management:
not all swans are white. In Proceedings of the 34th International Con-
ference on Very Large Data Bases, 2008.

[SHH+11] Andreas Schwarte, Peter Haase, Katja Hose, Ralf Schenkel, and Michael
Schmidt. FedX: Optimization techniques for federated query processing
on linked data. In Proceedings of the 10th International Semantic Web
Conference, 2011.

[SHLP09] Michael Schmidt, Thomas Hornung, Georg Lausen, and Christoph
Pinkel. SP2Bench: A sparql performance benchmark. In Proceedings
of the 25th International Conference on Data Engineering, 2009.

[SHX+05] Sohrab Shah, Yong Huang, Tao Xu, Macaire Yuen, John Ling, and
Francis B. F. Ouellette. Atlas - a data warehouse for integrative bioin-
formatics. BMC Bioinformatics, 6(1):34, 2005.

BIBLIOGRAPHY 159

CHAPTER 8: BIBLIOGRAPHY

[SIG] SIGAR API (System information gatherer and reporter) | hyperic. Web-
site. Available online at http://www.hyperic.com/products/sigar;
visited on July 1st 2012.

[SIL] The SILK project: Semantic inferencing on large knowledge. Website.
Available online at http://silk.semwebcentral.org/; visited on July
1st 2012.

[SIM] Simbioms - home. Website. Available online at http://simbioms.org/;
visited on July 1st 2012.

[SJB+11] Matthias Samwald, Anja Jentzsch, Chritopher Bouton, Claus Stie
Kallesøe, Egon Willighagen, Janos Hajagos, Scott M. Marshall,
Eric Prud’hommeaux, Oktie Hassenzadeh, Elgar Pichler, and Susie
Stephens. Linked open drug data for pharmaceutical research and de-
velopment. Journal of Cheminformatics, 3:19, May 2011.

[SKBK01] Konrad Stocker, Donald Kossmann, Reinhard Braumandl, and Alfons
Kemper. Integrating semi-join-reducers into state of the art query pro-
cessors. In Proceedings of the 17th International Conference on Data
Engineering, 2001.

[SKKP10] Sándor Szalma, Venkata Koka, Tatiana Khasanova, and Eric D. Perak-
slis. Effective knowledge management in translational medicine. Journal
of Translational Medicine, 8(1):68, July 2010.

[SL90] Amit P. Sheth and James A. Larson. Federated database systems for
managing distributed, heterogeneous, and autonomous databases. ACM
Computing Surveys, 22(3):183–236, September 1990.

[SPA] SPARQL 1.1 federation extensions. Website. Available online at http:
//www.w3.org/TR/sparql11-federated-query/; visited on July 1st
2012.

[SPI] SPIN - SPARQL inferencing notation. Website. Available online at
http://spinrdf.org/; visited on July 1st 2012.

[SR06] Julian Seidenberg and Alan L. Rector. Web ontology segmentation:
analysis, classification and use. In Proceedings of the 15th International
World Wibe Web Conference, 2006.

[SS98] Pierangela Samarati and Latanya Sweeney. Generalizing data to pro-
vide anonymity when disclosing information. In Proceedings of the 17th
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Data-
base Systems, 1998.

[SS08] Simon Schenk and Steffen Staab. Networked graphs: a declarative
mechanism for SPARQL rules, SPARQL views and RDF data integra-
tion on the web. In Proceedings of the 17th International World Wide
Web Conference, 2008.

160 BIBLIOGRAPHY

http://www.hyperic.com/products/sigar
http://silk.semwebcentral.org/
http://simbioms.org/
http://www.w3.org/TR/sparql11-federated-query/
http://www.w3.org/TR/sparql11-federated-query/
http://spinrdf.org/

CHAPTER 8: BIBLIOGRAPHY

[Str11] Adrian Streitz. Übersicht über vorhandene Ansätzen zur Transforma-
tion relationaler Daten zum Zwecke der ontologiebasierten Integration.
Interdisciplinary project (IDP), Technische Universität München, 2011.
Supervised by Fabian Praßer.

[SVHB04] Heiner Stuckenschmidt, Richard Vdovjak, Geert-Jan Houben, and Jeen
Broekstra. Index structures and algorithms for querying distributed
RDF repositories. In Proceedings of the 13th International World Wide
Web Conference, 2004.

[Swe97] Latanya Sweeney. Datafly: A system for providing anonymity in med-
ical data. In Proc of the 11th International Conference on Database
Security, 1997.

[Swe01] Latanya Sweeney. Computational Disclosure Control - A Primer on
Data Privacy Protection. PhD thesis, Massachusetts Institute of Tech-
nology, 2001.

[Swe02] Latanya Sweeney. Achieving k-Anonymity privacy protection using
generalization and suppression. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, 10(5):571–588, 2002.

[TAJ+10] Can Türker, Fuat Akal, Dieter Joho, Christian Panse, Simon Barkow-
Oesterreicher, Hubert Rehrauer, and Ralph Schlapbach. B-Fabric: the
swiss army knife for life sciences. In Proceedings of the 13th International
Conference on Extending Database Technology, 2010.

[TOP] TopQuadrant | products | TopBraid composer. Website. Available on-
line at http://www.topquadrant.com/products/TB_Composer.html;
visited on July 1st 2012.

[TPC+11] Samson W. Tu, Mor Peleg, Simona Carini, Michael Bobak, Jessica Ross,
Daniel Rubin, and Ida Sim. A practical method for transforming free-
text eligibility criteria into computable criteria. Journal of Biomedical
Informatics, 44(2):239–250, April 2011.

[Tro11] Uwe Trottmann. Entwicklung einer Softwarebibliothek zur Transforma-
tion relationaler Daten in gerichtete Graphen. Interdisciplinary project
(IDP), Technische Universität München, 2011. Supervised by Fabian
Praßer.

[TWH09] Thanh Tran, Haofen Wang, and Peter Haase. Hermes: Data web search
on a pay-as-you-go integration infrastructure. Journal of Web Seman-
tics, 7(3):189–203, 2009.

[UNI] UniProt. Website. Available online at http://www.uniprot.org/; vis-
ited on July 1st 2012.

[Vaa11] Christian Vaas. Implementierung einer domanenspezifischen Benutzer-
oberfläche zur Transformation relationaler Daten in gerichtete Graphen.

BIBLIOGRAPHY 161

http://www.topquadrant.com/products/TB_Composer.html
http://www.uniprot.org/

CHAPTER 8: BIBLIOGRAPHY

Interdisciplinary project (IDP), Technische Universität München, 2011.
Supervised by Fabian Praßer.

[Van08] Jan P. Vandenbroucke. Observational research, randomised trials, and
two views of medical science. PLoS Medicine, 5(3):e67, 2008.

[VBS+09] Teeradache Viangteeravat, Ian M. Brooks, Ebony J. Smith, Nicolas Fur-
lotte, Somchan Vuthipadadon, Rebecca Reynolds, and Chanchai Sing-
hanayok McDonald. Slim-prim: a biomedical informatics database
to promote translational research. Perspectives in Health Information
Management, 6:6, 2009.

[VBV+09] Teeradache Viangteeravat, Ian Brooks, Somchan Vuthipadadon, Eu-
nice Huang, Ebony Smith, Ramin Homayouni, and Chanchai McDon-
ald. Slim-prim: an integrated data system for clinical and translational
research. BMC Bioinformatics, 10(Suppl 7):A11, 2009.

[vW12] Ulrich von Waldow. Eine vergleichende Übersicht über Semantic Rea-
soner für den Einsatz in einer inkrementellen Integrationslösung für
biomedizinische Daten. Interdisciplinary project (IDP), Technische Uni-
versität München, 2012. Supervised by Fabian Praßer.

[WB05] Robert L. Wears and Marc Berg. Computer technology and clinical
work: still waiting for Godot. Journal of the American Medical Associ-
ation, 293(10):1261–1263, March 2005.

[WBHF03] Debra L. Weiner, Atul J. Butte, Patricia L. Hibberd, and Gary R.
Fleisher. Computerized recruiting for clinical trials in real time. Annals
of Emergency Medicine, 41(2):242–246, February 2003.

[Web12] Dominik Weber. Implementierung einer GUI zur Administration von
Transformationsworkflows in einer ontologiebasierten Integrationslö-
sung für biomedizinische Daten. Interdisciplinary project (IDP), Tech-
nische Universität München, 2012. Supervised by Fabian Praßer.

[WLL+07] Timo Weithöner, Thorsten Liebig, Marko Luther, Sebastian Böhm,
Friedrich Henke, and Olaf Noppens. Real-world reasoning with owl.
In Proceedings of the 4th European Semantic Web Conferenc, 2007.

[WLP+09] Sebastian H. R. Wurst, Gregor Lamla, Fabian Prasser, Alfons Kem-
per, and Klaus A. Kuhn. Einsatz von dataspaces für die inkrementelle
informationsintegration in der medizin. In GI-Jahrestagung, LNI, 2009.

[WMM+09] Griffin Weber, Shawn N. Murphy, Andrew J. McMurry, Douglas Mac-
Fadden, Daniel J. Nigrin, Susanne Churchill, and Isaac S. Kohane. The
shared health research information network (shrine): A prototype fed-
erated query tool for clinical data repositories. Journal of the American
Medical Informatics Association, 16(5):624–630, 2009.

162 BIBLIOGRAPHY

CHAPTER 8: BIBLIOGRAPHY

[Woo08] Steven H. Woolf. The meaning of translational research and why it
matters. Journal of the American Medical Association, 299(2):211–213,
January 2008.

[Wor07] caBIG Strategic Planning Workspace. The cancer biomedical infor-
matics grid (caBIG): infrastructure and applications for a worldwide
research community. Studies in Health Technology and Informatics,
129(Pt 1):330–334, 2007.

[Wur11] Sebastian H. R. Wurst. Dataspace Integration in der Medizinischen
Forschung. PhD thesis, Technische Universität München, 2011.

[WVV+01] H. Wache, T. Vögele, U. Visser, H. Stuckenschmidt, G. Schuster,
H. Neumann, and S. Hübner. Ontology-based integration of informa-
tion - a survey of existing approaches. In Proceedings of the IJCAI-01
Workshop on Ontologies and Information Sharing, 2001.

[WWS+10] Rob Wynden, Mark G. Weiner, Ida Sim, Davera Gabriel, Marco Casale,
Simona Carini, Shannon Hastings, David Ervin, Samson Tu, John H.
Gennari, Nick Anderson, Ketty Mobed, Prakash Lakshminarayanan,
Maggie Massary, and Russ J. Cucina. Ontology mapping and data
discovery for the translational investigator. In Proceedings of the 2010
AMIA Summits on Translational Science, volume 2010, 2010.

[Wyn08] Rob Wynden. An alternative approach to integrated
data repository design. Website, 2008. Available on-
line at https://www.ctsacentral.org/documents/bahdocs/
NewApproachestoDataRepositoryArchitecture,RobWynden(UCSF)
.pdf; visited on July 1st 2012.

[XC04] Huiyong Xiao and Isabel F. Cruz. RDF-based metadata management
in peer-to-peer systems. In Proceedings of the 2nd IST Workshop on
Metadata Management in Grid and P2P Systems, 2004.

[ZB06] Michael Zeller and Tom Barbaro. A face is exposed for aol searcher no.
4417749. The New York Times, August 2006.

[Zer05] Elias A Zerhouni. Translational and clinical science–time for a new
vision. The New England Journal of Medicine, 353(15):1621–1623, Oc-
tober 2005.

[Zie12] Johannes Ziegltrum. Dynamisches Scheduling von Transforma-
tionsworkflows in einer ontologiebasierten Integrationslösung für
biomedizinische Daten. Interdisciplinary project (IDP), Technische Uni-
versität München, 2012. Supervised by Fabian Praßer.

[ZMC+11] Lei Zou, Jinghui Mo, Lei Chen, Tamer M. Özsu, and Dongyan Zhao.
gStore: answering SPARQL queries via subgraph matching. In Proceed-
ings of the 37th International Conference on Very Large Data Bases,
2011.

BIBLIOGRAPHY 163

https://www.ctsacentral.org/documents/bahdocs/New Approaches to Data Repository Architecture, Rob Wynden (UCSF).pdf
https://www.ctsacentral.org/documents/bahdocs/New Approaches to Data Repository Architecture, Rob Wynden (UCSF).pdf
https://www.ctsacentral.org/documents/bahdocs/New Approaches to Data Repository Architecture, Rob Wynden (UCSF).pdf

CHAPTER 8: BIBLIOGRAPHY

[ZRGD10] Eric Zapletal, Nicolas Rodon, Natalia Grabar, and Patrice Degoulet.
Methodology of integration of a clinical data warehouse with a clinical
information system: the HEGP case. Studies in Health Technology and
Informatics, 160(Pt 1):193–197, 2010.

164 BIBLIOGRAPHY

	Introduction
	Problem statement
	Contributions
	Outline

	The Challenge: Integrating Data for Translational Medical Research
	Use Cases
	Data Retrieval and Integration of Knowledge Bases
	IT-Support for Patient Recruitment

	Challenges and Requirements
	Distribution, Autonomy, Heterogeneity
	Continuous Evolution
	Data Privacy and Security

	Related Work

	The Solution Concept: Incremental Ontology-based Integration
	Related Work
	Ontology-based Integration
	Dataspaces

	Incremental Ontology-based Integration
	Basic Ideas
	Semantic Web Technologies
	Important Properties of RDF and SPARQL
	Technical Requirements

	Concluding Remarks

	Laying the Groundwork: Accessing Biomedical Data Sources
	Related Work
	Challenges and Requirements
	Relational DBMS
	Transformation Operators
	Transformation Process
	Evaluation

	HL7 Message Streams
	Transformation Process
	Evaluation

	RDF Databases
	Conclusions and Suggestions for Further Work

	Maintaining Local Autonomies: Distributed Query Processing
	Related Work
	Indexing
	Type Information
	Index Organization
	Partition Trees

	Query Optimization
	Plan Simplification
	Post-processing

	Query Execution
	Reducing the Volume of Intermediate Results
	System Architecture

	Evaluation
	Evaluation of Scalability
	Evaluation with FedBench

	Conclusions and Suggestions for Further Work

	Bridging the Gaps: Semantic Integration and Data Transformation
	Manual Annotation and Mapping
	Related Work
	Navigating the Dataspace
	Editing Low-Volume Data

	Automated Data Transformation
	Related Work
	Basic Concepts
	Optimizations
	Evaluation

	Semantic Reasoning
	Vocabularies
	Evaluation

	Data De-Identification
	Related Work
	Implementation Framework
	The FLASH Algorithm
	Evaluation

	Conclusions and Suggestions for Further Work

	Putting It All Together: A Prototypical Implementation
	Implementation Details
	Data Architecture
	Permission Model
	System Architecture
	Network Protocol

	A Graphical User Interface
	Conclusions and Suggestions for Further Work

	Summary and Outlook

