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Abstract

The Information Technology Infrastructure Library (ITIL) describes a set of

best practices on how to manage IT systems while reducing incidents and

increasing reliability. Change Management, a core process of ITIL, is con-

cerned with the application of IT changes to networks and services. With

many modern companies relying on the availability of IT services, success

of Change Management has become crucial for the well being of a company.

Today Change Management heavily depends on the individual skills of IT

personnel and algorithms to automate Change Management are rare. To fur-

ther improve the reliability of Change Management, we introduce in this work

efficient algorithms for the automated planning and verification of IT change

operations, two important steps of the Change Management process.

First, we introduce an efficient algorithm for the verification of IT change

operations. The algorithm is an extended, finer-grained version of the partial-

order reduction model checking paradigm. Extended partial-order reduction

can reduce the complexity to verify a global formula given a set of always

applicable, concurrent effects to linear runtime complexity. The theory of ex-

tended partial-order reduction is introduced and a many-sorted logic for IT

change verification is proven to adhere to it. We show that extended partial-

order reduction significantly outperforms the state of the art general purpose

model checkers SPiN and NuSMV for real-world change operations and con-

figurations likely to have caused a recent outage in one of Amazon’s cloud

computing data centers. Thus, the extended partial-order reduction verifica-

tion approach presented herein makes the verification of IT change operations

feasible on large configurations for the first time.

Second, we examine several general purpose planning paradigms for the au-

tomated generation of IT change plans. We conclude that SHOP2, a Hier-

archical Task Network planner, is the one to most naturally fit the domain

of IT change planning while providing the best performance. However, as

its scalability remains limited, we discuss and analyze optimizations to fur-

ther improve the runtime complexity of decomposition-based total-order IT

change planning. A sensitivity analysis shows that our optimizations can sig-

nificantly reduce the runtime complexity for IT change plan generation from

polynomial to linear or even constant complexity for a variety of character-

istics of IT changes and configurations. A cloud deployment and a virtual

network configuration case study demonstrate the feasibility of the approach

and confirm the results of the sensitivity analysis.
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1

CHAPTER 1

Introduction

1.1 Motivation

With manymodern companies relying on IT services, e.g., email, databases, application servers,

or enterprise resource planning systems, the success of these businesses heavily depends on the

availability of the IT infrastructure and the services provided by them. The hardware and soft-

ware systems of a company face a magnitude of change operations every day. For example,

BMW Financial Services Germany faces roughly 36001 IT change operations every year that

need to be applied to the software and hardware systems providing the services of a financial

institute 24 by 7. Typical changes are, for example, the upgrade/patching of a software, the

reconfiguration of a software, e.g., adding a user to a database, the deletion of unnecessary

database snapshots, the deployment of software, or the reconfiguration of a network. The com-

plexity inherent to large IT infrastructures, which are estimated to comprise between 450,000

(Amazon)2 and 900,000 (Google)3 servers and a multitude of services supported by them, fur-

ther complicates the reliable application of IT change operations to IT infrastructures. At this

level of complexity the usual case to expect is that something goes wrong instead of right.

Sometimes failures caused by faulty IT change operations cannot be concealed and outages

with the potential to destroy the reputation of a company occur. For example, in April 2011 a

network upgrade conducted in one of Amazon’s data centers caused outages to customer ser-

vices that lasted several days and even caused durable data loss. To prevent outages caused by

faulty IT change operations, Change Management4 [65], which is part of the Information Tech-

nology Infrastructure Library (ITIL) [78], describes a set of best practices on how to manage IT

infrastructure and services such that disruptions on the business are minimized.

1The number was obtained from a conversation the author had with a change manager working at BMW

Financial Services Germany.
2http://www.datacenterknowledge.com/archives/2012/03/14/estimate-amazon-cloud-backed-by-450000-

servers/
3http://www.datacenterknowledge.com/archives/2011/08/01/report-google-uses-about-900000-servers/
4Whenever we refer to Change Management in this work, we mean Change Management in the context of IT

Service Management (ITSM) and the Information Technology Infrastructure Library (ITIL).



2 1. Introduction

The Change Management process [65] comprises steps to evaluate, authorize, plan, test, sched-

ule, implement, document, and review IT changes. In practice the success of the process very

much depends on the individual skills of IT personnel and it is hardly supported by automated

tools and algorithms from a logical reasoning perspective. The development of automated al-

gorithms to support steps of the Change Management process has the potential to increase the

reliability of the process and makes it less dependent on the individual skills of IT personnel.

Two steps of the Change Management process are particularly well suited for automation:

• Planning of IT change operations: In the planning step of the Change Management pro-

cess, change managers - if at all - manually draft change plans, which comprise the basic

change activities that need to be executed in order to achieve the Request for Change

(RFC), i.e., the goal specification of an IT change. Given the specification of the pre-

conditions and effects of basic IT change activities, automated planners [41] compute

logically sound IT change plans that adhere to the logical constraints of the application

and infrastructure. Consequently, the computed plans are guaranteed to be executable

without violation of constraints.

• Verification of IT change operations: The evaluation, authorization, and test steps of

the Change Management process heavily rely on the experience of a change manager and

the skills of IT personnel to thoroughly assess and test IT changes. Those steps can be

supported by the automated verification [11, 29] of IT change operations. Verification

proves on a logical level that a set of pending IT change operations will not invalidate

safety constraints when executed in any order. Thus, if the logical model accurately

captures reality, change verification detects the occurrence of threatening conditions, for

example, the overload of a network, which was the reason for a recent outage at one of

Amazon’s data centers.

1.2 Problem Statement

Although the automated planning [41] and verification [11, 29] communities have extensively

discussed planning and verification algorithms, the application of these investigations to IT

change planning [71] and IT change verification [61, 83] yields a common drawback: scalabil-

ity. Because realistically sized IT infrastructures comprise up to millions of Configuration Items

(CIs), i.e., IT infrastructure assets such as software and hardware artifacts, existing algorithms

quickly hit a scalability barrier that makes them inapplicable to real-world IT change planning

and verification problems. Thus, novel and domain-specific algorithms for the verification and

planning of IT change operations need to be developed to aid in the tool-support of important

steps of the ITIL Change Management process. Such algorithms need to have significantly bet-

ter scalability than state of the art planning [41] and verification algorithms [11, 29], but, at the

same time, they need to be expressive enough to describe realistic IT change operations.

To solve this shortcoming, we introduce in this work algorithms for the efficient planning

and verification of IT change operations that - compared to general purpose planners and model

checkers - significantly reduce the runtime complexity of IT change verification/planning from

exponential/polynomial to linear or even constant runtime complexity. Thus, the results pre-

sented herein make IT change plan generation and verification feasible on large-scale IT infras-

tructures for the first time.
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1.3 Contributions

The contributions of this work to the verification and the networks and service management

communities are as follows.

IT Change Verification

• Verification community: This work describes the formal requirements to efficiently ver-

ify whether a formula φ holds on every state that can be obtained by the execution of

a set of always enabled, concurrent effects to an initial state. Relationships between ef-

fects and formulas, which enable the efficient verification of ∀�φ1 computation tree logic

(CTL) and �φ2 linear temporal logic (LTL) formulas, where φ is evaluated in a state and

does not comprise temporal operators, are introduced. The optimization technique is best

described as an extended, finer-grained version of the partial-order reduction [12] model

checking paradigm, which enables the further reduction of the search space - even in

cases when partial-order reduction is not applicable.

We formalize the precise requirements for a logic to be efficiently verifiable using the ex-

tended partial-order reduction approach. It is shown that a domain specific many-sorted

logic [72] for IT change verification satisfies the requirements of extended partial-order

reduction. Compared to state of the art model checkers, such as NuSMV and SPiN, our

approach can significantly reduce the runtime complexity for the verification of ∀�φ CTL

and �φ LTL formulas from exponential/polynomial to linear runtime complexity.

• Service management community: This work presents a domain specific logic and ef-

ficient algorithms for the verification of IT change operations against infrastructure and

software configuration safety constraints. We show that our solution, compared to the

general purpose model checkers SPiN and NuSMV, significantly reduces the runtime

complexity of IT change verification from exponential/polynomial to linear for many dif-

ferent configurations, models, and change activities. Several scenarios that could have

caused a real-world network outage at one of Amazon’s data centers are shown to be de-

tectable using the verification approach. Different to previous investigations on change

verification [22, 50, 61, 83], this work addresses and solves the scalability problems of IT

change verification to very large configurations for the first time.

Compared to previous work that also aims to increase the reliability of the Change Man-

agement process, e.g., by means of risk analysis [87, 96, 97] and the optimal assignment

of human operators to IT change activities [67], change verification provides strict logi-

cal means to detect whether a change fails in a logical model. Furthermore, failures are

detected at a much earlier stage while approaches to rollback IT changes [69, 70] or to

monitor infrastructures [73] are often a step behind to prevent outages.

IT Change Planning

• Service management community: This work evaluates several general purpose planning

paradigms [10, 18, 76, 94] for IT change planning with a focus on runtime performance

and feasibility by IT change managers. Among the examined planning paradigms, we

1∀�φ is the on all paths now and forever in the future φ formula from computation tree logic (CTL) [12]
2
�φ is the always (now and forever in the future) φ formula from linear temporal logic (LTL) [12]



4 1. Introduction

find that SHOP2 [76], a Hierarchical Task Network (HTN) [42] planner, is most per-

formant and usable for IT change planning. Optimization techniques are introduced to

further improve the runtime performance of decomposition-based IT change planning al-

gorithms from polynomial to linear or even constant runtime complexity. A sensitivity

and case study analysis shows that the optimizations outperform the SHOP2 planner in

terms of runtime complexity for many characteristics of IT change operations and config-

urations of the infrastructure. In addition to that, the optimizations presented herein are

more robust in respect to the characteristics of IT changes and the configuration of the

infrastructure. Our work improves related Change Management problems as well: Faster

planning aids in optimal plan generation because more plans can be explored in the same

time and the best can be chosen among them. Furthermore, faster planners leave more

time to optimize the scheduling of IT change operations [84, 101, 102].

IT change plan generation has been subject to several investigations, addressing topics

such as the integration of planning and scheduling [59], the reuse of knowledge in IT

change design [33, 35], algorithms for the hierarchical decomposition of IT changes [46,

91] or algorithms that are not based on decomposition [38, 48, 71]. Common to all

investigations is that they have been evaluated to work on small to medium size IT change

planning problems and that scalability to large CMDBs has either been out of their scope

or cannot be achieved by them. Thus, to the best of our knowledge, the algorithms and

optimizations discussed herein make IT change planning feasible on large infrastructures

for the first time.

Previous Publications

Previous Work

Some of the contributions in this work have been previously published. The following publica-

tions appeared in peer-reviewed conference proceedings:

S. Hagen, W. L. da Costa Cordeiro, L. P. Gaspary, L. Z. Granville, M. Seibold, and A. Kem-

per. Plannig in the Large: Efficient Generation of IT Change Plans on Large Infrastructures. In

Proceedings of the 8th International Conference on Network and Service Management (CNSM

2012), Las Vegas, NV, USA, October 22-26, 2012, pages 108–116. IEEE, 2012.

S. Hagen, M. Seibold, and A. Kemper. Efficient Verification of IT Change Operations or:

How We Could Have Prevented Amazon’s Cloud Outage. In Proceedings of the IEEE Network

Operations and Management Symposium (NOMS 2012), Maui, HI, USA, April 16-20, 2012,

pages 368–376. IEEE, 2012.

S. Hagen and A. Kemper. A Performance and Usability Comparison of Automated Plan-

ners for IT Change Planning. In Proceedings of the 7th International Conference on Network
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Springer, 2009. This work has been part of the author’s preceding master’s degree.

1.4 Nomenclature

This work is about the verification and planning of IT change operations. As there are many

synonyms for IT changes, which are often perceived differently by different readers, we shortly

explain the nomenclature of IT changes used throughout this work. First, we use the notion

of IT changes and IT change activities interchangeably. Whenever necessary, we distinguish

between atomic and abstract IT changes/change activities. An atomic change activity is an

indivisible, elementary change operation that is applied to IT infrastructure or services. Syn-

onyms for atomic change activities are, for example, elementary change activity, elementary

change operation, elementary IT change, or (elementary) change procedure. Among atomic

change activities are, for example, a change to turn on a machine, a change to increase the

metric of a router interface, or a change to add an entry to a routing table. Different to that, ab-

stract IT change activities reside on a higher level of abstraction and require the decomposition

into finer-grained changes/change activities to be executable. The change to deploy a three-tier

application is a typical abstract change activity that requires further decomposition into many

steps to achieve the abstract change activity. A synonym for an abstract change activity is that

of a high-level IT change/change activity.

In the chapters addressing IT change planning (Chapters 6 and 7) we frequently talk about

atomic and abstract IT change activities. However, when it comes to verification (Chapters 2

through 5) our analysis always resides on the level of atomic change activities. In these chapters

we deviate from the notion above and only talk about change activities unambiguously referring

to atomic change activities.

1The work is addressed in the related work sections though.
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1.5 Outline

The remainder of this work is roughly organized in two parts: The first part addresses IT change

verification (Chapter 2 through 5) and the second part concerns the efficient generation of IT

change plans (Chapter 6 and 7). Finally, Chapter 8 concludes the work.

• Chapter 2 introduces the theory of extended partial-order reduction. Based on the notion

of states, effects, and formulas, an efficiently computable criterion to verify CTL formulas

of type ∀�φ and LTL formulas of type �φ given a set of concurrent, always executable

effects is introduced. The correctness of the criterion is proven. 1

• Chapter 3 introduces the syntax and semantics of a many-sorted IT change verification

logic that is used to logically describe IT change activities and hosting safety constraints.

We prove that the change verification logic satisfies all requirements of the extended

partial-order reduction approach introduced in Chapter 2. Thus, the theory underlying

the extended partial-order reduction approach can be applied to the change verification

logic to efficiently verify atomic change activities against safety constraints. 1

• Chapter 4 introduces verification algorithms for several IT change verification problems

based on the extended partial-order reduction approach. In addition to that, their runtime

complexity is analyzed. 1

• Chapter 5 evaluates the extended partial-order reduction approach in the context of sev-

eral scenarios that could have caused a network outage at one of Amazon’s data centers

in April 2011. Our approach is evaluated against the general purpose model checkers

NuSMV and SPiN with several scenarios, models, workloads, and configurations of the

IT infrastructure to have contributed to the outage. The experimental evaluation shows

that our approach significantly outperforms NuSMV and SPiN and scales to very large

configurations. 1

• Chapter 6 compares four general purpose Artificial Intelligence (AI) planners (Graphlan

[18], Prodigy [94], TLPlan [10], and SHOP2 [76]) in an IT change planning case study.

We focus on two aspects: (1) the planning performance and (2) the usability of each plan-

ner by change managers untrained in automated planners. We find that Hierarchical Task

Network (HTN) planners (SHOP2 in our case) are best suited for IT change planning due

to their superior performance and their proximity to the domain of IT change planning.

A representative cloud deployment case study demonstrates the superior performance of

SHOP2. 2

• Chapter 7 proposes and evaluates optimization techniques for decomposition-based IT

change planning algorithms that significantly reduce the runtime complexity of IT change

plan generation from polynomial to linear or even constant runtime complexity. A sensi-

tivity analysis examines the influence of several important characteristics of IT changes

and the CMDB on the runtime complexity of the proposed optimizations. We show that

our optimizations outperform the SHOP2 planner, the winner of the comparison of plan-

ners in Chapter 6, in terms of runtime complexity for a large percentage of IT changes

1Parts of this chapter previously appeared in [51].
2Parts of this chapter previously appeared in [49].
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and CMDBs. A cloud deployment case study of a three-tier application and a virtual net-

work configuration case study demonstrate the feasibility of the approach and confirm its

scalability. 1

• Chapter 8 concludes the work and presents open research questions. 2

1Parts of this chapter previously appeared in [45].
2Parts of this chapter previously appeared in [45, 49, 51].
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CHAPTER 2

Extended Partial-order Reduction of Global Formulas

This chapter introduces extended partial-order reduction, a finer-grained but more restrictive

version of partial-order reduction. Extended partial-order reduction can be used to efficiently

verify a formula on all states that evolve from a given initial state by the execution of a set of

always applicable concurrent effects.

First, we establish basic notation and introduce the verification problem solved by extended

partial-order reduction in Section 2.1. The improvements of extended partial-order reduction

over ordinary partial-order reduction are discussed in Section 2.2. Section 2.3 introduces the

notion of effects and discusses their influence on formulas when deciding whether a formula al-

ways holds. After that, Section 2.4 further refines characteristics of effects in respect to formulas

and the sequences of effects they can appear in. Section 2.5 introduces and proves a criterion

to determine whether a formula always holds in all states that evolve from a given initial state

by the execution of a set of always applicable effects. Section 2.6 refines the criterion into a

theorem that can be practically used to efficiently decide the verification problem previously

introduced in Section 2.1. Finally, Section 2.7 concludes the chapter on extended partial-order

reduction.1

2.1 Verification Problem and Definitions

This section establishes basic notation used throughout this work and defines the verification

problem solved by extended partial-order reduction. In the remainder of this work we use the

following notation:

• S = {s1, . . . , sn} denotes a set of states.

• φ and ψ denote formulas that hold or do not hold in a state s ∈ S . For a formula φ and a

state s ∈ S we write s |= φ if φ holds in state s and s 6|= φ otherwise.

1Parts of this chapter previously appeared in [51].
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• E = {e1, . . . , en} denotes a set of effects where e : S → S is a function that is applied to

a state s ∈ S and yields a successor state e(s) ∈ S that is the state that evolves from s by

the application of effect e to s.

• We consider sequences of effects 〈e1, . . . , en〉, n ∈ N0, where ∀i ∈ {1, . . . , n} : ei ∈ E. The

application of sequences of effects to states is defined as the subsequent application of

effects. Thus for a state s and a sequence of effects 〈e1, . . . , en〉 we obtain 〈e1, . . . , en〉(s) =

en(. . . (e1(s))). We denote by Seq(E) the set of all effect sequences of arbitrary length

such that every effect in E occurs at most once in every sequence seq ∈ Seq(E). More

formally:

Seq(E) = {〈e1, . . . , en〉| 0 ≤ n ≤ |E| ∧

∀i ∈ {1, . . . , n} : ei ∈ E ∧

∀i ∈ {1, . . . , n},∀ j ∈ {1, . . . , n}, i , j : ei , e j}

• For a sequence seq ∈ Seq(E) and a set of effects E′ ⊆ E, we denote by seq \ E′ the

sequence obtained from seq when all effects in E′ are removed from seq.

This chapter derives an easily computable criterion to determine whether a formula φ is

satisfied on any state that can evolve from a given initial state sinit by the application of effects

in E in any order and length, i.e., deciding whether

∀seq ∈ Seq(E) : seq(sinit) |= φ

holds.

The verification problem stated above is equivalent to model checking the linear tempo-

ral logic (LTL) [11] formula �φ1 (where φ does not comprise temporal operators) or model

checking the computation tree logic (CTL) [11] formula ∀�φ2 in the equivalent state transition

systems. Notice that for now we do not enforce any restrictions on the syntax and semantics of

formulas. Chapter 3 introduces a logic for IT change verification that satisfies all requirements

of extended partial-order reduction introduced herein.

2.2 Motivation and Related Work: Partial-order Reduction

The verification approach most related to extended partial-order reduction is partial-order re-

duction model checking [12, 30]. Thus, extended partial-order reduction is heavily motivated

by the limitations of partial-order reduction and can significantly reduce the search space for

cases where partial-order reduction is not applicable anymore. The remainder of this section

is organized as follows. First, partial-order reduction and extended partial-order reduction are

compared with each other. Second, we provide a motivating example for extended partial-order

reduction and an introduction to the basic idea underlying the verification approach.

2.2.1 Partial-order Reduction vs. Extended Partial-order Reduction

Partial-order reduction [12, 30] is a technique to reduce the search space explored by a model

checker taking into account the commutativity of effects. If effects are state commutative and

1
�φ is the always (now and forever in the future) φ formula from linear temporal logic (LTL) [12]

2∀�φ is the on all paths now and forever in the future φ formula from computation tree logic (CTL) [12]
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s1
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s2 s3

s4

e1

e2

e2

e1

(a) Concurrent execution of e1 and

e2.

s1

start

s3

s4

e2

e1

(b) Sequential execu-

tion of e2 and e1.

Figure 2.1: Parallel and sequential execution of effects e1 and e2 and their influence on the

number of states to be searched by a model checker.

independent of each other, not all interleavings of effects need to be considered during model

checking, but it suffices only to model check specific interleavings for which conclusions can be

drawn about the satisfiability of a formula on all interleavings. For example, consider Figure 2.1

that depicts the interleaved execution of effects e1 and e2. Instead of verifying a formula over

any of the four states depicted in Figure 2.1a, partial-order reduction offers means to decide

whether it suffices to verify the formula on a smaller state transition system (see Figure 2.1b) that

satisfies the same formulas as the original system. Similar to partial-order reduction, extended

partial-order reduction is an instance of what has come to be known as model checking by

representatives [80, 81]: A simpler, but logically equivalent system in satisfiability, is used

for model checking. For partial-order reduction to be applicable effects need to adhere to two

important criteria: the independence and stutter criterion. If effects satisfy both criteria (we later

discuss the criteria in more detail), the following modifications can be performed to simplify

verification:

• Adding of independent stutter actions:

If e is a stutter effect that is independent of {e1, ..., en}, then every formula in LTL\©
1

evaluates equivalently on the state sequence induced by the effect sequences 〈e1, ..., en〉

and 〈e, e1, ..., en〉.

• Permutation of independent stutter effect:

If e is a stutter effect that is independent of {e1, ..., en}, then e can be permuted in effect

sequence 〈e, e1, ...en〉 while every formula in LTL\© evaluates equivalently on the state

sequences induced by the effect sequences.

Partial-order reduction makes use of these two important observations. Thus, if effects do

not satisfy the stutter and independence criterion, partial-order reduction cannot be applied to

reduce the search space.

We now discuss in more detail the definitions of stutter and independent effects to discuss

their limitations. Let e ∈ E be an effect. We say that e is enabled in a state s (write e ∈ EN(s))

1Linear temporal logic (LTL) without the next (©) operator.
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iff1 e can be applied in state s. For a state s ∈ S we denote by holds(s) the set of all atomic

propositions that hold in state s.

• Independent effects:

Two effects e1 and e2 are independent iff they satisfy the Enabledness and Commutativity

criteria.

– Enabledness: If e1 and e2 are enabled in a state s, then e1 is enabled in e2(s) and e2
is enabled in e1(s). More formally:

∀s ∈ S : (e1 ∈ EN(s) ∧ e2 ∈ EN(s))→ (e1 ∈ EN(e2(s)) ∧ e2 ∈ EN(e1(s)))

– Commutativity: If e1 and e2 are enabled in a state s, then e2(e1(s)) and e1(e2(s))

yield the same state. More formally:

∀s ∈ S : (e1 ∈ EN(s) ∧ e2 ∈ EN(s))→ (e1(e2(s)) = e2(e1(s)))

• Stutter Effect:

An effect e is called a stutter effect iff its application (whenever it is enabled) does not

change the set of atomic proposition. More formally:

∀s ∈ S : e ∈ EN(s) → (holds(s) = holds(e(s)))

Based on these definitions, which are central to partial-order reduction, the main differences

between partial-order reduction and extended partial-order reduction are as follows.

• Formulas covered:

While partial-order reduction can be applied to any formula in LTL\© (assuming that the

independent and stutter effect requirements are met), extended partial-order reduction can

only be used to verify CTL formulas of type ∀�φ and LTL formulas of type �φ where φ

does not comprise temporal operators.

• Enabledness of all effects required for extended partial-order reduction:

The specific verification problem (∀seq ∈ Seq(E) : seq(s) |= φ) solved by extended

partial-order reduction implies that in the underlying state transition system effects are al-

ways enabled and that once a transition s
e
→ s′ caused by effect e has been taken, e never

appears again in any transition on any path starting in s′ (effects can only be applied once).

Thus, for the verification problem considered by extended partial-order reduction, all ef-

fects automatically satisfy the enabledness criterion of partial-order reduction. Different

to that, partial-order reduction can still be partially applied to a subset of effects satisfying

the enabledness criterion. Extended partial-order reduction also requires a commutativ-

ity criterion to hold, however commutativity is defined in respect to the evaluation of a

formula and not states.

• State commutativity not necessary for extended partial-order reduction:

Different to partial-order reduction, extended partial-order reduction does not require the

state commutativity criterion of effects to hold. Thus, extended partial-order reduction can

also be applied to effects that are not independent due to the violation of the commutativity

criterion.

1Short for if and only if.
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x = 5{x ≥ 5}

start

x = 4{}

x = 3{}

x = 2{}

x = 5{x ≥ 5}

x = 5{x ≥ 5}

x = 5{x ≥ 5}

dec(x, 1)
dec(x, 2)

dec(x, 3)

inc(x, 1)

inc(x, 2)

inc(x, 3)

Figure 2.2: Examples to demonstrate the non-stutter effect characteristics (in respect to propo-

sition x ≥ 5) of the increment and decrement effects for an initial configuration

where x = 5.

• Novel interpretation of stutter effects in extended partial-order reduction:

Extended partial-order reduction uses a finer-grained categorization of effects. Instead

of demanding that an effect never changes any proposition (stutter effect) we relax the

constraint for effects to preserve a formula in one direction (once false always false, once

true always true). In addition to that, the categorization is performed and exploited for

all combinations of effects and formulas / atomic propositions to take into account how

effects relate to parts of a compound formula.

2.2.2 Introduction to Extended Partial-order Reduction

This section provides an introductory example of extended partial-order reduction. Consider a

formula φ that matches the simple proposition x ≥ 5 that holds in a state s ∈ S iff x is greater

than or equal to 5. We consider four different effects:

• Effects to increase x or y:

inc(x,∆c1) and inc(y,∆c2) increment x and y by ∆c1 ≥ 0 respectively ∆c2 ≥ 0.

• Effects to decrease x or y:

dec(x,∆c1) and dec(y,∆c2) decrement x and y by ∆c1 ≥ 0 respectively ∆c2 ≥ 0.

For the remainder of this discussion we consider E, the set of all effects, to be:

E = {dec(x, 1), dec(x, 2), dec(x, 3), inc(x, 1), inc(x, 2), inc(x, 3), inc(y, 1), dec(y, 1)}

To apply partial-order reduction, stutter effects need to be present. The only stutter effects

in E in respect to the language only comprising the proposition x ≥ 5 are inc(y, 1) and dec(y, 1)

because they change y and have no effect on x. All remaining effects in E (the increments and

decrements to x) might or might not be stutter effects depending on the value of x in the initial

state.
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x ≥ 5

Effect Extended partial-order reduction Partial-order reduction

dec(x, 1) threat ¬ stutter

dec(x, 2) threat ¬ stutter

dec(x, 3) threat ¬ stutter

inc(x, 1) support ¬ stutter

inc(x, 2) support ¬ stutter

inc(x, 3) support ¬ stutter

inc(y, 1) neutral stutter

dec(y, 1) neutral stutter

Table 2.1: Categorization of effects for extended partial-order reduction and partial-order re-

duction for initial state x = 5 and atomic proposition x ≥ 5.

Figure 2.2 depicts a partial view of a state transition system that evolves from the initial state

(where x = 5) by the application of the six decrement/increment effects to x in E. For every

effect there exists a transition in Figure 2.2 for which the set of atomic propositions holding

before the execution of the effect and after the execution of the effect differ. Thus, if x holds 5

in the initial state, none of these effects is a stutter effect. Thus, partial-order reduction cannot

be applied to those effects leaving all possible interleavings to be verified by a partial-order

reduction model checker.

In the given example, the definition of stutter effects turns out to be overly restrictive. Stutter

effects are defined as neutral effects that need to preserve all atomic properties. For extended

partial-order reduction we change the requirement in two aspects: First, we exploit that effects

can behave differently in respect to different atomic propositions. Second, we relax the stut-

ter criteria in such a way that we introduce effects that preserve a formula/proposition in one

direction.

For example, consider the non-stutter effect dec(x,∆c). We call such an effect negatively-

preserving in respect to x ≥ 5 because if x ≥ 5 already does not hold for a state s, then it does

not hold on state e(s) as well. Thus, negatively-preserving effects preserve the false value of a

formula/proposition on any state. If a negatively-preserving effect can also turn a formula from

true to false for some state s, we call the effect a threat because it can invalidate a formula, but

once a formula is false, it remains false by the application of the threat.

Similarly, we define positively-preserving effects and supports the other way round: A sup-

port preserves the true value of a formula and has the potential to turn it from false to true on

some state s. For example, inc(x,∆c) supports x ≥ 5 because once x is larger than 5 so will it

be when x is increased by ∆c > 0 and an increase can turn x ≥ 5 from false to true. To solve the

extended partial-order reduction verification problem, consider the initial state. If x ≥ 5 does

not hold on the initial state, then the verification problem is trivially solved as we already found

a counter-example. We assume x ≥ 5 holds on the initial state. What is the worst-case sequence

of effects that could happen to x ≥ 5 in terms of satisfiability? In the worst-case all threats,

i.e., effects that have the potential to turn the formula from true to false (decrease operations)

have been applied to the initial state. If x ≥ 5 holds on the state after that worst-case sequence,

we could then easily add increment operations to x (supports) in the sequence or increment /

decrement operations to other variables (called neutral effects), without changing satisfiability
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of x ≥ 5. Thus,

〈dec(x, 1), dec(x, 2), dec(x, 3)〉(s) |= x ≥ 5 → ∀seq ∈ Seq(E) : seq(s) |= x ≥ 5

The implication trivially holds in the opposite direction as well because the sequence on the left

side is comprised in the set of all sequences on the right side. For this type of verification to work

additional requirements have to be satisfied by effects and formulas than the pure definitions

of supports and threats given above. Also notice that decrement and increment effects are

commutative (as required by the independence criterion of partial-order reduction). However,

state commutativity is not a requirement for the correctness of extended partial-order reduction.

Instead, it suffices to enforce some requirements on the commutativity of effects in respect to

the evaluation of a formula.

Assuming that extended partial-order reduction verification is correct (for some special sub-

set of effects and formulas yet to be characterized in the remainder of this chapter), it suffices

to create a single state by applying all threats of a formula in an arbitrary order to the initial

state to determine whether a formula holds under every other sequence of effects. Thus, using

extended partial-order reduction, the formula can be verified in time linear in the number of

threats assuming that each threat of a formula can be determined and applied in constant time.

2.3 Relationships between Effects and Formulas

To reason about the influences effects have on the evaluation of formulas, their relationships to

formulas need to be further categorized. This section provides definitions of how effects can

influence the evaluation of a formula. We start by introducing effects that either preserve the

true value of a formula in Section 2.3.1 or the false value of a formula in Section 2.3.2. After

that, we further partition the set of all effects in Section 2.3.3 and prove propositions about the

partition Section 2.3.4.

2.3.1 Positively-preserving (PP) Effects

Definition 1. Positively-preserving (PP) effect

An effect e ∈ E is called positively-preserving (PP) in respect to a formula φ iff

∀s ∈ S : (s |= φ→ e(s) |= φ) ≡

∀s ∈ S : (e(s) 6|= φ→ s 6|= φ) (2.1)

Consequently, e does not positively preserve φ iff

∃s ∈ S : (s |= φ ∧ e(s) 6|= φ) (2.2)

A PP effect is called decisive iff

∀s ∈ S : e(s) |= φ (2.3)

otherwise indecisive, i.e., iff

∃s ∈ S : e(s) 6|= φ (2.4)

We denote by PPs(φ) ⊆ E all effects in E that positively preserve formula φ and by PPs(φ) =

E \ PPs(φ) its complement in E.

PP effects are good effects in the sense that they do not destroy the truth value of a formula

once it holds.
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Theorem 9
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always-satisfiability of compound formulas
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Ambiguous effects

Def. 1

Positively-preserving

(PP) effects

Def. 2

Negatively-preserving

(NP) effects

Section 2.1

Effects

Figure 2.3: Definitions, theorems, and lemmas leading to an efficiently computable criterion

(Theorem 9) to determine always-satisfiability of compound formulas.
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∀s ∈ S : s |= φ→ e(s) |= φ

SUPPs(φ) =

PPs(φ) ∩ NPs(φ)

∀s ∈ S : s 6|= φ→ e(s) 6|= φ

THRTs(φ) =

NPs(φ) ∩ PPs(φ)
∀s ∈ S :

s |= φ↔

e(s) |= φ

NTRLs(φ)

∃s ∈ S : s |= φ ∧ e(s) 6|= φ∃s ∈ S : s 6|= φ ∧ e(s) |= φ

AMBGs(φ) = NPs(φ) ∪ PPs(φ) =

= NPs(φ) ∩ PPs(φ)

PPs(φ)NPs
(φ)

E

Figure 2.4: Partition of all effects in E (rectangle) in respect to a formula φ.

2.3.2 Negatively-preserving (NP) Effects

Definition 2. Negatively-preserving (NP) effect

An effect e ∈ E is called negatively-preserving (NP) in respect to a formula φ iff

∀s ∈ S : (s 6|= φ→ e(s) 6|= φ) ≡

∀s ∈ S : (e(s) |= φ→ s |= φ) (2.5)

Consequently, e does not negatively preserve φ iff

∃s ∈ S : (s 6|= φ ∧ e(s) |= φ) (2.6)

A NP effect is called decisive iff

∀s ∈ S : e(s) 6|= φ (2.7)

otherwise indecisive, i.e., iff

∃s ∈ S : e(s) |= φ (2.8)

We denote by NPs(φ) ⊆ E the set of all effects in E that negatively preserve formula φ and by

NPs(φ) = E \ NPs(φ) its complement in E.

NP effects are bad effects in the sense that they never turn formulas from false to true.
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2.3.3 Neutrals, supports, threats, and ambiguous effects

Effects are further categorized based on the notion of positively-preserving and negatively-

preserving effects as follows.

Definition 3. Neutrals, Supports, Threats, and Ambiguous Effects

Let e ∈ E be an effect and φ a formula, then

• Supports (supporting effects):

SUPPs(φ) ⊆ E, the set of all supports of formula φ, is defined as

SUPPs(φ) = PPs(φ) ∩ NPs(φ). (2.9)

e ∈ SUPPs(φ) is called decisive support iff e decisively positively preserves φ (see Defi-

nition 1). Otherwise, e is called indecisive support.

• Threats (threatening effects):

THRTs(φ) ⊆ E, the set of all threats of formula φ, is defined as

THRTs(φ) = PPs(φ) ∩ NPs(φ). (2.10)

e ∈ THRTs(φ) is called decisive threat iff e decisively negatively preserves φ (see Defini-

tion 2). Otherwise, e is called indecisive threat.

• Neutrals (neutral effects):

NTRLs(φ) ⊆ E, the set of all neutrals of formula φ, is defined as

NTRLs(φ) = PPs(φ) ∩ NPs(φ). (2.11)

• Ambiguous effects:

AMBGs(φ) ⊆ E, the set of all ambiguous effects of formula φ, is defined as

AMBGs(φ) = PPs(φ) ∪ NPs(φ). (2.12)

Figure 2.4 depicts the partition of all effects in E in threats, supports, neutrals, and ambigu-

ous effects in respect to a formula φ. We now explain in more detail the different types of effects

introduced in Definition 3:

A support supp ∈ SUPPs(φ) of a formula φ preserves the true value of φ, but, different to a

purely positively-preserving effect, there also exists at least one state where the application of

supp turns φ from false to true in the subsequent state. Similarly, a threat thr ∈ THRTs(φ) of a

formula φ preserves the false value of φ but, different to a purely negatively-preserving effect,

there also exists at least one state where the application of thr turns φ from true to false in the

subsequent state. Neutral effects are PP and NP effects at the same time. They are easy to reason

about because they always preserve the truth value of a formula when applied to any state. All

remaining effects are called ambiguous effects. These effects are difficult to reason about as

they show different behavior depending on a state. For an ambiguous effect ambg ∈ AMBGs(φ)

of a formula φ there exists a state where the application of the effect turns φ from true to false,

but there also exists a state for which ambg behaves the other way round. Notice that an effect

e ∈ E can appear in different roles in respect to different formulas.
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Corollary 1. Decisive threat in threat sequence invalidates a formula

Let φ be a formula, seq = 〈t1, . . . , tn〉 ∈ Seq(THRTs(φ)) a sequence of threats, such that ∃k ∈

{1, . . . , n} : tk is a decisive threat of φ. Then,

∀s ∈ S : 〈t1, . . . , tn〉(s) 6|= φ

Proof. To prove: 〈t1, . . . , tk−1, tk, tk+1, . . . , tn〉(s) 6|= φ. Because tk is a decisive threat of formula φ,

we have that ∀s ∈ S : tk(s) 6|= φ (see Definition 2, Equation 2.7). Thus, with s′ = 〈t1, . . . , tk〉(s)

we obtain s′ 6|= φ and it remains to be shown that

s′ 6|= φ→ 〈tk+1, . . . , tn〉(s
′) 6|= φ

Because each t j, j ∈ {k + 1, . . . , n} is a threat (and thus negatively-preserving), the implication

directly follows from the definition of negatively-preserving effects (see Definition 2). �

2.3.4 Relationships Among Effects

In this section we describe how PP/NP effects relate to supports, threats, neutral, and ambiguous

effects. The relationships proven in Proposition 2 are depicted in Figure 2.4.

Proposition 2. Relationships among effects

Let φ be a formula, then:

1. NTRLs(φ) ∪ SUPPs(φ) = PPs(φ)

2. NTRLs(φ) ∪ THRTs(φ) = NPs(φ)

3. NTRLs(φ) ∪ SUPPs(φ) ∪ THRTs(φ) = PPs(φ) ∪ NPs(φ)

4. NTRLs(φ) ∪ SUPPs(φ) ∪ THRTs(φ) ∪ AMBGs(φ) = E

5. THRTs(φ) ∩ NTRLs(φ) = ∅

6. SUPPs(φ) ∩ NTRLs(φ) = ∅

7. SUPPs(φ) ∩ THRTs(φ) = ∅

Proof. The proof directly follows from the definitions of the sets and can be found in Ap-

pendixA.1. �

The following proposition describes how effects relate to each other when a formula is

negated.

Proposition 3. Relationships for negated formulas

Let φ be a formula, then:

1. PPs(φ) = NPs(¬φ)

2. SUPPs(φ) = THRTs(¬φ)

3. NTRLs(φ) = NTRLs(¬φ)

4. AMBGs(φ) = AMBGs(¬φ)
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Proof. The proof directly follows from the definitions of the sets and can be found in Ap-

pendixA.2. �

Most important of the relationships is the fact that threats and supports change roles when

a formula is negated and that neutral effects remain the same under negation. The observa-

tion saves work when we need to prove the relationships for concrete formulas and effects of

a change verification logic because we can directly conclude from a formula to its negated

formula. Notice that Proposition 3 does not yet state whether the decisive/indecisive property

of a support or threat remains unaffected under negation. We address this in the subsequent

proposition:

Proposition 4. Support and threat complements

Let e ∈ E be an effect and φ a formula, then

1. e decisively supports φ ↔ e decisively threatens ¬φ

2. e indecisively supports φ ↔ e indecisively threatens ¬φ

Proof. The proof directly follows from Proposition 3 and the definition of decisive and indeci-

sive effects. It can be found in AppendixA.3. �

2.4 Single Effects in Sequences of Effects

This section introduces stronger definitions of supports, threats, and neutrals, namely the defini-

tions of threat-independent supports (Section 2.4.1), threat-independent and permutable threats

(Section 2.4.2), and effect-independent neutrals (Section 2.4.3). The presence of these stronger

versions of supports, threats, and neutrals are an important requirement to apply extended

partial-order reduction.

2.4.1 Threat-independent Supports

The presence of threat-independent supports is an important requirement to efficiently solve the

verification problem previously defined in Section 2.1.

Definition 4. Threat-independent support

A support supp ∈ SUPPs(φ) is called threat-independent iff

∀ts ∈ Seq(THRTs(φ)), ∀s ∈ S : ts(s) |= φ → ts(supp(s)) |= φ

We denote by SUPPsind(φ) ⊆ SUPPs(φ) ⊆ E the set of all threat-independent supports of φ.

Notice that the definition of a threat-independent support further narrows down the definition

of a support (Definition 3). If threat sequence ts is the empty sequence, Definition 4 equals the

definition of a PP effect. For a support to be also threat-independent, the original definition of

a PP effect (s |= φ → supp(s) |= φ) still has to hold after the same but arbitrary sequence of

threats has been applied to the states on both sides of the implication (s and supp(s)).

Differently speaking, Definition 4 is equal to the observation that a threat-independent support

can be inserted before an arbitrary sequence of threats if φ has already been satisfied after the

application of the threat sequence. This is logically equivalent to the observation that a threat-

independent support that is followed by a sequence of threats can be removed if φ does not hold

after the whole sequence.
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2.4.2 Threat-independent and Permutable Threats

The presence of permutable and threat-independent threats is an important requirement to effi-

ciently solve the verification problem previously defined in Section 2.1.

Definition 5. Permutable threats

Let φ be a formula, ts ∈ Seq(THRTs(φ)) a sequence of threats. We denote by ρ(ts) the set of all

permutations of threat sequence ts. Threat sequence ts is called permutable iff

∀s ∈ S : (ts(s) |= φ ↔ ∀ts′ ∈ ρ(ts) : ts′(s) |= φ)

Analogous to the definition of threat-independent supports (see Definition 4) we introduce

the notion of threat-independent threats:

Definition 6. Threat-independent threats

A threat thr ∈ THRTs(φ) is called threat-independent iff

∀ts ∈ Seq(THRTs(φ) \ {thr}), ∀s ∈ S : ts(s) 6|= φ→ ts(thr(s)) 6|= φ

We denote by THRTsind(φ) ⊆ THRTs(φ) ⊆ E the set of all threat-independent threats of φ.

Notice that the definition of a threat-independent threat further narrows down the definition

of a threat (Definition 3). If threat sequence ts is the empty sequence, Definition 6 equals the

definition of a NP effect. For a threat to be also threat-independent, the original definition of

a NP effect (s 6|= φ → thr(s) 6|= φ) still has to hold after the same but arbitrary sequence of

threats (not comprising thr) has been applied to the states on both sides of the implication (s

and thr(s)).

Differently speaking, Definition 6 is equal to the observation that a threat-independent threat

can be inserted before an arbitrary sequence of threats if φ has already been falsified after the

application of the threat sequence. This is logically equivalent to the observation that a threat-

independent threat at the beginning of a threat sequence can be removed if φ does already hold

after the complete sequence of threats has been applied.

We now prove a corollary of Definition 6 that provides a simple criterion to determine threat-

independence of threats:

Corollary 5. Permutable threats imply threat-independence

Let φ be a formula and THRTs(φ) permutable. Then, THRTsind(φ) = THRTs(φ), i.e., all threats

are threat-independent.

Proof. Let thr ∈ THRTs(φ) be an arbitrary threat. To prove:

∀ts ∈ Seq(THRTs(φ) \ {thr}), ∀s ∈ S : ts(s) 6|= φ→ ts(thr(s)) 6|= φ

Without limitations let ts = 〈t1, . . . , tn〉, then

ts(s) 6|= φ → ts(thr(s)) 6|= φ ≡ts=〈t1,...,tn〉

ts(s) 6|= φ → 〈thr, t1, . . . , tn〉(s) 6|= φ ≡THRTs(φ) permutable

ts(s) 6|= φ → 〈t1, . . . , tn, thr〉(s) 6|= φ ≡ts=〈t1,...,tn〉

ts(s) 6|= φ → thr(ts(s)) 6|= φ ≡s′=ts(s)

s′ 6|= φ → thr(s′) 6|= φ

The last formula is trivially satisfied because thr is a threat and thus a negatively-preserving

effect (see Definition 2). �
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2.4.3 Effect-independent Neutrals

This section introduces a stronger definition of neutrals, so called effect-independent neutrals.

A neutral effect preserves the evaluation of a formula when applied to any state. This also holds

for an effect-independent neutral, but, in addition to that, any sequence of effects can be applied

to both sides of the implication while the implication still holds. More formally:

Definition 7. Effect-independent neutral

A neutral effect ntr ∈ NTRLs(φ) is called effect-independent iff

∀s ∈ S , ∀seq ∈ Seq(E \ {ntr}) : seq(s) |= φ ↔ seq(ntr(s)) |= φ

We denote by NTRLsind(φ) ⊆ NTRLs(φ) ⊆ E the set of all effect-independent neutrals of φ.

Notice that the definition of an effect-independent neutral goes beyond the definition of a

neutral effect. If the effect sequence seq is the empty sequence, Definition 7 equals the defini-

tion of a neutral effect (Definition 3, Equation 2.11). For a neutral to be also effect-independent,

the original definition (s |= φ ↔ ntr(s) |= φ) still has to hold after an arbitrary effect sequence

(not comprising ntr) has been applied to the states on both sides of the implication (s and ntr(s)).

Differently speaking, Definition 7 is equal to the observation that an effect-independent neu-

tral can be added at the beginning of any effect sequence while preserving the truth value of φ.

This is logically equivalent to the observation that an effect-independent neutral can be removed

from the beginning of a sequence of effects without changing the truth value of φ.

2.5 A Criterion for Always-satisfiability of Formulas

This section introduces a criterion to verify whether a formula φ holds under every possible

sequence of concurrent effects. The remainder of this section is organized as follows. In Sec-

tion 2.5.1 we define always-satisfiability of formulas. After that, several theorems involving the

roles of threat-independent supports, threat-independent threats, and effect-independent neutrals

when determining always-satisfiability are proven. Finally, a correct, and easily computable cri-

terion to determine always-satisfiability of a formula is given in Section 2.5.3.

2.5.1 Always-satisfiability of Formulas

Definition 8. Always-satisfiability of a formula

Let φ be a formula and s ∈ S a state. φ is called always-satisfiable iff φ holds on any state

evolving from the execution of effects in E to s in any order. More formally, φ is always-

satisfiable iff

∀seq ∈ Seq(E) : seq(s) |= φ

Notice that the term always-satisfiability is used instead of satisfiability to avoid confusion

with satisfiability as know from SAT solvers. A SAT solver computes an assignment of truth

values to the atoms of a formula such that the formula holds. In turn, in the context of this work,

a formula is always-satisfiable if it holds over the potentially factorial many states caused by

the application of effects in E to the initial state.
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AMBGs(φ) = ∅

SUPPs(φ) = SUPPsind(φ) = { e1
,

e4
,

e6 }

THRTs(φ) = THRTsind(φ) = { e2
,

e3
,

e7 }

NTRLs(φ) = NTRLsind(φ) = { e5
,

e8 }

φ is always-satisfiable

↔Definition 8

∀seq ∈ Seq(E) : seq(s) |= φ

↔E={e1 ,...,e8}, AMBGs(φ)=∅

1!+...+|E|! many sequences, thus O(|E|!)
︷                                                                                        ︸︸                                                                                        ︷

↔Theorem 6

∀seq ∈ Seq ({ e1
,

e2
,

e3
,

e4
,

e5
,

e6
,

e7
,

e8 }): seq(s) |= φ

O((|SUPPsind(φ)|+|THRTsind(φ)|)!)
︷                                                                                        ︸︸                                                                                        ︷

↔Theorem 7

∀seq ∈ Seq ({ e1
,

e2
,

e3
,

e4
,

e6
,

e7 }): seq(s) |= φ

O(|THRTsind(φ)|)
︷                                                  ︸︸                                                  ︷

↔

〈 〉 (s) |= φe3
,

e7
,

e2

ts(s) |= φ where ts ∈ Seq(THRTsind(φ)) and |ts| = |THRTsind(φ)|

Figure 2.5: Visualization of the proof of Theorem 8.
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2.5.2 Influence of Effects on Always-satisfiability

This section proves two important theorems that are later necessary to introduce an efficiently

computable criterion to decide always-satisfiability of formulas. First, we prove that the ap-

pearance of effect-independent neutral effects within a sequence of effects does not influence

the evaluation of a formula:

Theorem 6. Effect-independent neutrals negligible to decide always-satisfiability

Let φ be a formula, NTRLsind(φ) = NTRLs(φ) (all neutrals of φ effect-independent), and

AMBGs(φ) = ∅, then

∀seq ∈ Seq(E), ∀s ∈ S : (seq(s) |= φ ↔ (seq \ NTRLsind(φ))(s) |= φ)

Proof. Let seq = 〈e1, . . . , en〉 ∈ Seq(E) = Seq(THRTs(φ) ∪ SUPPs(φ) ∪ NTRLsind(φ)).

(1): ∀k ∈ {1, . . . , n} : ek < NTRLsind(φ). Then, seq = seq \ NTRLsind(φ), leaving nothing to

proof.

(2): ∃k ∈ {1, . . . , n} : ek ∈ NTRLsind(φ). Then,

〈e1, . . . , ek−1, ek, ek+1, . . . , en〉(s) |= φ ≡s′=〈e1 ,...,ek−1〉(s)

〈ek+1, . . . , en〉(ek(s
′)) |= φ ≡Def. 7

〈ek+1, . . . , en〉(s
′) |= φ ≡s′=〈e1 ,...,ek−1〉(s)

〈e1, . . . , ek−1, ek+1, . . . , en〉(s) |= φ

The complete proof follows by applying the equivalence steps to every neutral effect in the

effect sequence starting from the beginning of the effect sequence until all neutrals have been

eliminated.

�

We now prove another theorem that reduces the number of effect sequences that need to be

considered when deciding always-satisfiability. Instead of testing whether a formula holds on

all states that originate from the initial state by the application of any sequence of permutable

threats and threat-independent supports, the formula can be verified on a state that has seen the

execution of a randomly chosen sequence of all threats to the initial state.

Theorem 7. Threat-independent supports and permutable threats negligible to decide always-

satisfiability

Let φ be a formula, s ∈ S a state, and ts ∈ Seq(THRTs(φ)) an arbitrary threat sequence of length

|ts| = |THRTs(φ)|, i.e., ts comprises every threat in THRTs(φ) exactly once. Furthermore, let

THRTs(φ) be permutable and SUPPsind(φ) = SUPPs(φ) (all supports of φ threat-independent).

Then,

ts(s) |= φ ↔ ∀seq ∈ Seq(THRTs(φ) ∪ SUPPsind(φ)) : seq(s) |= φ

Proof. Direction←: This directly follows from the fact that

ts ∈ Seq(THRTs(φ) ∪ SUPPsind(φ))

Direction→: Assumption: ts(s) |= φ. To prove:

∀seq ∈ Seq(THRTs(φ) ∪ SUPPsind(φ)) : seq(s) |= φ

We proof this direction by showing that any sequence seq ∈ Seq(THRTs(φ) ∪ SUPPsind(φ)) can

be constructed from ts ∈ Seq(THRTs(φ)), where |ts| = |THRTs(φ)|, by the multiple application of
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three transformation operations (c1, c2, and c3) to threat sequence ts while positively preserving

the evaluation of φ. More formally, we show the existence of transformation operations c1, c2,

and c3 such that for any arbitrary sequence seq, seq = cb
3
(c2(c

a
1
(ts))) (a, b ∈ N0 the number of

applications of c1 and c3 necessary to create seq) and

ts(s) |= φ → cb3(c2(c
a
1(ts)))(s) |= φ

(Step 1, c1): Let ts = 〈t1, . . . , tn〉 ∈ Seq(THRTs(φ)), |ts| = |THRTs(φ)|. Because THRTs(φ) is per-

mutable by assumption, we obtain THRTsind(φ) = THRTs(φ) (all threats are threat-independent)

due to Corollary 5. The first step removes all threats from ts that are not contained in seq any-

more by the multiple application of c1, i.e., c1 removes a single threat tk ∈ ts, tk < seq. Let

〈t1, . . . , tn〉(s) |= φ. To prove: c1(〈t1, . . . , tn〉)(s) |= φ

〈t1, . . . , tn〉(s) |= φ ≡

〈t1, . . . , tk−1, tk, tk+1, . . . , tn〉(s) |= φ ≡s′=〈t1 ,...,tk−1〉(s)

〈tk+1, . . . , tn〉(tk(s
′)) |= φ →Def. 6, tk ∈ THRTsind(φ)

〈tk+1, . . . , tn〉(s
′) |= φ ≡s′=〈t1 ,...,tk−1〉(s)

〈t1, . . . , tk−1, tk+1, . . . , tn〉(s) |= φ ≡

c1(〈t1, . . . , tn〉)(s) |= φ

By applying c1 a−times (starting from the beginning of the threat sequence) a new threat se-

quence ts∗ = 〈t1, . . . , tn〉 \ {t
′
1, . . . , t

′
k
} is obtained where {t′1, . . . , t

′
k
} ⊆ THRTsind(φ) are the threats

of ts that are not present in seq anymore. Thus, ts∗(s) |= φ.

(Step 2, c2): The second step reorders the threats in ts
∗ in such a way that their order matches

the order of threats in seq \ SUPPsind(φ). Let ρ be the permutation that describes the reordering.

We chose ρ = c2. It remains to be proven that:

ts∗(s) |= φ → (ρ(ts∗))(s) |= φ.

This directly follows from Definition 5 because by assumption THRTs(φ) is permutable.

(Step 3, c3): Let ts
∗∗ = ρ(ts∗) = c2(c

a
1
(ts)) be the threat sequence after the application of Step

1 and Step 2 to ts. To finally obtain seq from ts∗∗, every support in seq has to be added to ts∗∗ at

the appropriate position. To prove:

∀supp ∈ SUPPsind(φ) :

〈t1, . . . , tk−1, tk, tk+1, . . . , tn〉(s) |= φ → 〈t1, . . . , tk−1, supp, tk, . . . , tn〉(s) |= φ

where tk is the threat in threat sequence ts
∗∗ before which supp is to be inserted. Then,

〈t1, . . . , tk−1, tk, tk+1, . . . , tn〉(s) |= φ ≡s′=〈t1 ,...,tk−1〉(s)

〈tk, . . . , tn〉(s
′) |= φ →Def. 4, supp ∈ SUPPsind(φ)

〈tk, . . . , tn〉(supp(s
′)) |= φ ≡s′=〈t1 ,...,tk−1〉(s)

〈t1, . . . , tk−1, supp, tk, . . . , tn〉(s) |= φ
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By applying the steps above to every supp ∈ seq starting from the beginning of the threat

sequence we achieve by construction that seq = cb
3
(c2(c

a
1
(ts))) and by applying each of the three

steps above to every sequence seq ∈ Seq(THRTs(φ) ∪ SUPPsind(φ)) we finally obtain that

ts(s) |= φ → ∀seq ∈ Seq(THRTs(φ) ∪ SUPPsind(φ)) : seq(s) |= φ

�

2.5.3 An Always-satisfiability Criterion for Formulas

This section provides an efficiently computable criterion to determine always-satisfiability of a

formula.

Theorem 8. An efficient criterion to determine always-satisfiability of formulas

Let φ be a formula, s ∈ S a state, and ts an arbitrary sequence of threats, such that ts ∈

Seq(THRTs(φ)) and |ts| = |THRTs(φ)|. Furthermore, let

• AMBGs(φ) = ∅

• SUPPsind(φ) = SUPPs(φ) (all supports of φ are threat-independent supports)

• NTRLsind(φ) = NTRLs(φ) (all neutrals of φ are effect-independent effects)

• THRTs(φ) permutable

Then,

φ is always-satisfiable iff ts(s) |= φ

Proof.

φ is always-satisfiable ≡Def. 8

∀seq ∈ Seq(E) : seq(s) |= φ ≡AMBGs(φ)=∅&Prop. 2 (4.)

∀seq ∈ Seq(SUPPsind(φ) ∪ THRTs(φ) ∪ NTRLsind(φ)) : seq(s) |= φ ≡Theorem 6

∀seq ∈ Seq(THRTs(φ) ∪ SUPPsind(φ) ∪ NTRLsind(φ)) :

(seq \ NTRLsind(φ))(s) |= φ ≡

∀seq ∈ Seq(THRTs(φ) ∪ SUPPsind(φ)) : seq(s) |= φ ≡Theorem 7

ts(s) |= φ

where ts ∈ Seq(THRTs(φ)) and |ts| = |THRTs(φ)|. �

Theorem8 provides a criterion to determine whether a formula is always-satisfiable by look-

ing at a single state instead of factorial many. To determine the truth value of a formula under

any combination of effects in E, it suffices to apply all threats of the formula in any order to the

initial state and evaluate the formula on that state. However, for Theorem 8 to be applicable,

threats, supports, neutrals, and ambiguous effects need to be determined in respect to formula

φ. Performing this categorization can be very difficult for complex formulas. In the subse-

quent section we simplify Theorem 8 for formulas that are built of atomic propositions using

the standard logical connectors ∧ and ∨.
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2.6 An Efficient Criterion for Always-satisfiability of Com-

pound Formulas

In this section we introduce a recursive criterion to determine always-satisfiability of compound

formulas.

Theorem 9. Efficient criterion to determine always-satisfiability of compound formulas

Let

φ = pdci | ψ1 ∧ ψ2 | φ1 ∨ φ2.

be a formula in negation normal form where pdci ∈ {pdc1, . . . , pdcn}, n ∈ N, are atomic propo-

sitions that either hold or not in a state s ∈ S .

• Let ψ1 and ψ2 be arbitrary formulas. Furthermore, let φ1 and φ2 be formulas such that

either E ⊆ NTRLs(φ1) (all effects are neutral effects of φ1) or E ⊆ NTRLs(φ2) (all effects

are neutral effects of φ2)

• Let tsi ∈ Seq(THRTs(pdci)) such that |tsi| = |THRTs(pdci)|

• For every atomic proposition pdc ∈ {pdc1, . . . , pdcn} let

– AMBGs(pdc) = ∅

– THRTs(pdc) permutable

– SUPPsind(pdc) = SUPPs(pdc) (all supports of pdc are threat-independent)

– NTRLsind(pdc) = NTRLs(pdc) (all neutrals of pdc are effect-independent)

Then,

1. pdci ∈ {pdc1, . . . , pdcn} is always-satisfiable iff tsi(s) |= pdci.

2. ψ1∧ψ2 is always-satisfiable iff ψ1 is always-satisfiable and ψ2 is always-satisfiable.

3. φ1∨φ2 is always-satisfiable iff φ1 is always-satisfiable or φ2 is always-satisfiable.

Proof. We proof each statement of the theorem:

1. Directly follows from the assumption and Theorem 8.

2. For ψ1 ∧ ψ2:

(ψ1 ∧ ψ2) is always-satisfiable ≡Def. 8

∀seq ∈ Seq(E) : seq(s) |= (ψ1 ∧ ψ2) ≡

∀seq ∈ Seq(E) : (seq(s) |= ψ1 ∧ seq(s) |= ψ2) ≡∀ and ∧ distributive

(∀seq ∈ Seq(E) : seq(s) |= ψ1) ∧ (∀seq ∈ Seq(E) : seq(s) |= ψ2) ≡Def. 8

(ψ1 is always-satisfiable) ∧ (ψ2 is always-satisfiable)
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Legend: n=neutral, s=support, t=threat, a=ambiguous

For example: Es,t = SUPPs(φ1) ∩ THRTs(φ2)

NTRLs(φ1)

NTRLs(φ2)

E ⊆ NTRLs(φ1) or

E ⊆ NTRLs(φ2)Es,s Es,t Es,n Es,a

Et,s Et,t Et,n Et,a

En,s En,t En,n En,a

Ea,s Ea,t Ea,n Ea,a

Figure 2.6: Limited types of effects (shaded gray) that are allowed to exist in respect to formu-

las φ1 and φ2 such that the efficient verification of formula φ1 ∨ φ2 remains feasible

using Theorem 9 and Lemma10.

3. For φ1 ∨ φ2 and E ⊆ NTRLs(φ1) or E ⊆ NTRLs(φ2):

(φ1 ∨ φ2) is always-satisfiable ≡Def. 8

∀seq ∈ Seq(E) : seq(s) |= (φ1 ∨ φ2) ≡

∀seq ∈ Seq(E) : (seq(s) |= φ1 ∨ seq(s) |= φ2) ≡Lemma10

(∀seq ∈ Seq(E) : seq(s) |= φ1) ∨ (∀seq ∈ Seq(E) : seq(s) |= φ2) ≡Def. 8

(φ1 is always-satisfiable) ∨ (φ2 is always-satisfiable)

�

Theorem9 can be used to efficiently verify formulas compound of atomic propositions with

the logical operators ∧ and ∨. Lemma10, which has been used in the proof of Theorem 9,

remains to be proven.

Lemma 10. Always-satisfiability of formulas comprising ∨

Let s ∈ S be an arbitrary state, φ1 and φ2 formulas such that E ⊆ NTRLs(φ1) (all effects are

neutrals of φ1) or E ⊆ NTRLs(φ2) (all effects are neutrals of φ2). Then,

∀seq ∈ Seq(E) : (seq(s) |= φ1 ∨ seq(s) |= φ2) ↔

(∀seq ∈ Seq(E) : seq(s) |= φ1) ∨ (∀seq ∈ Seq(E) : seq(s) |= φ2)

Proof. We proof both cases (E ⊆ NTRLs(φ1) and E ⊆ NTRLs(φ2)) separately and for both

directions at the same time.

• Let E ⊆ NTRLs(φ1). Then,

∀seq ∈ Seq(E) : (seq(s) |= φ1 ∨ seq(s) |= φ2) ≡E⊆NTRLs(φ1)

∀seq ∈ Seq(E) : (s |= φ1 ∨ seq(s) |= φ2) ≡

s |= φ1 ∨ (∀seq ∈ Seq(E) : seq(s) |= φ2) ≡E⊆NTRLs(φ1)

(∀seq ∈ Seq(E) : seq(s) |= φ1) ∨ (∀seq ∈ Seq(E) : seq(s) |= φ2)
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• Let E ⊆ NTRLs(φ2). Then,

∀seq ∈ Seq(E) : (seq(s) |= φ1 ∨ seq(s) |= φ2) ≡E⊆NTRLs(φ2)

∀seq ∈ Seq(E) : (seq(s) |= φ1 ∨ s |= φ2) ≡

(∀seq ∈ Seq(E) : seq(s) |= φ1) ∨ s |= φ2 ≡E⊆NTRLs(φ2)

(∀seq ∈ Seq(E) : seq(s) |= φ1) ∨ (∀seq ∈ Seq(E) : seq(s) |= φ2)

�

2.7 Conclusions

In this chapter we introduced the definitions and theorems of extended partial-order reduc-

tion, an extended version of the partial-order reduction model checking paradigm. Extended

partial-order reduction enables the efficient verification of CTL formulas of type ∀�φ and LTL

formulas of type �φ in a state transition system with effects executable at any time but at most

once. Different to partial-order reduction, extended partial-order reduction does not require

state commutativity and the stutter criterion to hold, but further assumptions between effects

and atomic propositions / formulas need to hold.

We showed that extended partial-order reduction is applicable in cases where partial-order

reduction fails to further reduce the search space. Extended partial-order reduction was proven

to be correct and Theorem 9 provides a simple criterion to compute always-satisfiability of

a formula bottom up starting with the atomic propositions. Left unanswered in this chapter

remains the question for which kind of effects and formulas extended partial-order reduction

can be applied. In the subsequent chapter we introduce a many-sorted logic for the efficient

verification of IT change operations that satisfies the requirements of extended partial-order

reduction.
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CHAPTER 3

A Many-Sorted Logic for the Efficient Verification of

IT Change Operations

This chapter introduces the change verification logic, a many-sorted logic adhering to the re-

quirements of extended partial-order reduction (see Chapter 2) that can be used to efficiently

verify IT change operations.

Section 3.1 provides syntax and semantics of the change verification logic. After that, formal

definitions of change activities, safety constraints, and the verification problems solvable with

the change verification logic are provided in Section 3.2. Section 3.3 introduces the effects and

predicates of the change verification logic and Section 3.4 proves that they comply with the

requirements of extended partial-order reduction.1

3.1 A Many-Sorted Logic for IT Change Verification

This section introduces syntax and semantics of an efficiently verifiable many-sorted change

verification logic.

3.1.1 Syntax

This section introduces the syntax of the many-sorted change verification language. Whenever

appropriate, we highlight deviations of the change verification logic from the usual definition

of many-sorted logic.

Definition 9. Signature

A signature Σ is a tuple Σ = (S , P,C,PREDs) where

1. S = {σ1, . . . , σn} is a nonempty set of sorts.

2. P = {p, l, p1, . . . , pn} is a nonempty set of constant symbols whose sorts are sorts in S .

1Parts of this chapter previously appeared in [51].
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3. C = {c, c1,∆c1, . . . , cn,∆cn} is a nonempty set of fixed-constant symbols whose sorts are

sorts in S .

4. PREDs is a nonempty set of predicate symbols whose arities are constructed using sorts

of S .

For a signature Σ = (S , P,C,PREDs) we also write ΣS for S , ΣP for P, ΣC for C, and ΣPREDs for

PREDs.

Notice that the definition of a signature in change verification logic differs in two aspects

compared to signatures in ordinary many-sorted logic: First, functions are not comprised in

the signatures of the change verification language. Second, we distinguish two different types

of constants: P (called constants describing properties of Configuration Items) and C (called

fixed-constants) that later will be interpreted differently (Definitions 12 and 13).

Definition 10. Σ-terms

Let Σ be a signature. The set of Σ-terms of sort σ is defined as follows.

• Every constant symbol p ∈ ΣP of sort σ is a Σ-term of sort σ.

• Every fixed-constant symbol c ∈ ΣC of sort σ is a Σ-term of sort σ.

Different to Σ-terms in ordinary many-sorted logic, function symbols and variables are not

comprised in the Σ-terms of the verification language.

Definition 11. Σ-formulas

Σ-formulas are the strings obtained by finitely many applications of the following rules:

1. If pdc ∈ ΣPREDs is a predicate symbol of arity σ1× . . .×σn and ti, i ∈ {1, . . . , n} is a Σ-term

of sort σi, then pdc(t1, . . . , tn) is a Σ-formula.

2. If φ is a Σ-formula, then ¬φ is a Σ-formula.

3. If φ and ψ are Σ-formulas, then (φ ∧ ψ), (φ ∨ ψ), (φ → ψ), and (φ ↔ ψ) are Σ-formulas

as well.

Different to Σ-formulas in ordinary many-sorted logic, Σ-formulas in change verification

logic do not comprise quantifiers over variables as the change verification language does not

comprise variables. In the remainder of this work we assume without limitations that every

Σ-formula φ is given in negation normal form. For Σ-formulas we use the letters φ and ψ.

3.1.2 Semantics

This section introduces the semantics of the IT change verification logic. We start by introduc-

ing Σ-interpretations in Definition 12. After that, Definition 13 describes states / configurations

of the CMDB followed by effects (Definition 14. Finally, Definition 15 describes the semantics

of formulas in change verification logic.

Definition 12. Σ-interpretation

Let Σ be a signature. A Σ-interpretationA is a map satisfying the following properties:

1. Each sort σ ∈ ΣS is mapped to a nonempty domain DAσ .
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2. Each constant symbol p ∈ ΣP of sort σ is mapped to an element pA ∈ DAσ .

3. Each fixed-constant symbol c ∈ ΣC of sort σ is mapped to an element cA ∈ DAσ

4. Each predicate symbol pdc ∈ ΣPREDs of arity σ1 × . . . × σn, n ∈ N, is mapped to a subset

pdcA ⊆ DAσ1
× . . . × DAσn

Different to Σ-interpretations of ordinary many-sorted logic, a Σ-interpretation in change

verification logic does not comprise mappings for variable symbols or function symbols as both

do not exist in verification logic.

Definition 13. States

Let Σ be a signature. Let D = (Dσ)σ∈ΣS be a family of pre-defined domains where each Dσ is

a non-empty set; let V = (vc)c∈ΣC be a family of pre-defined constant values where vc ∈ Dσ if c

is of sort σ and V ′ = (v′p)p∈ΣP a family of constant values where v′p ∈ Dσ if p is of sort σ; let

R = (Rpdc)pdc∈ΣPREDs be a family of pre-defined predicate relations where Rpdc ⊆ Dσ1
× · · · × Dσn

if pdc has arity σ1 × · · · × σn.

The Σ-(D,V,V ′,R)-states, denoted by States(Σ,D,R,V,V ′), are given by the set of Σ - inter-

pretationsA such that

• DAσ = Dσ for all σ ∈ ΣS

• cA = vc for all c ∈ Σ
C

• pdcA = Rpdc for all pdc ∈ Σ
PREDs

• ∀(a1, a2) ∈ A ×A, a1 , a2 : ∃v′p ∈ V
′ : v′a1p , v′a2p

In the remainder of this work we denote by D
def
σ = Dσ the default domain of sort σ, by

cdef = vc the default interpretation of fixed-constant c and by pdcdef = Rpdc the default interpre-

tation of predicate pdc.

Definition 14. Effects

An Σ-(D,V,V ′,R)-effect is given by a function e : States(Σ,D,R,V,V ′)→ States(Σ,D,R,V,V ′).

For Configuration Management Databases, we assume some signature ΣCMDB and some

pre-defined domains, constant values, and predicate relations (DCMDB,VCMDB,V
′
CMDB

,RCMDB)

for ΣCMDB. The signature captures the configuration of the IT infrastructure and services as an

object relational graph. Clearly, the signature and the previous definitions depend on the actual

CMDB under consideration.

For the remainder of this section, we assume one fixed set-up and therefore abbreviate

States(ΣCMDB,DCMDB,RCMDB,VCMDB,V
′
CMDB

) by CMDBs. In particular, a CMDBs-effect is a

function e : CMDBs→ CMDBs.

Definition 15. Semantics of change verification language

Let cmdb ∈ CMDBs be a Σ-interpretation and φ a Σ-formula. Without limitations let φ be in

negation normal form. We write

cmdb |= φ
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iff φ evaluates to true for Σ-interpretation cmdb where

cmdb |= pdc(t1, . . . , tn) iff (tcmdb1 , . . . , tcmdbn ) ∈ pdcdef

cmdb |= φ ∧ ψ iff cmdb |= φ and cmdb |= ψ

cmdb |= φ ∨ ψ iff cmdb |= φ or cmdb |= ψ

3.2 Change Activities, Safety Constraints, and IT Change

Verification Problems

This section introduces the logical specification of change activities and safety constraints in

verification logic (Section 3.2.1). After that, Section 3.2.2 introduces three IT change verifica-

tion problems that can be efficiently decided using the change verification logic and the theo-

rems of extended partial-order reduction.

3.2.1 IT Changes and Safety Constraints

We provide formal definitions of change activities and safety constraints:

Definition 16. Change activity

A change activity act is a tuple act = (φact, Eact) where

• φact is a Σ-formula in change verification logic (see Definition 11) that describes the pre-

condition of change activity act.

• Eact is a finite set of Σ-(DCMDB,VCMDB,V
′
CMDB

,RCMDB)-effects that describe the effects of

act on the CMDB.

We denote by ACTs the set of all change activities.

Definition 17. Safety constraint (SC): A safety constraint sc is a Σ−formula φsc.

We denote by SCs the set of all safety constraints.

3.2.2 Verification Problems for IT Change Management

This section defines three verification problems in the context of IT Change Management that

can be efficiently solved using extended partial-order reduction and the change verification

logic.

Definition 18. Let ACTs = {act1, . . . , actn}, acti = (φacti , Eacti), be a set of pending, i.e., yet

to execute, IT change activities and SCs = {φsc1 , . . . , φsck } a set of safety constraints, i.e., Σ-

formulas. Let cmdbinit be the current configuration of the CMDB, i.e., a Σ-interpretation. We

define the following three verification problems for IT Change Management:

• IT change verification problem:

For every safety constraint φsc ∈ SCs : Does φsc hold on all configurations of the CMDB

evolving from cmdbinit by the execution of effects of change activities in any order and
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length?

More formally deciding whether

∀φsc ∈ SCs, ∀seq ∈ Seq(Eact1 ∪ . . . ∪ Eactn) : seq(cmdbinit) |= φsc

holds.

This problem is equivalent to model checking the computation tree logic (CTL) formula

∀�φsc or the linear temporal logic (LTL) formula �φsc for every safety constraint formula

φsc ∈ SCs

• IT change conflict detection problem:

For every change activity acti ∈ ACTs: Is acti feasible, i.e., does φacti hold on every

configuration of the CMDB evolving from cmdbinit by the execution of effects of change

activities in ACTs \ {act} in any order and length?

More formally verifying whether

∀acti ∈ ACTs, ∀seq ∈ Seq((Eact1 ∪ . . . ∪ Eact1) \ Eacti) : seq(cmdbinit) |= φacti

holds. This problem is equivalent to model checking the computation tree logic (CTL)

formula ∀�φacti or the linear temporal logic (LTL) formula �φacti for every precondition

φacti of a change activity acti ∈ ACTs.

• IT change verification and conflict detection problem:

Solve both problems at the same time. This problem is equivalent to model checking all

previously mentioned formulas.

All problems can be solved using the previously introduced Theorem 9 (Section 2.6). How-

ever, for Theorem 9 to be applicable to the change verification logic, the predicates and effects

of the change verification logic need to comply with the requirements of extended partial-order

reduction. The next section introduces the predicates and effects and proves their compliance

with the theorems underlying extended partial-order reduction.

3.3 Effects and Predicates of Change Verification Logic

3.3.1 Predicates

This section describes in more detail the predicates of the change verification logic. They are the

basic building blocks of Σ-formulas (see Definition 11) used in the logical specification of safety

constraints and change activities. Table 3.1 provides an overview of the predicates supported by

the change verification logic. The predicates are categorized as follows.

• Arithmetic predicates: The change verification language supports four binary predicates

(≥, >,≤, and <) to compare number constants (i.e., properties of Configuration Items)

against constants or fixed-constants. For example, let p1 be a constant and p2 a constant

or fixed-constant, then p1 ≥ p2, p1 > p2, p1 ≤ p2, and p1 < p2 are valid formulas of the

number comparison predicates. The predicates operate upon a generic sort numbers that

can be interpreted by a Σ-interpretation with different totally ordered sets, usuallyN,Z,Q,

or R.
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Arithmetic predicates are frequently used to model constraints about the availability of

resources or to determine the cheapest route offered to a network. For example, con-

sider mem to be a constant that describes the memory property of a physical machine and

1024 a fixed-constant. Then, mem ≥ 1024 describes the predicate that checks whether

the physical machine has at least 1024 MB of memory. Similarly, let cost1 and cost2 be

properties of two network interface Configuration Items describing the cost of an inter-

face. Then, cost1 > cost2 describes a predicate that checks whether the cost of the first

interface is more expensive than that of the second.

• Checking the value of properties: The change verification language supports predicates

to determine whether a property of a Configuration Item, i.e., a constant, holds the value

of a fixed-constant or not. For example, let p be a constant and c a fixed-constant, then

hasValue(p, c) is true in a configuration cmdb iff property p holds the value cdef of fixed-

constant c, i.e., iff pcmdb = cdef . Otherwise predicate ¬hasValue(p, c) is true. Predicates

of that type are useful when to determine whether 1:N relationships among Configuration

Items hold, e.g., if a virtual machine runs on a specific physical machine or if a configu-

ration parameter is set to a specific value.

For example, let runs_on be the property of a virtual machine Configuration Item that

references the physical machine the virtual machine runs on. Furthermore let pm be the

fixed-constant describing a physical machine. Then, predicate hasValue(runs_on, pm)

checks whether the virtual machine runs on pm.

• Checking lists and sets for elements: The change verification language supports pred-

icates to determine whether a list or set property of a Configuration Item, i.e., a list or

set constant, contains the value of a fixed-constant or not. For example, let l be a list or

set constant and c a fixed-constant, then contains(l, c) is true in a Σ-configuration cmdb

iff lcmdb contains cdef . Otherwise predicate ¬contains(l, c) is true. The list predicates are

useful when to determine whether N:M relationships among CIs hold or to model a list

of protocols that are routed using a routing table.

Readers interested in specific example formulas that make use of the predicates to describe

change activities and safety constraints in change verification logic are referred to Section 5.1,

which provides change activities and safety constraints of the Amazon outage.

3.3.2 Effects

This section describes the effects of the change verification logic. Effects describe how change

activities modify properties of Configuration Items stored in the CMDB or, more formally, how

the value of constants assigned by Σ-interpretations are altered by the application of effects.

Table 3.2 provides an overview of the effects supported by the change verification logic. The

effects are categorized as follows.

• Arithmetic effects: The change verification language supports the modification of num-

ber properties of Configuration Items using relative increase and decrease effects. For ex-

ample, let p be a number constant, e.g., interpreted in N,Q,Z, or R by a Σ-interpretation.

Furthermore let ∆c be a fixed number constant, i.e., a constant whose value is always the

same in any CMDB. Then, inc(p,∆c) and dec(p,∆c) are effects that increment / decre-

ment the value of p by the value of ∆c, ∆cdef > 0. Thus, for an arbitrary cmdb ∈ CMDBs

pinc(p,∆c)(cmdb) = pcmdb + ∆cdef and pdec(p,∆c)(cmdb) = pcmdb − ∆cdef .
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The arithmetic effects can be used to describe resource allocation changes, e.g., the de-

crease of RAM or CPU resources caused by a deployment change activity or the decrease

/ increase of the metric of a network interface. For example, consider mem to be a con-

stant that describes the memory property of a physical machine and 1024 to be a fixed-

constant. Then, dec(mem, 1024) describes an effect that decreases the value of mem by

1024. Such an effect occurs, for example, when describing a change activity to deploy a

virtual machine on a physical machine.

• Setting the value of properties: The change verification logic supports effects that as-

sign the value of a fixed-constant to a constant, i.e., effects to assign new values to the

properties of Configuration Items. For example, let p be a constant and c a fixed-constant,

then set(p, c) is the effect that assigns property p of a Configuration Item the value cdef of

fixed-constant c, i.e., for a cmdb ∈ CMDBs : pset(p,c)(cmdb) = cdef . This effect can be used,

for example, when a virtual machine is assigned to a physical machine or an application

is configured to use a specific port.

For example, consider the property runs_on of a virtual machine Configuration Item that

describes the physical machine the virtual machine runs on. A change activity to migrate

a virtual machine to a new host can use the effect set(runs_on, pm) to assign the value of

fixed-constant pm to the runs_on property of the virtual machine.

• Set and list effects: The change verification logic supports effects to add and remove

fixed-constants from list/set constants, i.e., from list/set properties of Configuration Items.

For example, let l be a list or set and c a fixed-constant, then add(l, c) and remove(l, c)

are the effects that add/remove the value cdef of fixed-constant c to/from the value of list

l. Add and remove effects to change sets and lists can be frequently used to describe

relationships among many Configuration Items.

For example, consider a property hosts of type set of a physical machine Configuration

Item that holds the virtual machines running on the physical machine. For a fixed-constant

vm (describing a virtual machine) we can use the add(hosts, vm) effect to add the value of

vm to the set of virtual machines running on the physical machine. Such an effect can be

used to describe a migration change that assigns vm to a different physical machine.

We successfully used the effects of the change verification logic to model a rich set of

different IT change activities in our previous work [45, 46, 47, 48, 49, 50, 51]. The effects of

the change verification logic can describe a wide range of change activities because they cover

many modifications to an object-oriented instance graph, frequently used to describe the state

of a data center in commercial CMDB products [60] or object-oriented IT infrastructure graphs

[21]. Thus, assuming that a change activity has an impact on the configuration of a CMDB, it

can be modeled using all effects provided by the change verification logic (see Table 3.2).

3.4 Compliance of Change Verification Logic with Extended

Partial-Order Reduction

This section proves that the predicates and effects of the change verification logic satisfy the

requirements imposed by extended partial-order reduction in Chapter 2.
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3.4.1 Relationships between Effects and Predicates

Predicates

Effects p1 ≥ / > p2 p1 ≤ / < p2

inc(p2,∆c2) threat(¬d) support(¬d)

inc(p1,∆c1) support(¬d) threat(¬d)

dec(p2,∆c2) support(¬d) threat(¬d)

dec(p1,∆c1) threat(¬d) support(¬d)

(a) Arithmetic effects and predicates. ∆c
def

2
> 0 and

∆c
def

1
> 0.

Predicates

Effects hasValue(p, c1) ¬hasValue(p, c1)

set(p, c1) support(d) threat(d)

set(p, c2) threat(d) support(d)

(b) Setting and checking of properties. c
def

1
, c

def

2
.

Predicates

Effects contains(p, c1) ¬contains(p, c1)

add(p, c1) support(d) threat(d)

add(p, c2) neutral neutral

remove(p, c1) threat(d) / 1threat(¬d) support(d) / 1support(¬d)

remove(p, c2) neutral neutral

(c) Effects and predicates on sets and 1lists. c
def

1
, c

def

2
.

Legend:

d=decisive

¬d=indecisive
1
=list op

(d)

Table 3.3: Support, threat, and neutral relationships among the effects and predicates of the IT

change verification logic.

Proposition 11. Correctness of support, threat, and neutral relationships:

The support, threat, and neutral relationships among effects and predicates as depicted in Ta-

ble 3.3 are correct.

Proof. Proofing Table 3.3 is a straightforward process that is achieved by proofing the defini-

tions of threats, neutrals, and supports for every entry in the subtables of Table 3.3. For the sake

of brevity we do not provide the proofs here but in AppendixA.4. �

3.4.2 Predicates Have No Ambiguous Effects

Corollary 12. Predicates do not have ambiguous effects

Let pdc be an arbitrary predicate in Table 3.3. Then, AMBGs(pdc) = ∅.

Proof. Let pdc and e be a predicate effect pair within Table 3.3a, Table 3.3b, or Table 3.3c.

Then, according to Proposition 11

e ∈ (SUPPs(pdc) ∪ THRTs(pdc) ∪ NTRLs(pdc)).

Let pdc and e be a predicate effect pair from different tables. Then, e ∈ NTRLs(pdc) because

we disallow the mixture of predicates and effects across different categories of effects and pred-

icates, i.e., across different tables (most of them do not make sense anyway as they are defined

on different sorts).

�
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3.4.3 Supports of Predicates are Threat-independent

Proposition 13. Supports of predicates are threat-independent

Every support in Table 3.3 is threat-independent.

Proof. To prove:

∀ predicates pdc,

∀supp ∈ SUPPs(pdc),

∀cmdb ∈ CMDBs,

∀ts ∈ Seq(THRTs(pdc)) : ts(cmdb) |= pdc→ ts(supp(cmdb)) |= pdc

For ts = 〈〉: To prove: cmdb |= pdc → supp(cmdb) |= pdc. This is trivially satisfied by a

support which is positively-preserving (see Definition 1).

For n > 0 there are two cases:

(1) ∃i ∈ {1, . . . , n} : ti ∈ 〈t1, . . . , tn〉 and ti is a decisive threat to pdc. In this case according to

Corollary 1: ∀cmdb ∈ CMDBs : ts(cmdb) 6|= pdc which trivially satisfies the implication.

(2) ∀i ∈ {1, . . . , n} : ti ∈ 〈t1, . . . , tn〉 indecisively threatens pdc. We prove this case for every

predicate in Table 3.3 that has indecisive threats:

(2a) For p1 ≥ p2 or p1 > p2. Without limitations we only prove case p1 ≥ p2 because the proof

for p1 > p2 can be obtained from p1 ≥ p2 when ≥ is substituted by >. Let

ts(cmdb) |= p1 ≥ p2 ↔Def. 15 ≥def (p
ts(cmdb)

1
, p

ts(cmdb)

2
)

Then, it remains to be shown that

ts(supp(cmdb)) |= p1 ≥ p2 ↔Def. 15 ≥def (p
ts(supp(cmdb))

1
, p

ts(supp(cmdb))

2
)

for any support supp of predicate p1 ≥ p2, i.e., supp ∈ {inc(p1,∆c1), dec(p2,∆c2)}.

(2a1) Let supp = inc(p1,∆c1) where ∆c
def

1
> 0 is the absolute increase in p1. Then,

p
ts(inc(p1 ,∆c1)(cmdb))

1
= p

ts(cmdb)

1
+ ∆c

def

1
and

p
ts(inc(p1 ,∆c1)(cmdb))

2
= p

ts(cmdb)

2

With the assumption ≥def (p
ts(cmdb)

1
, p

ts(cmdb)

2
) we obtain

≥def (p
ts(cmdb)

1
, p

ts(cmdb)

2
) → ≥def (p

ts(cmdb)

1
+ ∆c

def

1
, p

ts(cmdb)

2
)

(2a2) Let supp = dec(p2,∆c2) where ∆c
def

2
> 0 is the absolute decrease in p2. Then,

p
ts(dec(p2,∆c2)(cmdb))

1
= p

ts(cmdb)

1
and

p
ts(dec(p2,∆c2)(cmdb))

2
= p

ts(cmdb)

2
− ∆c

def

2

Consequently with the assumption ≥def (p
ts(cmdb)

1
, p

ts(cmdb)

2
) we obtain

≥def (p
ts(cmdb)

1
, p

ts(cmdb)

2
) → ≥def (p

ts(cmdb)

1
, p

ts(cmdb)

2
− ∆c

def

2
)

(2b) For p1 ≤ p2 or p1 < p2. Without limitations we only proof case p1 ≤ p2 because the proof
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for p1 < p2 emerges from p1 ≤ p2 when ≤ is substituted for <. Because p1 ≤ p2 ≡ p2 ≥ p1, the

proof given in (2a) also holds for p1 ≤ p2 respectively p1 < p2 when exchanging p2 and p1.

(2c) For contains(l, c). The only indecisive threat to contains(l, c) is remove(l, c) on lists. Let

ts ∈ Seq(THRTs(contains(l, c))), |ts| = n, and ∀i ∈ {1, . . . , n} : ti = remove(l, c). The only

support for contains(l, c) is add(l, c). Thus, to prove:

∀cmdb ∈ CMDBs :

ts(cmdb) |= contains(l, c) → ts(add(l, c)(cmdb)) |= contains(l, c) ↔Def. 15

containsdef (lts(cmdb), cdef ) → containsdef (lts(add(l,c)(cmdb)), cdef )

For the left side of the implication to hold lcmdb needs to comprise at least n + 1 instances of

cdef , otherwise containsdef (lts(cmdb), cdef ) would not hold. Thus, ladd(l,c)(cmdb) comprises at least

n + 2 instances of cdef . Consequently, containsdef (lts(add(l,c)(cmdb)), cdef ) holds because l comprises

at least (n + 2) − n = 2 instances of cdef on configuration / Σ-interpretation ts(add(l, c)(cmdb)).

�

3.4.4 Threats of Predicates are Permutable

Proposition 14. Threats of predicates are permutable

Let pdc be a predicate in Table 3.3 and ts = 〈t1, . . . , tn〉 ∈ Seq(THRTs(pdc)) an arbitrary threat

sequence. Then, ts is permutable.

Proof. To prove:

∀cmdb ∈ CMDBs : (ts(cmdb) |= pdc ↔ ∀ts′ ∈ ρ(ts) : ts′(cmdb) |= pdc)

Let cmdb be an arbitrary configuration of the CMDB.

Direction←: trivial because ts ∈ ρ(ts)

Direction →: Let ts(cmdb) |= pdc. For ts(cmdb) |= pdc to hold, every ti ∈ ts needs to be an

indecisive threat, otherwise ts(cmdb) 6|= pdc due to Corollary 1. We prove this direction for

every predicate in Table 3.3 and any combination of indecisive threats.

(1) For integer arithmetic predicates we only proof the case for predicates p1 ≥ p2 and p1 > p2.

We note when changes need to be made to adapt the proof for p1 ≤ p2 or p1 < p2.

Let ts(cmdb) |= p1 ≥ p2, where ti ∈ ts and ti ∈ {inc(p2,∆c2), dec(p1,∆c1)}

(for p1 ≤ p2 and p1 < p2 : ti ∈ {inc(p1,∆c1), dec(p2,∆c2)}). Then,

∀ts′ ∈ ρ(ts) : (p
ts(cmdb)

2
= p

ts′(cmdb)

2
∧ p

ts(cmdb)

1
= p

ts′(cmdb)

1
)

because reordering inc(p2,∆c2) and dec(p1,∆c1) operations (likewise inc(p1,∆c1) and

dec(p2,∆c2) operations for predicates p1 ≤ p2 and p1 < p2) does not influence the value of

p2 and p1 after the application of any permutation of the threat sequence. Thus,

ts(cmdb) |= p1 ≥ p2 iffDef. 15

≥def (p
ts(cmdb)

1
, p

ts(cmdb)

2
) →

∀ts′ ∈ ρ(ts) : ≥def (p
ts′(cmdb)

1
, p

ts′(cmdb)

2
) iffDef. 15

∀ts′ ∈ ρ(ts) : ts′(cmdb) |= p1 ≥ p2
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(2) For list operations: Let pdc = contains(l, c). Then, ∀ti ∈ 〈t1, . . . , tn〉 : ti = remove(l, c)

because remove(l, c) is the only indecisive threat to contains(l, c). Then, every threat sequence

ts′ ∈ ρ(ts) removes the same number of instances of cdef . Consequently, ts(cmdb) |= pdc iff

ts′(cmdb) |= pdc for every permutation ts′ of ts. �

3.4.5 Neutrals of Predicates are Effect-independent

Proposition 15. Neutrals of predicates are effect independent

Every neutral effect in Table 3.3 is effect-independent.

Proof. Let pdc be a predicate and ntr ∈ NTRLs(pdc). To prove:

∀cmdb ∈ CMDBs, ∀seq ∈ Seq(E\{ntr}) : (seq(cmdb) |= pdc ↔ seq(ntr(cmdb)) |= pdc)

Let seq = 〈e1, . . . , en〉 ∈ Seq(E) and cmdb an arbitrary configuration of the CMDB.

(1) Let n = 0. To prove: ∀cmdb ∈ CMDBs : (cmdb |= pdc ↔ ntr(cmdb) |= pdc). This is

the definition of a neutral effect which is positively- (Definition 1) and negatively-preserving

(Definition 2).

(2) Let n > 0. We show this case for every combination of predicate pdc and neutral effect

ntr ∈ NTRLs(pdc).

(2a) Let pdc = contains(l, c1) respectively ¬contains(l, c1) and ntr = add(l, c2). Without lim-

itations we only prove the case for pdc = contains(l, c1). The proof remains the same for

¬contains(l, c1). To prove:

seq(cmdb) |= contains(l, c1) ↔ seq(add(l, c2)(cmdb)) |= contains(l, c1) iffDef. 15

containsdef (lseq(cmdb), c
def

1
) ↔ containsdef (lseq(add(l,c2)(cmdb)), c

def

1
)

Because c
def

1
, c

def

2
, the number of instances of c

def

1
is the same in lcmdb and ladd(l,c2)(cmdb).

Consequently, lseq(cmdb) and lseq(add(l,c2)(cmdb)) comprise the same number of instances of c
def

1
as

well. Thus,

containsdef (lseq(cmdb), c
def

1
) ≡ containsdef (lseq(add(l,c2)(cmdb)), c

def

1
).

(2b) Let pdc = contains(l, c1) respectively ¬contains(l, c1) and ntr = remove(l, c2). Without

limitations we only prove the case for pdc = contains(l, c1). The proof remains the same for

¬contains(l, c1). To prove:

seq(cmdb) |= contains(l, c1) ↔ seq(remove(l, c2)(cmdb)) |= contains(l, c1) iffDef. 15

containsdef (lseq(cmdb), c
def

1
) ↔ containsdef (lseq(remove(l,c2)(cmdb)), c

def

1
)

Because c
def

1
, c

def

2
, the number of instances of c

def

1
is the same in lcmdb and lremove(l,c2)(cmdb).

Consequently, lseq(cmdb) and lseq(remove(l,c2)(cmdb)) comprise the same number of instances of c
def

1
as

well. Thus,

containsdef (lseq(cmdb), c
def

1
) ≡ containsdef (lseq(remove(l,c2)(cmdb)), c

def

1
).

�
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CHAPTER 4

Algorithms for IT Change Verification

This chapter introduces efficient algorithms for several verification problems in the context of

IT Change Management. The algorithms are based on the theory of extended partial-order

reduction previously introduced in Chapter 2 and make use of the specification of IT change

activities and safety constraints in change verification logic (see Chapter 3).

First, we introduce an efficient algorithm and its complexity to compute always-satisfiability

of predicates in Section 4.1. Second, efficient algorithms solving various change verification

problems are described in Section 4.2. 1

4.1 An Efficient Algorithm to Compute Always-satisfiability

of Predicates

In this section we introduce the functions necessary to determine always-satisfiability for pred-

icates in the context of the change verification, the change conflict detection, and the mixed

change verification and conflict detection problems (see Section 3.2.2). Furthermore, we dis-

cuss the complexity to determine always-satisfiability of predicates for all three problems.

The remainder of this section is structured as follows. First, we explain the basic steps nec-

essary to determine always-satisfiability of predicates for the different verification problems in

Section 4.1.1. In Section 4.1.2 we introduce the functions necessary to implement these steps

and discuss their runtime complexity. In Section 4.1.3 we continue with a discussion of charac-

teristics of change activities and safety constraints such that linear-runtime complexity can be

achieved for the previously discussed steps and functions.

4.1.1 Steps to Determine Always-satisfiability

This section introduces the basic steps necessary to determine always-satisfiability of predicates

in the context of the IT change verification problem, the IT change conflict detection problem,

1Parts of this chapter previously appeared in [51].



44 4. Algorithms for IT Change Verification

Different verification problems

Functions to be called to IT change IT conflict Verification and

decide always-satisfiability verification detection conflict detect.

RecordPredicates(SCs) ! % !
RecordPredicates(ACTs) % ! !
RecordEffects(ACTs) ! ! !
DetermineAlwSatPred(SCs) ! % !
DetermineAlwSatPred(ACTs) % ! !

Table 4.1: Functions that need to be called (from top to bottom) to compute always-satisfiability

of all predicates in formulas of safety constraints and change activities depending on

the verification problem to be solved (see Definition 18).

and the mixed change verification and conflict detection problem. Table 4.1 depicts the steps,

i.e., function calls, that need to be executed to determine always-satisfiability of predicates

depending on the verification problem. To determine always-satisfiability of predicates, three

steps are necessary:

1. Record predicates for which always-satisfiability needs to be decided (Function Record-

Predicates):

Depending on the verification problem to solve (see Definition 18) the in formulas of

change activities and/or safety constraints need to be recorded in an index structure. Our

prototypical implementation uses the Configuration Items as index structures to quickly

access the predicates and effects that target the same Configuration Item. For the IT

change verification problem it suffices to only record the predicates of safety constraints

in the Configuration Items they are evaluated on because always-satisfiability only needs

to be decided for formulas of safety constraints. Similarly, for the IT conflict detection

problem only predicates of change activities need to be recorded because safety con-

straints are not relevant for this verification problem. Consequently, predicates of safety

constraints and change activities need to be recorded for the mixed change verification

and conflict detection problem (see Table 4.1).

2. Record effects of change activities (Function RecordEffects):

The second step records all effects of change activities in the Configuration Items they

modify and their relationships (threat, support, neutral) in respect to the previously re-

corded predicates in the same Configuration Item are determined. This step needs to be

performed for every verification problem.

3. Compute always-satisfiability for every predicate in every formula that needs to be

verified (Function DetermineAlwSatPred):

The third step finally computes always-satisfiability for all predicates necessary to solve

the verification problem. To solve the IT change verification problem, always-satisfiability

has to be computed for every predicate occurring in a safety constraint. Similarly, for the

IT change conflict detection problem always-satisfiability has to be computed for pred-

icates of change activities. For the combined problem always-satisfiability needs to be

computed for every predicate of a formula of a safety constraint and change activity.
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Once the three steps have been executed we know for each predicate in a formula that needs

to be verified whether it is always-satisfiable.

4.1.2 Functions andComplexities to Compute Always-satisfiability of Pred-

icates

This section introduces the functions that match to the steps to compute always-satisfiability

of predicates and discusses their runtime complexity. The functions introduced herein are the

basis of the verification algorithms presented in Section 4.2.

Variable Description

#pred(ACTs, SCs) Max. number of predicates of a change activity or safety constraint

formula in ACTs or SCs.

#pred(ACTs) Max. number of predicates of a formula of a change activity.

#pred(SCs) Max. number of predicates of a formula of a safety constraint.

#eff (ACTs) Max. number of effects of a change activity.

#CI(PREDs) Max. number of CIs a predicate is evaluated on,

#CI(PREDs) ≤Section 4.1.3 2.

#thrts(EFFs,PREDs) Max. number of threats to a predicate.

#CI(THRTs) Max. number of CIs changed by a threat, #CI(THRTs) =Section 4.1.3 1.

#CI(EFFs) Max. number of CIs influenced by an effect, #CI(EFFs) =Section 4.1.3 1.

#pred(CIs) Max. number of predicates evaluated on a Configuration Item.

Table 4.2: Characteristics of change activities, safety constraints, and Configuration Items

that influence the runtime complexity of the functions used to compute always-

satisfiability of predicates.

Function Complexity

RecordPredicates(SCs) O( |SCs| · #pred(SCs) · #CI(PREDs) )

∈ O( |SCs| · #pred(SCs) )

RecordPredicates(ACTs) O( |ACTs| · #pred(ACTs) · #CI(PREDs) )

∈ O( |ACTs| · #pred(ACTs) )

RecordEffects(ACTs) O( |ACTs| · #eff (ACTs) · #CI(EFFs) · #pred(CIs) )

∈ O( |ACTs| · #eff (ACTs) · #pred(CIs) )

DetermineAlwSatPred(SCs) O( |SCs| · #pred(SCs) · #thrts(EFFs,PREDs) · #CI(THRTs) )

∈ O( |SCs| · #pred(SCs) · #thrts(EFFs,PREDs) )

DetermineAlwSatPred(ACTs) O( |ACTs| · #pred(ACTs) · #thrts(EFFs,PREDs) · #CI(THRTs) )

∈ O( |ACTs| · #pred(ACTs) · #thrts(EFFs,PREDs) )

Table 4.3: Complexity of function calls necessary to decide always-satisfiability of predicates

depending on the parameters passed. See Table 4.2 for description of variables and

Table 4.1 for which functions need to be called depending on the verification prob-

lem to be solved.
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Recording Predicates

Function RecordPredicates(X): Records every predicate of a first-order formula of a

change activity or safety constraint in X in the Configuration Items they are evaluated

on.
input : X a set of change activities or safety constraints

1 for for every φ of a safety constraint or change activity ∈ X do ⊲|X|

2 for for every predicate pdc ∈ φ do ⊲#pred(ACTs, SCs)

3 for every Configuration Item ci pdc is evaluated on do ⊲#CI(PREDs)

4 record pdc in ci ; ⊲O( 1 )

5 end

6 end

7 end

FunctionRecordPredicates depicts the function to record predicates of safety constraints or

change activities in the Configuration Items they are evaluated on. Depending on the verifica-

tion problem (see Table 4.1) this function needs to be called with all change activities and/or

all safety constraints. For every formula φ of a change activity or safety constraint in X (Func-

tionRecordPredicates, Lines 1-7) the algorithm iterates over every predicate pdc in the formula

(Lines 2-6) and records the predicate (Line 4) in every Configuration Item the predicate is eval-

uated on (Lines 3-5).

Let #pred(ACTs, SCs) be the maximum number of predicates comprised in a safety con-

straint or a change activity formula and #CI(PREDs) the maximum number of Configura-

tion Items a predicate is evaluated on. Then, the worst-case runtime complexity of Func-

tionRecordPredicates(X) is

O( |X| · #pred(ACTs, SCs) · #CI(PREDs) ).

Called with X = ACTs, the set of all change activities, we obtain with #pred(ACTs, SCs) =

#pred(ACTs) (where #pred(ACTs) is the maximum number of predicates of a change activity)

runtime complexity

O( |ACTs| · #pred(ACTs) · #CI(PREDs) ).

Similarly, when RecordPredicates is called with X = SCs, the set of all safety constraints, we

obtain with #pred(ACTs, SCs) = #pred(SCs) (where #pred(SCs) is the maximum number of

predicates of a safety constraint formula) runtime complexity

O( |SCs| · #pred(SCs) · #CI(PREDs) ).

Recording and Categorizing Effects

In the second step to compute always-satisfiability of predicates, the effects of change ac-

tivities are recorded in the Configuration Items they change and are categorized as supports,

threats, or neutral effects in respect to the previously recorded predicates of the same Config-

uration Item. FunctionRecordEffects depicts the corresponding function. The function always

needs to be called independently of the verification problem to be solved (see Table 4.1).
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Function RecordEffects(ACTs): Records the effects of change activities ∈ ACTs in the

Configuration Items they affect and categorizes their relationship in respect to the previ-

ously recorded predicates. This function relies on FunctionRecordPredicates to be run

prior to accurately determine relationships.

input : ACTs a set of change activities

1 for act = (φact, Eact) ∈ ACTs do ⊲|ACTs|

2 for e ∈ Eact do ⊲#eff (ACTs)

3 apply e to CMDB ; ⊲O( 1 )

4 for every Configuration Item ci changed by e do ⊲#CI(EFFs)

5 record e in ci ; ⊲O( 1 )

6 for every predicate pdc recorded in ci do ⊲#pred(CIs)

7 categorize relationship ; ⊲O( 1 )

8 end

9 restore ci ; ⊲O( 1 )

10 end

11 end

12 end

For every change activity in ACTs (Function RecordEffects, Lines 1-12) the algorithm iterates

over each effect of a change activity (Lines 2-11) to process it as follows. The effect is applied

to the CMDB (Line 3) and for every Configuration Item that has been modified by its appli-

cation to the CMDB (Lines 4-10) we (1) record the effect in the Configuration Item (Line 5)

and (2) for every predicate (Lines 6-8) that has been recorded in the Configuration Item (by the

previous application of Function RecordPredicates), the algorithm determines the relationship

of the effect (threat, support, or neutral) to it and (3) finally restores the Configuration Item to

its previous configuration (Line 9).

Let #eff (ACTs) be the maximum number of effects of a change activity, #CI(EFFs) the

maximum number of Configuration Items influenced by an effect, and #pred(CIs) the maxi-

mum number of predicates evaluated on a Configuration Item. Then, the worst-case runtime

complexity of FunctionRecordEffects when called with change activities ACTs is:

O( |ACTs| · #eff (ACTs) · #CI(EFFs) · #pred(CIs) )

Computing Always-satisfiability of Predicates

FunctionDetermineAlwSatPred computes always-satisfiability for all predicates of change ac-

tivity or safety constraint formulas. For every change activity or safety constraint formula

(Function DetermineAlwSatPred, Lines 1-13) and every predicate of that formula (Lines 2-12),

the following needs to be done: For every threatening effect of the predicate (Lines 3-5), the

threat is applied to the CMDB. Afterwards, the predicate is evaluated (Line 6). Notice that

Lines 3-6 implement Theorem 8. However, the CMDB has to be reverted to its original configu-

ration after the threat sequence was applied to the CMDB. For this purpose every Configuration

Item (Lines 8-10) modified by a threat (Lines 7-11) needs to be restored (Line 9) to its original

configuration.
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Function DetermineAlwSatPred(X): Computes always-satisfiability according to Theo-

rem 8 of every predicate contained in a formula of a safety constraint or change activity in

X. Requires FunctionsRecordPredicates and RecordEffects to be run prior.

input : X a set of change activities or safety constraints

1 for for every formula φ of a change activity or safety constraint in X do ⊲|X|

2 for for every predicate pdc ∈ φ do ⊲#pred(ACTs, SCs)

3 for threat thr ∈ THRTs(pdc) do ⊲#thrts(EFFs,PREDs)

4 apply thr to CMDB; ⊲O( 1 )

5 end

6 evaluate pdc and record its value ; ⊲O( 1 )

7 for threat thr ∈ THRTs(pdc) do ⊲#thrts(EFFs,PREDs)

8 for ci modified by thr do ⊲#CI(THRTs)

9 restore ci ; ⊲O( 1 )

10 end

11 end

12 end

13 end

Let #thrts(EFFs,PREDs) be the maximum number of threats of a predicate, #CI(THRTs)

the maximum number of Configuration Items changed by a threat and X the set of change

activity and safety constraint formulas for which to compute always-satisfiability. Then, the

runtime complexity of FunctionDetermineAlwSatPred is

O( |X| · #pred(ACTs, SCs) · #thrts(EFFs,PREDs) · #CI(THRTs) ).

The complexity can be further refined depending on the parameters the function is called with:

• IT change verification problem: In this case FunctionDetermineAlwSatPred only needs

to be called once with X = SCs (see Table 4.1), yielding complexity

O( |SCs| · #pred(SCs) · #thrts(EFFs,PREDs) · #CI(THRTs) )

where #pred(SCs) is the maximum number of predicates of a safety constraint.

• IT change conflict detection problem: In this case FunctionDetermineAlwSatPred

needs to be called once with X = ACTs (see Table 4.1), yielding complexity

O( |ACTs| · #pred(ACTs) · #thrts(EFFs,PREDs) · #CI(THRTs) ).

• IT change verification and conflict detection problem: In this case Func-

tionDetermineAlwSatPred is called twice with X = ACTs and X = SCs (see Table 4.1),

yielding total runtime complexity

O( #thrts(EFFs,PREDs) · #CI(THRTs) · (|SCs| · #pred(SCs)+ |ACTs| · #pred(ACTs)) ).
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4.1.3 Requirements for Linear Runtime Complexity

In the previous section we showed that the runtime of the functions used to determine always-

satisfiability of predicates is potentially polynomial in several variables (see Tables 4.2 and 4.3).

The runtime complexity of the functions becomes linear in the number of change activities or

safety constraints if the variables are restricted by an upper bound during verification experi-

ments that scale parameters such as the size of the CMDB or the number of change activities /

safety constraints. This section discusses the necessary characteristics of change activities and

safety constraints such that the variables have an upper bound and whether these characteristics

hold in practice for the change verification logic and IT change activities:

• #pred(ACTs, SCs), #pred(ACTs), #pred(SCs): These variables have an upper bound if for-

mulas of change activities or safety constraints are comprised of a maximum number of

predicates. As quantifiers are not allowed within Σ-formulas (see Definition 11), every

Σ-formula is evaluated on a static number of predicates. This does not restrict the ap-

plicability of the approach as formulas of change activities or safety constraints always

address a limited number of Configuration Items (e.g., a database, a router, a part of the

network, etc.) and not the whole data center.

• #eff (ACTs): This variable has an upper bound if the number of effects of a change activity

has an upper bound. The specification of change activities only allows sets of effects with

a finite number of effects (see Definition 16). This does not affect the applicability of the

approach as change activities only reconfigure a few properties of Configuration Items

and not the whole data center.

• #CI(PREDs), #thrts(EFFs,PREDs): The first variable has an upper bound if a predicate

is evaluated on a maximum number of Configuration Items. This holds for the predicates

of the change verification logic (see Table 3.3) because #CI(PREDs) ≤ 2. The second

variable, the number of threatening effects of a predicate, has an upper bound as well if

the effects of change activities are roughly equally distributed over Configuration Items.

If a workload comprises change activities that always focus on the same Configuration

Items and threaten the same predicates, then scaling out this workload linearly increases

#thrts(EFFs,PREDs). In such a scenario the linear runtime complexity to determine

always-satisfiability is lost.

• #CI(EFFs): This variable always has an upper bound because every effect of the change

verification logic changes at most one property of a Configuration Item (see Table 3.3).

Thus, #CI(EFFs) = 1.

• #pred(CIs): This variable has an upper bound if the maximum number of predicates eval-

uated on a Configuration Item has an upper bound. This is the case if formulas of change

activities and safety constraints are roughly equally distributed over the Configuration

Items of the CMDB. For example, a linear increase in the number of change activities or

safety constraints whose formulas are always evaluated on the same Configuration Items,

destroys the linear runtime property.

• #CI(THRTs): An upper bound of #CI(EFFs) is also an upper bound of #CI(THRTs).

Thus, #CI(THRTs) = 1.

Consequently, the linear runtime complexity of the functions necessary to determine always-

satisfiability of predicates is lost in cases for which
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• the number of change activities or safety constraints is scaled out, but the predicates of

their formulas are not equally distributed over the CMDB (#pred(CIs) is not restricted).

• the number of change activities is scaled out, but their threats to predicates are not equally

distributed over the CMDB (#thrts(EFFs,PREDs) is not restricted).

Thus, change activities and safety constraints need to be roughly equally distributed over the

Configuration Items of the CMDB if they are scaled out during a verification experiment. We

can expect this requirement to hold because frequent changes to the same Configuration Item

would already indicate a deeper routed problem with that Configuration Item.

4.2 Algorithms for Change Verification Problems

This section introduces the algorithms to solve the IT change verification problem, the IT

change conflict detection problem, and the combined verification problem. Furthermore, the

runtime complexity of each algorithm is discussed.

4.2.1 IT Change Verification Problem

Function ChangeVerification(SCs,ACTs): returns true if all safety constraints in SCs hold

under any workload of change activities in ACTs, otherwise false is returned.

input : SCs a set of safety constraints and ACTs a set of change activities

1 RecordPredicates(SCs) ; ⊲O( |SCs| · #pred(SCs) )

2 RecordEffects(ACTs) ; ⊲O( |ACTs| · #eff (ACTs) · #pred(CIs) )

3 DetermineAlwSatPred(SCs) ; ⊲O( |SCs| · #pred(SCs) · #thrts(EFFs,PREDs) )

4 for every formula φsc of a safety constraint sc ∈ SCs do ⊲|SCs|

5 if φsc is not always-satisfiable then ⊲O( #pred(SCs) )

6 return false;

7 end

8 end

9 return true;

The IT change verification problem (see Section 3.2.2) addresses the question whether a set

of safety constraints holds under any possible execution sequence of change activity effects.

First, always-satisfiability needs to be determined for all predicates comprised in formulas of

safety constraints. Thus, the functions previously introduced in Section 4.1.2 need to be called

in the order as depicted in Table 4.1. These functions are called in the first three lines of the

algorithm (see FunctionChangeVerification). After that, always-satisfiability can be determined

for all formulas of safety constraints in SCs using Theorem 9. For that purpose the algorithm

iterates over every formula φsc of a safety constraint sc ∈ SCs (Lines 4-8). As soon as a formula

φsc is not always-satisfiable (efficiently determined using Theorem 9), false is returned (Line 6),

otherwise true (Line 9). Evaluating a formula has runtime complexity linear in the number of

predicates comprised in it.
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Adding up the runtime complexities of each step yields the total complexity:

ChangeVerification(SCs,ACTs) ∈

∈ O( |SCs| · #pred(SCs) · #thrts(EFFs,PREDs)+ |ACTs| · #eff (ACTs) · #pred(CIs) )

∈Section 4.1.3 O( |SCs| + |ACTs| ) (4.1)

4.2.2 IT Change Conflict Detection Problem

Function ConflictDetection(ACTs): returns true if all change activities in ACTs are feasi-

ble, otherwise false (see Definition 18).

input : ACTs a set of change activities

1 RecordPredicates(ACTs) ; ⊲O( |ACTs| · #pred(ACTs) )

2 RecordEffects(ACTs) ; ⊲O( |ACTs| · #eff (ACTs) · #pred(CIs) )

3 DetermineAlwSatPred(ACTs) ; ⊲O( |ACTs| · #pred(ACTs) · #thrts(EFFs,PREDs) )

4 for every formula φact of act ∈ ACTs do ⊲|ACTs|

5 if φact evaluates to false then ⊲#pred(ACTs)

6 return false;

7 end

8 end

9 return true;

The IT change conflict detection problem decides whether the execution of a set of change

activities can render the precondition of another change activity infeasible. Thus, speaking in

the terms of extended partial-order reduction, always-satisfiability needs to be decided for all

formulas of change activities using Theorem 9.

To achieve this, the functions previously introduced in Section 4.1.2 need to be called in the

order as depicted in Table 4.1 because always-satisfiability of all required predicates needs to

be determined first. The functions are called in the first three lines of the algorithm (see Func-

tionConflictDetection). After that, always-satisfiability can be determined for all formulas φact,

which describe preconditions of change activities. For that purpose the algorithm iterates over

every formula of a change activity (Lines 4-8). As soon as a formula is not always-satisfiable,

false is returned (Line 6), otherwise true. Evaluating a formula using Theorem 9 has runtime

complexity linear in the number of the predicates comprised in it.

Adding up the runtime complexities of each step yields the total complexity:

ConflictDetection(ACTs) ∈

∈ O( |ACTs| · (#eff (ACTs) · #pred(CIs) + #pred(ACTs) · #thrts(EFFs,PREDs)) )

∈Section 4.1.3 O( |ACTs| ) (4.2)

4.2.3 IT Change Verification and Conflict Detection Problem

The combined IT change verification and conflict detection problem requires the change verifi-

cation and change conflict detection problem to be solved at the same time. Thus, given a set of

change activities and safety constraints determine whether any execution sequence of effects of

change activities invalidates a safety constraint or the precondition of a change activity.
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Function ConflictDetectionAndChangeVerification(SCs,ACTs): returns true if no arbi-

trary execution sequence of change activities in ACTs turns a safety constraint sc ∈ SCs

or a change activity act ∈ ACTs infeasible, otherwise false is returned (see Definition 18).

input : ACTs a set of change activities and SCs a set of safety constraints

1 RecordPredicates(SCs) ; ⊲O( |SCs| · #pred(SCs) )

2 RecordPredicates(ACTs) ; ⊲O( |ACTs| · #pred(ACTs) )

3 RecordEffects(ACTs) ; ⊲O( |ACTs| · #eff (ACTs) · #pred(CIs) )

4 DetermineAlwSatPred(SCs) ; ⊲O( |SCs| · #pred(SCs) · #thrts(EFFs,PREDs) )

5 DetermineAlwSatPred(ACTs) ; ⊲O( |ACTs| · #pred(ACTs) · #thrts(EFFs,PREDs) )

6 F = SCs ∪ ACTs;

7 for every formula φ of a safety constraint or change activity ∈ F do ⊲|SCs| + |ACTs|

8 if φ is not always-satisfiable then ⊲O( #pred(ACTs) ) or O( #pred(SCs) )

9 return false;

10 end

11 end

12 return true;

First, the functions previously introduced in Section 4.1.2 need to be called in the order as

depicted in Table 4.1 (see first three lines of FunctionConflictDetectionAndChangeVerification).

After that, always-satisfiability can be determined for every compound formula of a safety con-

straint or change activity using Theorem 9. For that purpose the algorithm iterates over each

formula in SCs ∪ ACTs (Lines 6-11). If a formula is not always-satisfiable, false is returned

(Line 9), otherwise true (Line 12). Evaluating a formula using Theorem 9 has runtime complex-

ity linear in the number of predicates comprised in it.

Adding up the runtime complexities of each step yields the following complexity to solve

the combined verification problem:

ConflictDetectionAndChangeVerification(SCs,ACTs) ∈

∈ O( ( ) |ACTs| · (#eff (ACTs) · #pred(CIs) + #pred(ACTs) · #thrts(EFFs,PREDs))+

+ |SCs| · #pred(SCs) · #thrts(EFFs,PREDs) )

∈Section 4.1.3 O( |ACTs| + |SCs| ) (4.3)

4.3 Conclusions

In this chapter we introduced algorithms based on Theorem 9 to solve several verification prob-

lems in the context of IT Change Management. A complexity analysis showed that the runtime

performance of the algorithms is linear in the number of safety constraints and change activi-

ties, assuming that the formulas of safety constraints and change activities (more precisely the

predicates in the formulas) are equally distributed over the Configuration Items and that the

effects of change activities are equally distributed over Configuration Items (more precisely the

threats of change activities in respect to the predicates).

The algorithms presented herein can also be implemented without the presence/use of Con-

figuration Items as index structures to speedup the categorization of an effect in respect to pre-

viously recorded effects. In that case, index structures are necessary to efficiently look up the
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effects and predicates evaluated on constants of the Σ-interpretations. For example, sufficiently

sized hash maps that allow for each constant to efficiently lookup the predicates evaluated on it.
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CHAPTER 5

IT Change Verification in Practice

This chapter presents the evaluation of the extended partial-order reduction model checker in

the context of an outage that recently happened at one of Amazon’s data centers. Section 5.1

introduces the Amazon outage that is used as an evaluation case study in the remainder of this

chapter. In Section 5.2 we introduce two model checkers, NuSMV and SPiN, which are used

for evaluation against our special purpose model checker. After that, Section 5.3 describes the

experimental setting in more detail. The results of our experimental evaluation are presented in

Section 5.4. Finally, Section 5.5 discusses related work and Section 5.6 concludes the chapter.1

5.1 Amazon Data Center Outage

This section describes the data center outage that occurred in April 2011 at one of Amazon’s

data centers and gives a first overview of the change activities2, safety constraints, and models

that can be used to detect the outage using verification. First, Section 5.1.1 explains how a

particular network change caused the outage. After that, we discuss in Section 5.1.2 the change

activities that could have caused the outage in a static routing scenario, together with their

logical description and models that can be used to detect the violation of safety constraints.

Finally, scenarios, change activities, safety constraints, and models for the outage in the context

of a dynamic routing scenario are introduced in Section 5.1.3.

5.1.1 How a Simple Change Activity Brought Down a Cloud Service

In this section we explain the background of Amazon’s data center outage. First, we give a

short introduction to the architecture of Amazon’s Elastic Block Store (EBS) service that was

1Parts of this chapter previously appeared in [51].
2Whenever we refer to the notion of a change activity in this chapter, we mean atomic change activities, i.e., not

decomposable, elementary change activities. A synonym for atomic change activities is change procedures. The

notion of abstract and atomic change activities is of no relevance in this chapter as change verification only needs

to address atomic change activities/change procedures that are currently pending for execution. See Section 1.4
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involved in the outage. After that, we provide more details of the outage.

Amazon Elastic Block Store Service

This section provides a short introduction to the architecture of Amazon’s Elastic Block Store

(EBS) service to aid in the understanding of the data center outage caused by an IT change

activity. A more detailed description of the EBS service can be found in the report released

by Amazon [1]. The EBS service is a distributed storage service that stores virtual disc images

that can be mounted to virtual machines (EC2 instances). The EBS service comprises (1) EBS

clusters (comprising EBS nodes) that store the images and (2) control services that provide

access to the EBS service.

An EBS cluster comprises several EBS nodes that store the EBS volumes in a replicated

fashion. An EBS volume is automatically replicated across several EBS nodes for durability

and availability purposes. Replication is handled in a rather aggressive way: Once a copy of an

image becomes out of sync, e.g., because connection is lost, the system assumes the data to be

lost and the volume is automatically replicated to another node.

The nodes of an EBS cluster can communicate with each other using two different networks:

(1) A primary, high-capacity network that mainly handles the replication traffic among EBS

nodes and communication with control services. (2) A secondary, low-capacity network that

provides a low-capacity but highly reliable connection among the EBS nodes of a cluster. It

is important to notice that the low-capacity network is not designed to accommodate the traffic

of the high-capacity network as its focus lies on reliable communication and not on maximum

throughput rates.

Outage Caused by Faulty IT Change Activity

On April 21st 2011 a network change had to be performed at one of Amazon’s data centers.

The abstract change activity was to upgrade the capacity of the primary, i.e., high-capacity

network. Amazon’s incident report [1] leaves the exact nature of the change open. However, to

implement the upgrade, a change activity had to be executed to shift traffic off from the affected

high-capacity router to a redundant router of the high-capacity network. A typical change that

would cause such a scenario would be the upgrade of the memory of a router. Instead of routing

the traffic to the redundant router of the high-capacity network, the traffic was routed onto

the low-capacity network, i.e., the secondary network. As the secondary network could not

handle the traffic from the high-capacity network due to limited capacity, the secondary network

was overloaded. Consequently, there were nodes in a cluster (the ones located in different

subnets of the cluster) that could neither communicate with each other using the primary nor

the secondary network because traffic destined for the first was now routed to the second, which

was overloaded.

Due to the traffic shift, many EBS nodes in the cluster lost connection between each other.

The change manager quickly noted the overload and rolled back the network change activity to

restore the connectivity. Once connectivity was restored, the nodes assumed that the replicas

of images were lost and rapidly began to search the cluster for available space to replicate the

images again. Because the network outage affected so many EBS nodes (and thus volumes),

not all re-mirroring requests could be served because the remaining capacity of the cluster was

quickly exhausted by the re-mirroring requests. As a consequence, the nodes got stuck in a loop

of re-mirroring requests and requests made by customers to the control service could not be

serviced anymore and started to fail. This caused failed customer requests. In the end the cluster
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could only be restored after several days by installing addition capacity. A small percentage

of customers even suffered durable data loss. Besides design issues and software bugs that

exacerbated the situation, it was a simple change activity to reroute traffic that caused a chain of

events leading to an outage. The safety constraint that was invalidated by the change activity is

rather simple: Never route high-capacity traffic over the low-capacity network - a constraint that

was known to the network management group because the network was specifically designed

this way. The constraint could have been easily identified, captured, and formalized using

proper risk analysis [96, 97] for Change Management.

5.1.2 Network Overload in Static Routing Environments

This section provides an overview of the change activities, safety constraints and models that

can be used to verify changes of the Amazon case study in a static routing scenario. First, we

give an overview of the static network setup in Amazon’s case. Second, we map the configu-

ration to an object-oriented CMDB model. Third, we discuss the different scenarios that could

have caused Amazon’s network outage in a static routing environment. Finally, we introduce

the different change activities and safety constraints (together with their logical specification in

change verification logic) for the scenarios that could have caused Amazon’s network outage in

a static routing environment.

Overview of Network Setup

Figure 5.1: Servers of an EBS cluster configured with static routing and a first hop gateway

redundancy protocol. Policy routing is in place separating disc replication traffic

from reliable EBS node communication.

In static routing environments servers of the EBS cluster are configured with a static gateway

IP address of a router interface. This is a common configuration found in data centers [8]

because it avoids the uncertainty emerging from the usage of an Interior Gateway Protocol

(IGP). In order to still achieve routing redundancy with static routes, the gateway IP address of

a server points to a virtual IP address that is shared among the interfaces of a group of routers

that run a first hop redundancy protocol. Notice that the gateway IP address is only active
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on at most one of the interfaces, the interface of the primary router. Once a router becomes

unavailable, the router with the second highest priority for the virtual interface takes over the

virtual interface and routing is shifted to the backup router/interface.

Typical first hop redundancy protocols are, for example, Cisco’s proprietary Hot Standby

Router Protocol1 (HSRP), the Gateway Load Balancing Protocol2 (GLBP), or the IETF stan-

dard Virtual Router Redundancy Protocol3 (VRRP). For example, consider Figure 5.1, which

depicts an example configuration among two EBS servers, two high-capacity routers (HCR1,

HCR2), and a low-capacity router (LCR). Without limitations we assume that each router has

one physical interface (see IP address entry for each router) that resides on the same network

as the EBS nodes. Each physical router interface hosts two virtual interfaces with the IP ad-

dresses 10.0.0.1 and 10.0.0.2. The two virtual interfaces are configured for each router, but at

the same time each type of virtual interface is active on at most one router. For example, the

virtual interface with vIP 10.0.0.1 (the gateway towards which high-capacity traffic is routed by

the EBS nodes) is configured on all three routers using a first hop redundancy protocol, but it

is currently only active on HCR1 because the virtual interface with vIP 10.0.0.1 has the highest

priority on HCR1 (priority 3) compared to the priorities on HCR2 (priority 1) and LCR (priority

2) (see Figure 5.1). Should HCR1 become unavailable (and with it the virtual interface with vIP

10.0.0.1 on it), the virtual interface with the same vIP located on router LCR becomes active

and takes over the traffic sent to vIP 10.0.0.1 because LCR has the second-highest priority for

10.0.0.1. Similar, the virtual interface with vIP 10.0.0.2, which is currently hosted by LCR

(LCR has the highest priority among all routers for 10.0.0.2), is taken over by HCR2 because

its virtual interface with vIP 10.0.0.2 has the second-highest priority (priority 2) on the network

(see Figure 5.1).

Object-oriented Model of the CMDB

The static routing network configuration (see Figure 5.1) is modeled using an object-oriented

instance diagram (see Figure 5.2) where instances of classes match to Configuration Items. We

later introduce in Section 5.3.2 different models to describe the static routing environment and

change activities. To provide a first overview, we focus on Model1, the most detailed model of

all infrastructure models (see Figure 5.2).

Figure 5.2 depicts an instance, i.e., configuration of the CMDB, in the most detailed model

used to verify change activities in the static routing scenario. In Figure 5.2 a single EBS server

resides on a network with two high-capacity routers (hcr1 and hcr2) and one low-capacity router

(lcr). The left side of Figure 5.2 depicts the Configuration Items used to describe the configura-

tion of an EBS server (Mark and RoutingTable Configuration Items) and the right side depicts

the network Configuration Items the server is attached to (VRRPInterface and Router Con-

figuration Items). Each server has two routing tables (rt1 and rt2) that have different default

gateways, i.e., interfaces of routers the routing tables route to by default. The configuration of

the first hop redundancy protocol has been simplified by using a failover reference among VR-

RPInterface Configuration Items, which describes the interface that takes over once an interface

becomes unavailable. Mark Configuration Items are associated to the RoutingTable Configura-

tion Items. They describe the traffic by port that is routed with the associated routing table. For

example, the mark1 Configuration Item describes that traffic destined for port a (high-capacity

1http://www.cisco.com/en/US/tech/tk648/tk362/technologies_tech_note09186a0080094a91.shtml, retrieved
2http://www.cisco.com/en/US/docs/ios/12_2t/12_2t15/feature/guide/ft_glbp.html
3http://tools.ietf.org/html/rfc3768
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Figure 5.2: Object-oriented model of the CMDB describing the routing configuration in Fig-

ure 5.1 for one EBS server.

traffic) is routed using routing table rt1 (see reference between Mark and RoutingTable Config-

uration Item in Figure 5.2) and thus is forwarded towards virtual interface vrrp1 (see gateway

reference), which is a high-capacity router interface (see reference between vrrp1 and hcr1 and

property capacity of hcr1). Such a configuration to separate high- from low-capacity traffic

based on destination ports and different default gateways can be achieved using the Linux com-

mands ip tables, ip rule, and ip route. Refer to [20] for a detailed description on how

to configure this setup in practice.

Network Overload Scenarios in Static Routing Environment

Two scenarios, differing on whether the change either targets the network or the configuration

of the EBS servers, could have caused Amazon’s network overload in a statically configured

network with a first hop redundancy protocol as follows.

Scenario 1: When the primary (active) router is taken off the network to be upgraded, its

network interfaces become unavailable. Once an interface is not reachable anymore, the failover

interface takes over the network traffic by taking over vIP and vMAC of the deactivated inter-

face. For example, in Figure 5.1 the servers are configured with policy routing such that high-

capacity traffic (for replication) is routed via vIP 10.0.0.1 and reliable traffic via 10.0.0.2. The

first high-capacity router (HCR1 in Figure 5.1) is the active primary for the replication traffic

because it has the highest priority among all other routers for vIP 10.0.0.1. Similarly, the low-

capacity router (LCR) has the highest priority for vIP 10.0.0.2. Thus, HCR1 is currently the

active router for unreliable traffic and LCR the active one for reliable traffic.

For Scenario 1 we assume that the priorities among the interfaces of high- and low-capacity

routers have been wrongly configured, such that taking down the current high-capacity router

causes a failover to a low-capacity router interface. Figure 5.1 depicts such a configuration

where LCR holds the second highest priority for the high-capacity vIP (10.0.0.1). Thus deacti-



60 5. IT Change Verification in Practice

vating HCR1 would cause LCR to take over vIP 10.0.0.1 and would shift high-capacity traffic

to the low-capacity network. In Figure 5.2 this configuration is described in a more abstract way

using a failover reference between vrrp1 and vrrp5, a low-capacity router interface.

Scenario 2: To achieve the traffic shift, the routing policy in the EBS nodes could have

been accidentally changed such that high-capacity traffic is explicitly routed towards the low-

capacity router. In Figure 5.2 the routing policy is described by a gateway association between

a RoutingTable and a VRRPInterface Configuration Item. This association describes the default

gateway configured for a RoutingTable Configuration Item. Mark Configuration Items, which

are associated to RoutingTable Configuration Items, describe the type of traffic that is routed

using the referenced routing table. For example, in Figure 5.2 high-capacity traffic (port a) is

categorized as mark1 traffic that is routed using routing table rt1, which has a high-capacity

router interface (vrrp1) as its default gateway.

Safety Constraints and Change Activities

Safety constraints are formulated over the object-oriented CMDB in Figure 5.2 using the pred-

icates and effects of the change verification logic (see Table 3.3) in order to describe the previ-

ously introduced scenarios.

SC1(router:Router, interface:VRRPInterface, rt: RoutingTable, mark:Mark)

pred1: | router.capacity.hasValue("low")

pred2: | interface.router.hasValue(router)

pred3: | rt.gateway.hasValue(interface)

pred4: | rt.marks.contains(mark)

pred5: | mark.ports.!contains(port a)

pre: | (∧i=1...4 predi)→ pred5 ≡ (∨i=1...4 ¬predi) ∨ pred5

SC1 is the safety constraint that protects the network modeled in Figure 5.2 from a net-

work overload. SC1 guarantees that high-capacity traffic (outgoing on port a) (pred5) is only

allowed to be routed via routing tables that route to VRRP interfaces (pred3) that belong to

(pred2) a high-capacity router (pred1). Safety constraints are directly evaluated on the con-

figuration of a CMDB to determine whether they are violated. For example, the instance

SC1(lcr,vrrp6,rt2,mark2) of safety constraint SC1 evaluates to true in the configuration de-

picted in Figure 5.2. The interested reader is encouraged to instantiate SC1 with the parameters,

i.e., Configuration Items, depicted in Figure 5.2 to comprehend the evaluation of the precondi-

tion.

For Scenario 1 we consider two different types of interface failover change activities:

• Failover negative change activity (FOn): A FOn change activity occurs when an inter-

face of a high-capacity router is switched off and the configured failover interface belongs

to a low-capacity router. This causes a network overload because all nodes of the affected

subnet automatically start routing towards the low-capacity interface causing its overload.

• Failover positive change activity (FOp): A FOp change activity occurs when an inter-

face of a low-capacity router is switched off and the failover is an interface of a high-

capacity router. In this case traffic that was originally routed over the low-capacity router
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is now routed over a high-capacity router. Different to a FOn change activity, it does not

cause a network overload because we assume that the high-capacity network can accom-

modate the traffic of the low-capacity network.

Notice that the change activities introduced in this section are based on two assumptions.

First, the high-capacity network can always accommodate the accumulated traffic of both net-

works. Second, the low-capacity network cannot handle the accumulated traffic of its own traffic

and the high-capacity traffic of at least one EBS server. As we detail later in this Section, this

assumption is not a requirement for our approach to describe the scenario because the change

verification logic provides the logical expressiveness to describe scenarios for which only a

portion of low- or high-capacity traffic can be accommodated on the opposite network.

Notice that FOn and FOp change activities can occur concurrently. For example, in Fig-

ure 5.2 high-capacity traffic via vrrp1 can be shifted to vrrp5 using a FOn change activity and

vrrp2 takes over vrrp6 using a FOp change activity. The following template can be used to

describe both change activities in change verification logic over the model depicted in Fig-

ure Figure 5.2:

FO(rt:RoutingTable, current:VRRPInterface, failover:VRRPInterface)

pred1: | rt.gateway.hasValue(current)

pred2: | current.failover.hasValue(failover)

pre: | pred1 ∧ pred2
eff1: | rt.gateway.setValue(failover)

A failover change activity takes three parameters:

• vrrp, the VRRPInterface that is meant to be deactivated.

• failover, the VRRPInterface that is currently configured as failover interface of vrrp.

• The routing table rt that routes to the VRRPInterface meant to be deactivated (vrrp).

Depending on the parameters of the FO change template above, FOp or FOn change ac-

tivities can be instantiated from the template. For example, FO(vrrp1,vrrp5,rt1) (see Fig-

ure 5.2 for the Configuration Items) yields an applicable FOn change activity and the choice

FO(vrrp6,vrrp2,rt2) yields an applicable FOp change activity.

To model Scenario 2, we introduce two change activities that manipulate the routing policy

of an EBS node by changing the mark that is carried by traffic that is destined for a particular

port. This associates the traffic with another routing table that has a different default gateway.

We distinguish two different instances of change activities:

• Shift traffic negative change activity (SHTn): A SHTn change activity changes the

routing policy of an EBS node in such a way that high-capacity traffic is assigned the mark

of low-capacity traffic. Consequently, high-capacity traffic is routed using the routing

policy of low-capacity traffic, i.e., towards a low-capacity router interface. This causes an

overload of the low-capacity router.

• Shift traffic positive change activity (SHTp): A SHTp change activity changes the rout-

ing policy of an EBS node in such a way that low-capacity traffic is assigned the mark

of high-capacity traffic. Consequently, low-capacity traffic is routed using high-capacity
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rules, i.e., towards a high-capacity router interface. Different to a SHTn change activity,

this does not cause a network overload as we assume in our case study that the high-

capacity network can handle the accumulated traffic of both networks.

Notice that SHTp and SHTn change activities can occur concurrently. For example, in Fig-

ure 5.2 a SHTn change activity is executable to shift traffic destined for port a from mark1 to

mark2 and a SHTp change activity is applicable to shift traffic destined for port b from mark2

to mark1. To describe SHT change activities, the following description in verification logic can

be used:

SHT(from:Mark, to:Mark, port:int)

pred1: | from.ports.contains(port)

pred2: | to.ports.!contains(port)

pre: | pred1 ∧ pred2
eff1: | from.ports.remove(port)

eff2: | to.ports.add(port)

A SHT change activity is applicable if its parameter port is not comprised in the list of

ports that is routed via the fromMark (pred1) and if the property ports of the destination Mark

to (pred2) does not yet contain the port. In this case the object-oriented model is changed

by two effects: eff 1 removes the port from property ports of the source Mark Configuration

Item (from) and eff 2 adds it to property ports of the destination Mark Configuration Item

(to). SHT can be instantiated to either obtain SHTp or SHTn change activities. For example,

SHT(mark1,mark2,porta) yields a SHTn change activity because high-capacity traffic (porta)

is shifted to the low-capacity network and SHT(mark2,mark1,portb) yields a SHTp change ac-

tivity. See Figure 5.2 for the instances of the Configuration Items.

The models introduced herein assume that already rerouting the high-capacity traffic of one

EBS server over the low-capacity network causes a network overload. Finer grained scenarios

that require a specific threshold of servers to be reached to cause a network overload are possi-

ble as well. The change verification logic is expressive enough to describe such a scenario. For

example, integer counters can be used to describe the number of EBS servers routing via a spe-

cific interface/network. Routing changes then manipulate these counters and safety constraints

check whether the counters adhere to thresholds. A possible safety constraint would then, for

example, be that no more than n EBS servers are allowed to route high-capacity traffic via the

low-capacity network. Change activities would simply have to be adapted with effects manipu-

lating the counter and safety constraints with predicates that check the threshold constraint.

5.1.3 Network Overload in Dynamic Routing Environment

Overview of Network Setup

Instead of static routing, a data center network can also be configured with dynamic routing. In

such a configuration routes are installed and withdrawn from routing tables of the EBS nodes

by a routing protocol depending on current network conditions. When an EBS node learns of

several routes via different gateways to the same network, it installs the cheapest route according

to a metric into its routing table. Once the cheapest route is no longer available, the newest

cheapest route is installed into the routing table and a traffic shift occurs.



5.1 Amazon Data Center Outage 63

In this work we focus on Open Shortest Path First1 (OSPF), which is arguably the most

widely used routing protocol for routing within an autonomous system, e.g., a large data center.

It is important to notice that the verification logic is expressive enough to describe any rout-

ing protocol because it supports arithmetic operations (increase and decrease) and arithmetic

comparisons frequently used by routing protocols to determine the cheapest route.

There are two ways how to configure the costs of routes that are sent within advertisements

from network interfaces to the EBS servers:

• Manual costs: The cost / metric of an interface can be manually configured2.

• OSPF costs: The cost / metric of an interface is automatically computed. For Cisco and

Juniper routers the OSPF cost of an interface (costintf ) is the quotient of the reference

bandwidth bwref and the bandwidth of the interface bwintf . Thus, costintf can only be

manipulated by changing bwref because the bandwidth of the interface is fixed.

Object-oriented Model of the CMDB

The object-oriented CMDBmodel to detect a network overload in the dynamic routing scenario

can be less detailed than the one used for static configuration. For dynamic routing changes

it suffices to only model network interfaces with properties for their current cost / metric, the

reference bandwidth, and the link bandwidth because the dynamic routing change activities

only affect VRRPInterface Configuration Items.

We later discuss in Section 5.3.2 in more detail the different CMDB models to describe and

verify dynamic routing change workloads.

Scenarios of Network Overload in Dynamic Routing Environment

In a dynamic routing scenario the cheapest route towards a network is installed into the routing

table. In the case of the Amazon outage, a network overload occurs when the cost of a route

advertised by an interface of a low-capacity router is cheaper than the cost advertised by every

interface of the high-capacity routers. In this case, the EBS nodes install the route via the

low-capacity interface into their routing tables leading to a network overload. Generally the

following dynamic routing scenarios could have caused the network overload in Amazon’s case:

• Scenario 1: In this scenario the cost/metric of a low-capacity router interface is acciden-

tally reduced such that it becomes the newest cheapest interface to offer a route.

• Scenario 2: In this scenario the costs/metrics of the high-capacity router interfaces are

increased such that the low-capacity router interface offers the newest cheapest route.

Both scenarios cause a network shift towards a low-capacity router interface and conse-

quently a network overload. Notice that the semantics of the cost/metric of an interface does

not matter for the scenario.

1OSPF Version 2 has been standardized in RFC 2328.
2For example, by using the command ip ospf cost on Cisco routers.
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Safety Constraints and Change Activities

In this section we introduce the change activities and safety constraints for dynamic routing en-

vironments together with their specification in change verification logic. To model the different

scenarios, the following change activities to describe increases and decreases to the cost of an

interface are used:

• Decrease manually configured cost of low-capacity router interface (LCRDecrM):

An LCRDecrM change activity decreases the manually configured cost of a router inter-

face by a specified delta. LCRDecrM change activities are used to implement Scenario 1.

The logical description of an LCRDecrM change activity in verification logic is straight-

forward:

LCRDecrM(interface:VRRPInterface, int:delta)

eff1: | interface.cost.dec(delta)

• Increase manually configured cost of high-capacity router interface (HCRIncrM):

A HCRIncrM change activity increases the manually configured cost of a router interface

by a specified delta. Two HCRIncrM change activities are used to implement Scenario 2.

The logical description of a HCRIncrM change activity in verification logic is straightfor-

ward:

HCRIncrM(interface:VRRPInterface, int:delta)

eff1: | interface.cost.inc(delta)

If the network is configured with automatically computed OSPF metrics, interface costs

cannot be directly manipulated. Instead, common OSPF implementations, e.g., the implemen-

tations of Cisco or Juniper, automatically calculate the cost of an interface (costintf ) as the quo-

tient of the reference bandwidth (bwref ) and the bandwidth of an interface (bwint f ). While the

latter one is fixed, the reference bandwidth can be changed to influence the costs of an interface.

From

costintf = bwref /bwintf

we conclude that an increase of bwref by ∆d > 0 increases costintf by ∆d/bwintf . This anal-

ogously holds for decreases as well. Consequently, we introduce the following two change

activities to change the metric of an OSPF interface by increasing / decreasing its reference

bandwidth:

• Decrease reference bandwidth of low-capacity router interface (LCRDecrOSPF):

An LCRDecrOSPF change activity decreases the reference bandwidth of a low-capacity

router interface by a specified delta. This causes a decrease of the OSPF metric of

that interface as OSPF metrics are calculated based on the reference bandwidth. An

LCRDecrOSPF change activity is used to implement Scenario 1. The logical descrip-

tion of the LCRDecrOSPF change activity contains an additional effect compared to

LCRDecrM to update the reference bandwidth.

LCRDecrOSPF(interface:VRRPInterface, int:delta)

eff1: | interface.refbw.dec(delta)

eff2: | interface.cost.dec(delta / interface.intfbw)
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• Increase reference bandwidth of high-capacity router interface (HCRIncrOSPF):

A HCRIncrOSPF change activity increases the reference bandwidth of a high-capacity

router interface by a specified delta. This causes an increase of the OSPF metric of

that interface as OSPF metrics are calculated based on the reference bandwidth. Two

HCRIncrOSPF change activities are used to implement Scenario 2. The logical descrip-

tion of the HCRIncrOSPF change activity contains an additional effect compared to

HCRIncrM to update the reference bandwidth:

HCRIncrOSPF(interface:VRRPInterface, int:delta)

eff1: | interface.refbw.inc(delta)

eff2: | interface.cost.inc(delta / interface.intfbw)

Independent of whether dynamic routing is modeled with manual or OSPF costs, the fol-

lowing constraint has to hold to prevent a network overload:

SC5/SC5’(vrrp1:VRRPInterface, vrrp2:VRRPInterface, vrrp3:VRRPInterface,

vrrp4:VRRPInterface, vrrp:VRRPInterface)

pred1: | vrrp1.cost < vrrp.cost

pred2: | vrrp2.cost < vrrp.cost

pred3: | vrrp3.cost < vrrp.cost

pred4: | vrrp4.cost < vrrp.cost

pre SC5 : | ∨i=1...4 predi (for workloads not comprising LCRDecrM

or LCRDecrOSPF change activities to interface vrrp)

pre SC5’: | ∧i=1...4 predi (for workloads comprising LCRDecrM

or LCRDecrOSPF change activities to interface vrrp)

SC5/SC5’ depicts the constraint to protect a network comprising four high-capacity router

interfaces (parameters vrrp1 through vrrp4) and a low-capacity router interface (vrrp) from a

network overload caused by dynamic routing changes. Logically the satisfaction of SC5 guar-

antees that the cost of at least one high-capacity router interface is lower than the cost of low-

capacity router interface vrrp. If SC5 is not satisfied, the low-capacity router interface has the

cheapest metric and a network overload occurs as the EBS nodes route towards the low-capacity

network. Notice that if we allow the occurrence of LCRDecrM or LCRDecrOSPF change ac-

tivities, the Boolean or (∨) in the precondition of SC5 has to be changed to a logical and (∧)

because decrements to the cost of the low-capacity router interface (property vrrp.cost) vi-

olate Lemma10 (decrements to vrrp.cost are threats to every predicate predi of the precon-

dition formula ∨i=1...4 predi) and thus turns Theorem 9 inapplicable. Thus, if LCRDecrM or

LCRDecrOSPF change activities appear in the workload, we need to fall back to a more re-

strictive version of the safety constraint (SC5’) that requires all high-capacity router interfaces

to offer a cheaper route than the low-capacity router interface.

5.2 Model Checkers and Optimization Strategies

This section introduces the NuSMV [26] model checker, the SPiN [15, 54] model checker,

and our own special purpose extended partial-order reduction model checker for IT change

verification. The SPiN and NuSMVmodel checkers have been chosen for evaluation against our
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extended partial-order reductionmodel checker because both cover themost popular approaches

for model checking. Among these are symbolic algorithms (binary decision diagram model

checking, NuSMV), SAT-based model checking (NuSMV), and explicit-state model checking

with partial-order reduction (SPiN).

5.2.1 NuSMV Model Checker

NuSMV [26] is a symbolic model checker making use of binary decision diagrams (BDDs).

It originates from CMU SMV, the original BDD-based model checker developed at CMU.

NuSMV supports several different ways to perform model checking: First, NuSMV supports

two different temporal logics for the specification of safety constraints, Computation Tree

Logic (CTL) and/or Linear Temporal Logic (LTL) [11]. Second, problems can either be model

checked using NuSMV’s internal binary decision diagram model checker (called BDD-based

model checking herein) [27] or by using an external SAT solver [28] (called SAT-based model

checking herein). Based on the choices we benchmark different optimization techniques for IT

change verification using the NuSMV model checker.

• BDD-based CTL model checking (BDD CTL):

Using BDD CTL model checking, binary decision diagrams are generated from the de-

scription of state transition systems that describe the current configuration and the effects

of pending change activities. Safety constraints are specified in CTL and verified with

NuSMV’s internal symbolic model checker.

• BDD-based LTL model checking (BDD LTL):

BDD LTL model checking works like BDD CTL model checking, but safety constraints

are formalized in LTL.

• SAT-based LTL model checking (SAT LTL):

Using the SAT LTL model checking optimization technique, the model checking problem

is translated into a satisfiability (SAT) problem and an external SAT solver (Minisat) is

used to verify the safety constraint in LTL [28].

5.2.2 SPiN Model Checker

SPiN [15, 54] is a model checker developed by Gerard J. Holzmann originally intended for the

verification of communication protocols. SPiN was originally developed at Bell Labs in the

Unix group of the Computing Sciences Research Center, starting in 1980. Since 1991 SPiN has

been available as open-source software. Since then it continues to be adapted to keep pace with

developments in the field of formal verification. In April 2002, SPiN was awarded the ACM

Software Systems Award. Since then SPiN has been widely used in industries that have a need

to verify critical systems and has become one of the most well known model checkers.

This section describes different optimization techniques that the SPiN model checker can

be configured with. These techniques will later be used when it comes to benchmark SPiN

against our own model checker and the NuSMV model checker. Different to NuSMV, SPiN is

an explicit-state model checker that explicitly searches and checks the search space induced by

the execution of change activities over the CMDB configuration. The different configurations of

the CMDB (also called states herein) are created during the search and stored in a hash table for

the purpose of detecting cycles. The performance of the SPiN model checker heavily depends

on two factors [15]:
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• Whether collisions occur in the hash table. This is the case if the hash table is not large

enough compared to the search space to be explored. To prevent performance penalties

caused by direct chaining, the strategy used by SPiN to cope with collisions, we use a

hash map sufficiently large enough to avoid a significant performance impact caused by

collisions.

• The size a state occupies in memory and the speed states can be generated and evalu-

ated for conditions. SPiN offers a variety of different state representation techniques to

optimize this aspect.

In the following we explain the different optimization techniques offered by the SPiN model

checker when it comes to efficiently store and process states during verification. These opti-

mization techniques will later be used to evaluate the performance of SPiN against our special

purpose model checker and NuSMV.

• No compression (NCP):

Using the no compression technique (NCP), states are stored uncompressed. The size of

a state, i.e., the configuration of a data center, equals the sum of the sizes of all properties

of all Configuration Items of a configuration. For example, consider a Configuration Item

to hold two properties, an integer property (4 byte) and a byte property (1 byte). Then,

the configuration of one Configuration Item consumes 5 bytes. The configuration of a

CMDB comprising 1 million of these Configuration Items then consumes roughly 5MB.

• Collapse compression (CP):

In real application scenarios state vectors of several hundred bytes are not uncommon -

especially when verifying IT change workloads over large CMDBs. The SPiN model

checker implements a solution to compress states called collapse compression (CP). Col-

lapse compression comes at a trade-off between runtime performance and memory con-

sumption.

• Minimal automaton (DMA):

Instead of storing states using a hash map, state vectors can also be stored using a minimal

automaton. According to Ben-Ari [15] this representation is similar to the binary deci-

sion diagrams used in other model checkers, e.g., NuSMV. Using a minimal automaton,

the memory requirements can usually be reduced to a very small amount at the cost of

additional runtime.

• Partial-Order Reduction:

Partial-order reduction (see Section 2.2) is a technique to reduce the state-space that needs

to be searched by a model checker. Partial-order reduction model checking exploits the

commutativity criterion of actions, i.e., effects of change activities. If actions lead to the

same state independent of the order they are applied and intermediate states do not matter

for the verification problem, then intermediate states can be neglected for verification.

Partial-order reduction can drastically reduce the size of the search space and can be used

independently of the optimization technique to store states. Partial-order reduction is

activated by default in all benchmarks.

A more detailed introduction to the SPiN model checker is provided in [15] or [54].
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5.2.3 Special Purpose Model Checker

We have implemented a special purpose model checker (also called extended partial-order re-

duction model checker herein), which is based on the theory of extended partial-order reduction

(Chapter 2) and the algorithms previously presented in Chapter 4. The special purpose model

checker has been implemented in the Java programming language to achieve complete com-

patibility with object-oriented models, which are frequently used to describe IT configurations

[21, 60]. It is important to note that the effects of change activities, i.e., the effects of the change

verification logic (see Chapter 3), and the formulas of safety constraints, i.e., the predicates of

the change verification logic, are implemented as executable Java code. For example, every

change activity has a method applyEffects() that implements the effects of the change activity

on Java objects that describe the Configuration Items of the CMDB. Similarly, the formulas

of safety constraints are described using a Boolean method that is evaluated over the Java ob-

jects that describe the Configuration Items of the CMDB. Java programs are compiled in Java

bytecode, which is interpreted by Java virtual machines. When enabled, Java’s just-in-time

compilation feature compiles frequently executed code into natively compiled machine code,

which executes faster than the interpreted bytecode of the Java virtual machine. Thus, we dis-

tinguish two different optimization techniques for the extended partial-order reduction model

checker:

• Just-in-time compilation (JITC):

Using this optimization technique, the preconditions and effects of frequently appearing

change activities are automatically compiled in machine code if decided to be necessary

by the default setting of the Java virtual machine.

• No just-in-time compilation (noJITC):

The preconditions and effects of change activities are always interpreted by the Java vir-

tual machine.

The use of just-in-time compilation does not pose an unfair advantage because the SPiN

model checker compiles the verification problem in native machine code as well. Notice that

compilation does not change the actual complexity of an algorithm although it sometimes tends

to disguise it a little bit as we will see later in Section 5.4.2.

5.3 Experimental Setup

This section describes the experimental setup of the evaluation. First, we discuss the influence

of the inputs on the performance of a model checker. After that, different formalizations for

models, safety constraints, and change activities are introduced.

5.3.1 Factors of Influence on the Verification Performance

This section discusses different characteristics of models, change activities, and safety con-

straints that influence the runtime performance of model checkers.

• Complexity of the configuration model: Depending on the model checker, the degree

of detail of an infrastructure model can significantly influence the runtime performance.

Complex, i.e., detailed, infrastructure models tend to consume more memory. Therefore,
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a trade-off needs to be found among the detail of a model and the goal to achieve verifi-

able problem instances. This problem is frequently increased as change mangers are not

trained to write efficiently verifiable specifications.

• Change workloads: The workload of change activities to be verified significantly in-

fluences the runtime of a model checker: (1) The modeling detail of change activities

(number of effects and number of predicates used to describe a change activity) has an

impact on the runtime performance of model checkers. The more effects a change activ-

ity has, the more parts of a model are changed. This can result in a larger search space.

The complexity of a change activities correlates with the complexity of the model. (2) A

workload comprising different types of changes (opposed to only one type of change) can

also increase the search space as more Configuration Items are changed by the effects of

change activities and more detailed models are required.

• Safety constraints: A safety constraint to be verified can influence the runtime of a model

checker as well: The modeling detail of a safety constraint (number of predicates used to

describe a safety constraint) can have an impact on the runtime performance of a model

checker. The more complex the safety constraint, the more change activities potentially

influence the evaluation of the safety constraint. The complexity of a safety constraint

correlates with the complexity of the model. Detailed models and change activities imply

more complex safety constraints as more Configuration Items are changed.

Thus, for a fixed workload of change activities to be verified, there are different ways to

model the IT infrastructure, safety constraints, and change activities. By considering varia-

tions in these parameters, we will assess the robustness of the different model checkers for IT

change verification in terms of runtime performance. For this purpose we introduce in the sub-

sequent section different models (with different specifications for change activities and safety

constraints) to be used in the performance evaluation.

5.3.2 Models and Safety constraints

We introduce in this section different models and formalizations of change activities and safety

constraints for the previously introduced static and dynamic routing change activities of the

Amazon network outage. These models are used in a robustness and benchmark analysis to

compare NuSMV and SPiN with the extended partial-order reduction model checker. The mod-

els differ in the following characteristics:

• The detail in which the IT infrastructure is modeled. For example, there are models that

only comprise the minimal number of Configuration Items (each with minimal proper-

ties) necessary to verify a workload. These models are called minimal models because

they describe the minimum information necessary to solve the verification problem. On

the other hand, there are models that describe the infrastructure in more detail than actu-

ally necessary to perform the verification. The development of minimal models requires

considerably more experience in modeling.

• The workload of change activities that can be verified using a model, i.e., the types of

concurrent change activities supported by a model. For example, there are models that

can verify any combination of static-routing changes (SHTp, SHTn, FOp, and FOn) or

specialized models that can only verify a particular type of change (e.g., FOp or FOn

changes).
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• The logical description of safety constraints and change activities. For example, depend-

ing on the model, the logical descriptions of change activities and safety constraints can

be more or less complex.

Table 5.1 depicts the different models and the workload of change activities supported by

each of them. For example, it can be observed that workloads comprising SHTp and SHTn

change activities can be solved using Model1, Model2, and Model4.

Table 5.2 describes the Configuration Items and their properties for each model (Model1 -

Model8). For example, when comparing Model1 with Model4, it can be observed that Model4
comprises less Configuration Items and less properties thanModel1 while both support the same

change activities. In the following paragraphs we describe the different models and provide

rationale for their inclusion in the robustness analysis.

Model 1: A Detailed Model for Static Routing Change Activities

Model1 is the most detailed model to verify all types of static routing changes (SHTp, SHTn,

FOp, and FOn). Compared to the other models also supporting static routing changes, Model1
provides unnecessary modeling detail, but it is the model that most realistically depicts the

whole configuration. Figures 5.3 and 5.4 depict instances of Model1 that describe the configu-

ration of a one-server EBS cluster and how instances of the static routing change activities alter

the model. Alternatively, Table 5.2 describes the model in tabular fashion.

To protect a configuration described by Model1 from a network overload caused by static

routing change activities, safety constraints are necessary to detect unwanted configurations.

The safety constraint used to protect a configuration described by Model1 is the same as the one

previously introduced in Section 5.1.2. For the purpose of completeness it is mentioned again:

SC1(router:Router, interface:VRRPInterface, rt:RoutingTable, mark:Mark)

pred1: | router.capacity.hasValue("low")

pred2: | interface.router.hasValue(router)

pred3: | rt.gateway.hasValue(interface)

pred4: | rt.marks.contains(mark)

pred5: | mark.ports.!contains(port a)

pre: | (∧i=1...4 predi)→ pred5 ≡ (∨i=1...4 ¬predi) ∨ pred5

Please refer to Section 5.1.2 for the logical explanation of the constraint. Similar to SC1, the

logical description of SHTp and SHTn remains the same as well. For the purpose of complete-

ness we provide the specification again:

SHT(from:Mark, to: Mark, port:int)

pred1: | from.ports.contains(port)

pred2: | to.ports.!contains(port)

pre: | pred1 ∧ pred2
eff1: | from.ports.remove(port)

eff2: | to.ports.add(port)

Depending on how the parameters of the SHT change activity are instantiated, SHTp or SHTn

change activities are obtained. For example, Figure 5.3 depicts instances of SHT that result in
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Figure 5.3: SHTp and SHTn change activities and safety constraints in a one-server EBS cluster

in Model1.
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Figure 5.4: FOp and FOn change activities and safety constraints in a one-server EBS cluster

in Model1.
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SHTp and SHTn change activities. SHT(mark1, mark2, porta) in Figure 5.3 describes a SHTn

change activity because high-capacity traffic (porta) is shifted from the mark1 Configuration

Item to the mark2 Configuration Item. This change violates the second instance of safety con-

straint SC1 in Figure 5.3 that protects the configuration from an overload.

In Model1 FOp and FOn change activities are described with the same logical specification

as previously introduced in Section 5.1.2:

FO(rt:RoutingTable, current:VRRPInterface, failover:VRRPInterface)

pred1: | rt.gateway.hasValue(current)

pred2: | current.failover.hasValue(failover)

pre: | pred1 ∧ pred2
eff1: | rt.gateway.setValue(failover)

Depending on how the parameters of the FO change activity are instantiated, we obtain FOp

or FOn change activities. Figure 5.4 depicts the effects of FOp and FOn change activities on

Model1. For example, FO(rt1, vrrp1, vrrp5) describes a FOn change activity because the

new gateway of rt1 (which is the routing table used to route high-capacity traffic because it is

associated with a Mark Configuration Item for high-capacity traffic) is set to vrrp5 which is a

low-capacity router interface. This change violates the third (out of four) instances of safety

constraint SC1 that protects the configuration from an overload. For interested readers we sug-

gest to substitute the instances of change activities and safety constraints in Figures 5.3 and 5.4

by their logical specification to comprehend the graphical model changes and the invalidation

of safety constraints.

Model 2: A Minimal Model for SHTp and SHTn Change Activities

Model2 is a highly-optimized version of Model1 that only supports change workloads compris-

ing SHTp and SHTn change activities. Different to Model1, this model cannot be used to verify

FOp and FOn change activities. SHTp and SHTn change activities have the same logical spec-

ification as in Model1, i.e., they only modify Mark Configuration Items. Thus, for workloads

only comprising SHTp and SHTn change activities it suffices to use models that only comprise

Mark Configuration Items. All other Configuration Items can be neglected as their configura-

tion remains unchanged and the safety constraint can be simplified to reflect this. Thus, parts of

the safety constraint of Model1 become obsolete yielding SC2.

SC2(mark:Mark)

pred1: | mark.port.!contains(port a)

pre: | pred1

SC2 is the safety constraint of Model2. It is sound if it is instantiated for every Mark Con-

figuration Item that is statically associated with a routing table that statically routes towards a

low-capacity interface. These associations can be assumed to be static because no other change

activities to change them are supported by Model2. We call Model2 the minimal model to verify

a workload of SHTp and SHTn change activities because it only models Mark Configuration

Items with a single property to solve the verification problem.

For interested readers we highlight that substituting the logical descriptions of change ac-

tivities and safety constraints in Figure 5.5 invalidates the logical specification of the safety
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Figure 5.5: SHTp and SHTn change activities and safety constraints in a one-server EBS cluster

in Model2.

constraint as depicted. The logical description of SHTp and SHTn change activities equals that

of Model1.

Model 3: A Minimal Model for FOp and FOn Change Activities

Model3 (see Figure 5.6 for an instance in the one-server EBS cluster) is a highly-optimized

version of Model1 that only supports change workloads comprising FOp and FOn change ac-

tivities. FOp and FOn change activities have the same logical specification as in Model1, i.e.,

they change the gateway association between routing tables and interfaces to reflect the default

gateway of a routing table. Consequently, for pure FOp&FOn workloads it suffices to only use

models that comprise RoutingTable and VRRPInterface Configuration Items. All other Con-

figuration Items can be neglected as their configuration remains unchanged. Thus, parts of the

safety constraint of Model1 become obsolete yielding SC3.

SC3(rt:RoutingTable, interface:VRRPInterface)

pred1: | rt.gateway.!hasValue(interface)

pre: | pred1

SC3 is the safety constraint of Model3. The safety constraint is sound if it is instantiated for

every combination of routing table that routes high-capacity traffic (rt1 in our case) and low-

capacity router interface (vrrp5 and vrrp6). Formalized in change verification logic, the safety

constraint checks whether a routing table that routes high-capacity traffic (rt) has a low-capacity

router interface as default gateway (vrrp). As this model does not allow/support other change

activities, SC3 is sound. Model3 is the minimal model to verify a workload of FOp and FOn
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Figure 5.6: FOp and FOn change activities and safety constraints in a one-server EBS cluster

in Model3

change activities because it only comprises RoutingTable and VRRPInterface Configuration

Items, which are the minimal Configuration Items affected by the logical description of the

FOp and FOn change activities.

For interested readers we highlight that substituting the logical descriptions of change ac-

tivities and safety constraints in Figure 5.6 invalidates the logical specification of the safety

constraints as depicted. The logical specification of FOp and FOn change activities equals that

of Model1.

Model 4: A Minimal Model for Static Routing Change Activities

Model4 (see Figures 5.7 and 5.8 for an instance in the one-server EBS cluster) is a highly-

optimized version of Model1 that supports any static routing change. In Model4 all change

activities have the same specification as in Model1. However, a couple of Configuration Items

can be neglected compared to Model1 as they remain unchanged by static routing changes.

Thus, parts of the safety constraint of Model1 become obsolete yielding SC4.

SC4(mark:Mark, rt: RoutingTable, vrrp:VRRPInterface)

pred1: | mark.ports.contains(port a)

pred2: | rt.gateway.hasValue(vrrp)

pre: | pred1→ ¬ pred2 ≡ ¬pred1 ∨ ¬pred2

SC4 is the safety constraint of Model4. The safety constraint is sound if it is instantiated for

every combination of a Mark Configuration Item, its statically associated routing table, and any
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Figure 5.7: SHTp and SHTn change activities and safety constraints in a one-server EBS cluster

in Model4.
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Figure 5.8: FOp and FOn change activities and safety constraints in a one-server EBS cluster

in Model4.
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low-capacity router interface. Then, the safety constraint is violated if a mark that routes high-

capacity traffic (porta) is associated to a routing table (rt) that routes towards a low-capacity

router interface (vrrp). The logical description of static routing change activities remains the

same as in Model1.

Notice that the graphical model changes and the violations of safety constraints can be

comprehended by substituting the logical descriptions of change activities and safety constraints

in Figures 5.7 and 5.8.

Model 5: A Minimal Model for Dynamic Routing Changes with Manual Metrics

HCRIncrM

(vrrp1, 5)

HCRIncrM

(vrrp2, 5)

EBS Cluster with 1 server per network 

network of a cluster / subnetserver

vrrp1:VRRPInterface

uuid: 5

cost: 8

vrrp2:VRRPInterface

uuid: 6

cost: 8

 

vrrp3:VRRPInterface

uuid: 7

cost: 10

vrrp4:VRRPInterface

uuid: 8

cost: 10 

vrrp5:VRRPInterface

uuid: 9

cost: 9

vrrp6:VRRPInterface

uuid: 10

cost: 9

 

SC5(vrrp1, vrrp2, 

    vrrp3, vrrp4, vrrp5)

SC5(vrrp1, vrrp2, 

    vrrp3, vrrp4, vrrp6)

both 

invalidate

EBS Cluster with 1 server per network 

network of a cluster / subnetserver

vrrp1:VRRPInterface

uuid: 5

cost: 13

vrrp2:VRRPInterface

uuid: 6

cost: 13

 

vrrp3:VRRPInterface

uuid: 7

cost: 10

vrrp4:VRRPInterface

uuid: 8

cost: 10 

vrrp5:VRRPInterface

uuid: 9

cost: 9

vrrp6:VRRPInterface

uuid: 10

cost: 9

 

Model 5

Figure 5.9: HCRIncrM change activity and safety constraints in a one-server EBS cluster in

Model5.

Model5 is the minimal model to verify all types of dynamic routing changes when manual

metrics are used, i.e., for HCRIncrM and LCRDecrM change activities. Figure 5.9 depicts an

instance of Model5. Alternatively, Table 5.2 describes Model5 in a tabular fashion. Model5
only covers instances of VRRPInterface Configuration Items that only hold one property, the

manually configured cost/metric of the interface.

Safety constraint SC5/SC5’ protects the network of Model5 from an overload caused by

workloads comprising HCRIncrM or LCRDecrM change activities.

SC5/SC5’(vrrp1:VRRPInterface, vrrp2:VRRPInterface, vrrp3:VRRPInterface,

vrrp4:VRRPInterface, vrrp:VRRPInterface)

pred1: | vrrp1.cost < vrrp.cost

pred2: | vrrp2.cost < vrrp.cost

pred3: | vrrp3.cost < vrrp.cost

pred4: | vrrp4.cost < vrrp.cost

pre SC5 : | ∨i=1...4 predi (for workloads not comprising LCRDecrM

or LCRDecrOSPF change activities to interface vrrp)

pre SC5’: | ∧i=1...4 predi (for workloads comprising LCRDecrM

or LCRDecrOSPF change activities to interface vrrp)
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SC5/SC5’ needs to be instantiated for any combination of the four high-capacity router in-

terfaces of a network and all low-capacity interfaces of a network. All in all, two instances (per

network) are needed to protect the configuration from an overload. Both instances of SC5 are

depicted in the upper left corner of Figure 5.9. If properly instantiated, SC5 reads as follows.

The cost/metric of at least one of the four high-capacity VRRPInterfaces (parameters vrrp1 to

vrrp4) needs to be cheaper than the cost of low-capacity router interface vrrp. Notice that if

we allow the occurrence of LCRDecrM change activities, the Boolean or (∨) in the precon-

dition of SC5 has to be changed to a logical and (∧). The rationale behind this modification

has previously been given in Section 5.1.3 where SC5/SC5’ has been discussed in more detail.

An example involving Model5, safety constraint SC5’, and an LCRDecrM change activity can

be found in AppendixC, FigureC.1. The change activities to increase or decrease the manual

cost/metric of an interface match the logical description of HCRIncrM and LCRDecrM change

activities previously given in Section 5.1.3:

HCRIncrM(interface:VRRPInterface, int: delta)

eff1: | interface.cost.inc(delta)

LCRDecrM(interface:VRRPInterface, int: delta)

eff1: | interface.cost.dec(delta)

According to the previously discussed scenarios for a network outage in a static routing

environment with manual metrics (see Section 5.1.2), we consider two scenarios how a network

overload can appear in Model5: (1) Two HCRIncrM change activities increase the costs of the

high-capacity router interfaces currently being used for routing such that the route via a low-

capacity router interface becomes cheaper. See the two instances of HCRIncrM in Figure 5.9.

(2) The metric of a low-capacity router interface is decreased such that the interface becomes

the newest cheapest interface of the network. Figure C.1 (AppendixC) depicts such an instance

of LCRDecrM.

Notice that the execution of the change activities depicted in Figure 5.9 cause the graphical

changes to the model and the logical violation of the red instances of safety constraint SC5.

Model 6: A Minimal Model for Dynamic Routing Changes with OSPF Metrics

Model6 is the minimal model used to verify HCRIncrOSPF and LCRDecrOSPF change activ-

ities. Figure 5.10 depicts an instance of Model6. Similar to Model5, this model only comprises

interfaces of a subnet. Different to Model5, properties for the reference and interface bandwidth

need to be added to the VRRPInterface Configuration Items to take into account the additional

configuration parameters for automatically computed OSPF metrics.

The safety constraint to protect the network from an overload caused by OSPF routing

change activities is exactly the same as for Model5. A specification of the HCRIncrOSPF

and LCRDecrOSPF change activities in change verification logic has been previously given in

Section 5.1.3:

HCRIncrOSPF(interface:VRRPInterface, int:delta)

eff1: | interface.refbw.inc(delta)

eff2: | interface.cost.inc(delta / interface.intfbw)
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Figure 5.10: HCRIncrOSPF change activity and safety constraints in a one-server EBS cluster

in Model6.

LCRDecrOSPF(interface:VRRPInterface, int:delta)

eff1: | interface.refbw.dec(delta)

eff2: | interface.cost.dec(delta / interface.intfbw)

According to the scenarios (see Section 5.1.3) there are two ways how a network overload

can appear in Model6: (1) Two HCRIncrOSPF change activities increase the reference band-

width of the high-capacity interfaces such that a route via a low-capacity router interface be-

comes cheaper. See the two instances of HCRIncrOSPF in Figure 5.10 for an example. (2) The

reference bandwidth of a low-capacity router interface is decreased (and thus the cost of the

interface) such that the interface becomes the newest cheapest interface on the network. For

this case the slightly more restrictive safety constraint SC5’ has to be used (similar to Model5)

to preserve the soundness of the verification algorithm. Figure C.2 in AppendixC depicts such

a configuration and its modification by an LCRDecrOSPF change activity.

Model 7: A Detailed Model to Describe Dynamic Routing Changes with Manual Metrics

Model7 is a detailed model to verify HCRIncrM and LCRDecrM change activities. Different

to Model5, it is not minimal because it also describes router and server Configuration Items.

Figure 5.11 depicts an instance of Model7 that describes the configuration of a one-server EBS

cluster. Alternatively, refer to Table 5.2, which describes the model as well. The safety con-

straints (SC5 or SC5’) to protect the network from an overload are the same as in the other

dynamic routing models (Model5, Model6, and Model8). The specification of HCRIncrM and

LCRDecrM change activities remains unchanged. Similar to the other models, SC5’ needs to be

used once the workload comprises LCRDecrM change activities. See Figure C.3 in AppendixC

for an example configuration and its modification by an LCRDecrOSPF change activity.
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Figure 5.11: HCRIncrM change activity and safety constraints in a one-server EBS cluster in

Model7.
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Figure 5.12: HCRIncrOSPF change activity and safety constraints in a one-server EBS cluster

in Model8.

Model 8: A Detailed Model to Describe Dynamic Routing Changes with OSPF Metrics

Model8 is a detailed model to verify HCRIncrOSPF and LCRDecrOSPF change activities. Fig-

ure 5.12 depicts an instance of Model8 that describes the configuration of a one-server EBS

cluster. The safety constraints (SC5 or SC5’) to protect the network from an overload are the

same as in the other dynamic routing models (Model5, Model6, and Model7). The specifica-

tion of HCRIncrOSPF and LCRDecrOSPF change activities remains unchanged. Similar to

the other models, SC5’ needs to be used once the workload comprises LCRDecrOSPF change
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activities. See Figure C.4 in AppendixC for an example configuration and its modification by

an LCRDecrOSPF change activity.

5.4 Experimental Evaluation

This section evaluates the extended partial-order reduction model checker against NuSMV and

SPiN using the Amazon case study. The experimental setup is described in Section 5.4.1. Sec-

tion 5.4.2 compares the runtime complexity and performance of the special purpose model

checker against NuSMV and SPiN. After that, we compare the maximum solvable problem

sizes in a memory- and time-constrained environment depending on the model checkers, the

CMDB models, and change workloads in Section 5.4.3. The robustness of the runtime perfor-

mance of the model checkers is analyzed in Section 5.4.4. Finally, Section 5.4.5 compares the

worst-case verification performance of the special purpose model checker against the best-case

performance of the NuSMV and SPiN model checker.

5.4.1 Benchmarks

In Section 5.3.2 we introduced eight different models that can each verify different types of

workloads (see Table 5.1). All in all, there are 32 combinations of models and workloads sup-

ported by them. We call these 32 combinations a benchmark. Table 5.3 depicts all 32 bench-

marks (first multicolumn) and the Configuration Items, change activities, and safety constraints

comprised in each benchmark for a server and network of a subnet. For example, consider the

first row of Table 5.3, which describes the characteristics of the SHTp workload benchmark on

Model1. For this benchmark, the per server and per network multicolumns describe:

• The Configuration Items (for each server and each network) that are comprised in the

model. For example, Model1 comprises two Mark and two RoutingTable Configuration

Items for every EBS server and vrrp1-vrrp6 (router interfaces), hcr1-2 (high-capacity

routers), and lcr (low-capacity router) Configuration Items for every subnet of a cluster.

• The change activities that are comprised in the workload and are instantiated over every

network or server in the CMDB. For example, for the combination of Model1 and the

SHTp workload one SHTp change activity is instantiated on every server and no changes

are instantiated over the network Configuration Items.

• The safety constraints that are instantiated to protect the configuration described by a

model from an overload. For example, when a pure SHTp workload appears on Model1,

four safety constraint instances of SC1 need to be instantiated over every server to protect

the configuration.

Thus, if we benchmark a SHTp workload on a CMDB comprising 10,000 servers, then

the CMDB comprises 40,000 Configuration Items describing servers (4 CIs per server, see

Table 5.3) and 360 network CIs (9 CIs per subnet, 40 subnets assuming 255 servers per subnet).

Furthermore, as it can be observed in Table 5.3, verifying the SHTp workload on Model1 means

to verify 10,000 SHTp change activities (one SHTp change per server) against 40,000 instances

of safety constraint SC1 (4 instances of SC1 per server).

The logical specification of change activities and safety constraints as well as the Config-

uration Items modeled in each model have previously been introduced in Section 5.3.2. Each
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benchmark is then run on every model checker taking into account the specific optimization

techniques available to the model checker (see Section 5.2). With each three optimization tech-

niques for the NuSMV and SPiN model checker and a total of two optimization techniques for

the special purpose model checker, we obtain 32 ∗ 8 = 256 different combinations (called con-

figuration of a benchmark) that have been benchmarked depending on the size of the CMDB.

Much care and caution has been invested in the specification of the inputs to the different model

checkers to guarantee that all model checkers have to verify the same logical formulas, that

models are the same for each model checker, that the same workload is verified, and that change

activities have the same logical specification.

All benchmarks have been performed on an Intel Xeon Processor with 2.8Ghz and 4 GB of

RAM. Each model checker has been restricted to a maximummemory of 1GB and a maximum

processing duration of 12 minutes to ensure that runtime complexity is not achieved at the

cost of memory complexity or the other way round. All benchmark results presented herein

comprise all problem sizes that can be solved within these time and memory constraints if not

noted otherwise.

5.4.2 Runtime Complexity and Performance

This section summarizes the runtime complexity and performance of each model checker for

the configurations of the 32 benchmarks. Table 5.4 consolidates the complexity results and

Tables 5.5 through 5.6 summarize the relative runtime performance of the model checkers and

optimization techniques on small and large problem instances. Figures B.1 through B.10 in

AppendixB.1 provide the graphs of the benchmarks that are summarized in the tables.

Due to the numerous benchmarks and optimization techniques covered, we only summarize

the results herein and exemplary refer to the SHTn on Model4 benchmark (see Figure 5.13) to

explain the results.

Performance Results of the Special Purpose Model Checker

This paragraph summarizes the complexity and performance results of the extended partial-

order reduction model checker for the configurations of the 32 benchmarks. An overview of the

results is given in Tables 5.4 through 5.6.

• The special purpose model checker has linear runtime complexity:

The extended partial-order reduction model checker has linear runtime complexity in each

of the benchmarks independent of the optimization technique. This experimentally con-

firms the results of the complexity analysis previously presented in Section 4.2. There

we concluded that the special purpose model checker solves all three IT change verifi-

cation problems in time linear in the number of change activities, safety constraints, and

the size of the CMDB assuming that changes and constraints are equally distributed over

the Configuration Items of the CMDB. The linear runtime complexity can be observed

in Figure 5.13 (and for all other benchmarks in AppendixB.1), which depicts the log-log

graph of the verification time of the SHTn workload on Model4 depending on the size of

the CMDB. In log-log graphs linear runtime complexity can be observed in curves with

a slope of one. Thus, the special purpose model checker has linear runtime complexity

for the SHTn workload on Model4. This holds for any other benchmark (see Figures B.1a

through B.10c in AppendixB.1) as well.
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Benchmark OWN configurations NuSMV configurations SPIN configurations

CMDB size Position JITC noJITC BDD CTL BDD LTL SAT LTL NCP CP DMA

large fastest 100% 0% 37.5% 0% 62.5% 25% 75% 0%

large slowest 0% 100% 0% 100% 0% 0% 0% 100%

large intermediate 0% 0% 62.5% 0% 37.5% 75% 25% 0%

small fastest 0% 100% 100% 0% 0% 81.25% 28.13% 0%

small slowest 100% 0% 0% 100% 0% 0% 0% 100%

small intermediate 0% 0% 0% 0% 100% 18.75% 71.87% 0%

max size 81.25% 68.75% 56.25% 18.75% 59.38% 25% 96.88% 28.13%

min size 18.75% 31.25% 9.38% 81.25% 18.75% 62.5% 3.13% 40.63%

middle size 0% 0% 34.38% 0% 21.88% 12.5% 0% 31.25%

Table 5.7: Average performance of each model checker in the benchmarks depending on the

optimization technique chosen. For example, SAT LTL is the best choice in terms of

performance on large CMDBs in 62.5% of all cacses for the NuSMVmodel checker.
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Figure 5.13: Time needed to verify a SHTn workload on Model4 depending on the number of

servers, the model checker, and optimization technique used.

• The special purpose model checker always delivers the best runtime performance

for a given model:

For a fixed model the special purpose model checker always outperforms NuSMV and

SPiN - even when the worst-case optimization technique is chosen for the special pur-

pose model checker. For example, this can be observed in Figure 5.13 because the JITC

and noJITC measurements always lie well below all curves of the NuSMV and SPiN

model checker. This holds for all 32 benchmarks (see Figures B.1a through B.10c in

AppendixB.1) as well. We later show in Section 5.4.5 that this even holds among all

models, i.e., that the worst-case choice of model and optimization technique made for the
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extended partial-order reduction model checker is always better than the best-case choice

that can be made for NuSMV and SPiN.

• On large domains just-in-time compilation outperforms code interpretation:

Throughout each benchmark we can observe that just-in-time compilation only improves

runtime performance on large CMDB sizes while it imposes a runtime penalty on small

CMDBs. The smaller the configuration of the CMDB, the larger the penalty caused by

just-in-time compilation. This is the case because the time to compile code does not

outweigh the faster execution performance of native code on small problem instances.

For example, in Figure 5.13 noJITC is faster than JITC for problem sizes no larger than

600 servers. After that, the runtime improves when just-in-time compilation is activated.

This behavior can be observed in any benchmark (see Figures B.1a through B.10c in

AppendixB.1).

Performance Results of NuSMV Model Checker

This paragraph summarizes the complexity and performance results of the NuSMV model

checker for the configurations of the 32 benchmarks. An overview of the results is given in

Tables 5.4 through 5.6.

• NuSMV mostly has polynomial runtime complexity:

NuSMV solves 84% of the 32 verification benchmarks in polynomial time and in the

remaining benchmarks runtime complexity varies between polynomial and exponential.

The runtime complexity reaches phases of exponential complexity for certain workloads

verified with Model5 and Model6 (see Table 5.4). The polynomial runtime complexity or

worse can be observed in Figure 5.13 as the BDD CTL, BDD LTL, and SAT LTL curves

have a slope larger than one, which corresponds to polynomial or exponential complexity.

Polynomial complexity was distinguished from exponential complexity by observing the

corresponding semi-log graphs. In these graphs most curves grew slower than a straight

line which confirms polynomial complexity1. Similar observations like for the SHTn

workload on Model4 can be made for the other benchmarks (see Figures B.1a-B.10c in

AppendixB.1).

• NuSMV performs better than SPiN and worse than the special purpose model checker

in any benchmark:

For any benchmark even the worst-case optimization technique for NuSMV outperforms

the best-case choice for the SPiN model checker. This can be easily observed in Fig-

ure 5.13, where the BDD CTL, BDD LTL, and SAT LTL curves always lie well below

all measurements made for the SPiN model checker. This can also be observed in Fig-

ures B.1a through B.10c in AppendixB.1 that depict the results of the remaining bench-

marks.

• On large domains SAT LTL performs best most of the time. On small domains BDD

CTL model checking performs best most of the time:

Table 5.6 consolidates the runtime performance results of the benchmarks on large CMDB

sizes. In 62.5% of all benchmarks SAT LTL model checking provides the best runtime

1All conclusions about the runtime complexity of NuSMV presented herein have been drawn from the graph-

ical analysis of the log-log and semi-log plots.
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performance followed by BDD CTL model checking (best in 37.5% of all cases) and

BDD LTL model checking (always providing the worst performance on large CMDBs).

In turn, on small CMDB instances (see Table 5.5) BDD CTL model checking always

provides the best performance while the winner for large problem instances (SAT LTL)

only provides the second best performance. Similar to large instances, BDD LTL model

checking always delivers the worst performance.

Compared to the special purpose model checker, the performance of NuSMV can be less

easily predicted. For the special purpose model checker JITC always performs better

on large CMDBs and noJITC is faster on small CMDBs - an obvious recommendation

on which optimization technique to prefer depending on the size of the CMDB. In turn,

for NuSMV an obvious recommendation can only be provided for small CMDB instances

(BDD CTLmodel checking) while SAT LTL - the best choice for large CMDB instances -

will only achieve the second best performance in 37.5% of all benchmarks.

Notice that Figure 5.13 provides one of the examples where BDD CTL model checking

initially performs better than SAT LTL model checking on small CMDB instances but is

then overtaken by SAT LTL model checking when the CMDB size increases.

Performance Results of SPiN Model Checker

This paragraph summarizes the complexity and performance results of the SPiN model checker

for the configurations of the 32 benchmarks. An overview of the results is given in Tables 5.4

through 5.6.

• SPiN mostly has exponential runtime complexity:

The SPiN model checker shows exponential runtime complexity in most of the 32 bench-

marks. For a few cases runtime complexity varies between polynomial and exponential

complexity. For some benchmarks involvingModel7 and Model8 in combination with the

DMA optimization technique we were unable to graphically determine runtime complex-

ity because only two problem instances could be solved. Exponential runtime complexity

can be identified in Figure 5.13 because the slopes of the NCP, CP, and DMA curves

are larger than one and the curves appear as straight lines in the corresponding semi-log

graphs.1 For the sake of brevity the semi-log graphs of the benchmarks are not provided,

but the log-log graphs can be found in Figures B.1a-B.10c in AppendixB.1.

• SPiN always performs worse than NuSMV in every benchmark:

In every benchmark, even the best-case optimization technique for SPiN yields longer

verification times than the worst-case choice of the NuSMV model checker. This can be

easily observed in Figure 5.13, where all NuSMV curves lie well below all measurements

made for the SPiN model checker. This is also the case in Figures B.1a through B.10c in

AppendixB.1.

• On large domains compression performs best on average. On small domains no

compression performs best on average:

On large domains state compression (CP) provides the best runtime performance in 75%

of all benchmarks. In the remaining 25% of all cases no compression (NCP) is faster than

compression (CP) (see Table 5.6 for results).

1All conclusions about the runtime complexity of SPiN presented herein have been drawn from the graphical

analysis of the log-log and semi-log plots.
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In turn, on small domains no compression provides the best performance in 81% of all

cases. In the remaining cases compression is faster on small CMDB instances. The

deterministic minimal automaton strategy always has the worst-case runtime performance

on small and large CMDB instances.

SPiN mainly profits from compression on large CMDBs. On small CMDBs it causes

an overhead that slows down the verification performance such that the NCP strategy

becomes faster. However, there are exceptions to the rule. Consequently, the performance

of SPiN is more difficult to predict than the performance of the extended partial-order

reduction model checker. For the latter JITC is always faster on large CMDBs and noJITC

is faster on small CMDBs - a clear statement on which optimization technique to prefer

depending on the size of the problem instance. In turn, optimal recommendations can

only be made in 75% (on large CMDBs) or 81% (on small CMDBs) of all examined

cases for the SPiN model checker.

5.4.3 Maximum Solvable Problem Instances in Time- and Memory-cons-

trained Environments

Besides the time needed for verification, the maximum size of problems solvable in a time-

and memory-constrained environment is of importance as well because verification problems

of significant size can appear for IT change verification due to the scale of IT infrastructures.

Table 5.8 depicts the results of the maximum problems sizes solvable1 depending on the model,

the workload, and optimization technique used. The results summarized in Table 5.8 are based

on Figures B.1a-B.10c in AppendixB.1.

• The special purpose model checker solves the largest problem instances:

In Figures B.1a through B.10c it can be observed that the special purpose model checker

always solves the largest problem instances in the time- and memory-constrained envi-

ronment - even if the best-case optimization technique is chosen for NuSMV and SPiN.

• The NuSMV model checker solves larger problem instances than the SPiN model

checker:

In all 32 benchmarks the NuSMV model checker always solves larger problem instances

than the SPiN model checker - even if the most beneficial optimization technique is cho-

sen for SPiN.

• The best optimization techniques to solve the largest problem instances are:

– SPiN model checker: Collapse compression (CP) solves the largest problem in-

stances most of the time:

Not surprisingly compression enables the SPiN model checker to solve the largest

problem instances in approx. 96.8% of all cases. State compression effectively

reduces memory consumption. In addition to that, it only has a small impact on

the performance because it is also the fastest strategy in 75% of all cases on large

CMDBs (see Section 5.4.2). Consequently, CP is the SPiN strategy that most fre-

quently solves the largest problems in the shortest time. Following CP, DMA solves

the second largest problem instances and NCP the smallest instances.

1within 1GB of RAM and 12 minutes.
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– NuSMV model checker: BDD CTL and SAT LTL solve roughly equally large

problem instances:

BDD CTL (SAT LTL) solves the largest problem instances in 56% (59%) of all

cases. Both can be regarded as roughly equally good when it comes to solve the

largest problem instances. However, in 34% of all benchmarks BDD CTL solves the

second largest problem instances while SAT LTL only solves 22% of all cases placed

second. Consequently, considering first and second places BDD CTL provides the

better strategy although it solves slightly less benchmarks placed first. However,

BDD CTL is not the best recommendation in terms of performance on large CMDB

sizes. Consequently, SAT LTL might still be a good choice. It has slightly worse

scalability in terms of problem sizes but shows better runtime performance on large

CMDBs (see Table 5.7).

– The special purpose model checker: Just-in-time compilation (JITC) solves

roughly equally large problem instances as noJITC:

We were unable to determine which optimization technique solves the larger prob-

lem instances as the same configurations of a benchmark led to slightly different

memory consumptions. The fact that there is roughly a gap of 12% for which JITC

was observed to solve larger problem instances than noJITC and the fact that there is

only a small difference between the maximum and minimum problem sizes makes

it impossible to give a recommendation on which strategy solves larger problem

instances.

5.4.4 Robustness of Runtime Performance

In this section we show that the special purpose model checker is more robust than the NuSMV

and SPiN model checker in terms of verification runtime for any of the benchmarks. Robust-

ness of change verification is very important because we cannot expect a change manager to

be trained to choose the most performant model and optimization technique for a change veri-

fication problem. Consequently, for IT change verification a model checker is required whose

performance is as independent as possible in respect to the description of the IT infrastruc-

ture and the specification of change activities and safety constraints. To discuss robustness, we

introduce a metric for its measurement.

For a workload w, i.e., a combination of change activities to be verified and a model checker

m, we introduce the terms of worst- and best-case verification time as follows. The best-case

verification time of a workload w using model checker m is the shortest runtime for verification

that can be achieved with model checker m by selecting the combination of model (see Sec-

tion 5.3.2) and optimization technique (see Section 5.2) that verifies the workload in the shortest

time. Analogously, the worst-case verification time of a workload w using model checker m is

the longest runtime for verification that is needed when the most adverse combination of model

and optimization technique is used for model checker m. The difference between the worst-case

and best-case verification performance of a workload w using a model checker m is called the

maximum penalty of m for workload w. The maximum penalty describes the maximum addi-

tional verification runtime that occurs when an inexperienced change manager chooses the most

unfavorable model and optimization technique instead of the optimum. Finally, we say that a

model checker m1 is more robust than a model checker m2 with respect to a workload w if and

only if the maximum penalty of m1 (for workload w) is lower than that of m2 (for workload w).
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Figure 5.14: Maximum penalty, i.e., difference between worst- and best-case verification time,

for the different model checkers and SHTp, SHTn, and SHTp& SHTn workloads.

Figure 5.14 depicts the maximum penalties for all three model checkers when verifying a

SHTp, SHTn, or SHTp& SHTn workload. In this section we only discuss the results of these

workloads. For the sake of completeness the benchmark results for all other workloads can be

found in AppendixB.2 (Figures B.11a - B.11e).

In Figure 5.14 we observe that the maximum penalty of the special purpose model checker

increases linearly with the size of the CMDB as the curves converge to a slope of one in the log-

log graph. Thus, should a change manager - due to lack of knowledge in the design of efficient

verification domains and models - choose an adverse model, he or she will not be penalized

more than linearly in the size of the CMDB compared to the best model that could have been

chosen.

In turn, if the NuSMV model checker is used, the penalty is polynomial in the size of the

CMDB as the penalty graphs of NuSMV have a slope larger than one but still do not appear

as a straight line in the corresponding semi-log graphs. Although phases of exponential run-

time complexity can be observed for NuSMV for dynamic routing workloads (see Model5 and

Model6 in Table 5.4), the maximum penalty of these workloads remains polynomial in the size

of the CMDB. This is the case because the maximum penalty is only calculated for model

sizes that are solvable by any combination of model and optimization technique. As the phases

of exponential runtime complexity appear for CMDB sizes not solvable with all models and

optimization techniques, the maximum penalty has polynomial complexity.

Robustness is mostly exponential in the size of the CMDB for the SPiN model checker.

However, the lack of measurements did not allow us to determine the complexity of the max-

imum penalty for some workloads. For example, the maximum penalty cannot be determined

forHCRIncrOSPF, LCRDecrOSPF, andHCRIncrOSPF& LCRDecrOSPF workloads (see Fig-

ureB.11d) because SPiN scales badly for this workload making it impossible to determine run-
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time complexity.

A complete coverage of the maximum penalties of the remaining workloads can be found

in Figures B.11a - B.11e in AppendixB.2. All in all, the special purpose model checker is not

only faster but also more robust than the SPiN and NuSMV model checker when it comes to

verify the IT change workloads that could have caused Amazon’s data center outage.

5.4.5 Worst- and Best-case Performance

In this section we show that the special purpose model checker always performs better than

the NuSMV and SPiN model checker - independent of the models and optimization techniques

chosen for each model checker. A related but slightly weaker statement has previously been

shown in Section 5.4.2: The special purpose model checker is always the fastest model checker

independent of the optimization technique chosen if verification is performed with the same

model. The extension to an arbitrary model made herein is a strong robustness statement:

No matter which of the examined models or optimization techniques is chosen, the runtime

performance of the special purpose model checker is always better than the best choice that

can be made by an experienced user of the NuSMV or SPiN model checker. This observation

might already have been drawn from Table 5.4 that depicts the superior runtime complexity

of the special purpose model checker compared to the NuSMV and the SPiN model checker.

However, for now it has only been obvious that this would hold on large CMDB instances. A

polynomial or exponential algorithm might still outperform a linear algorithm on small CMDB

instances if the constant scaling factor of the linear algorithm is high enough.
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Figure 5.15: Worst- vs. best-case verification time of the various model checkers for the SHTp

workload.

For the sake of brevity we only discuss the best- and worst-case performance analysis for the
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SHTp workload herein. The benchmarks of the other workloads yield similar results and can be

found in Figures B.12a-B.14 in SectionB.3 of AppendixB. Figure 5.15 depicts the worst-case

verification time of the special purpose model checker and the best-case verification time of

the NuSMV and the SPiN model checker for the SHTp workload. The best- and worst-case

have been determined among all models that support the SHTp workload (Model1, Model2,

and Model4) and all model checker specific optimization techniques. Notice that measurements

are only considered for CMDB sizes that can be solved independent of the configuration of a

benchmark, i.e., independent of the optimization technique chosen for every model checker.

Thus, we ensure that the analysis only considers problem sizes that are solvable by every model

checker using any of its optimization techniques. In Figure 5.15 it can be observed that, even in

the worst-case, the special purpose model checker outperforms NuSMV and SPiN for the SHTp

workload. The same holds for all other workloads (see graphs in Section B.3 of AppendixB).

5.5 Related Work

This section provides an overview of work related to IT change verification. Section 5.5.1 dis-

cusses related work in the context of IT change verification. After that, we broaden the scope

and provide an overview of conflict detection in the configuration of security critical software

systems in Section 5.5.2. In Section 5.5.3 we discuss policy conflict detection in the area of

systems management. Finally, Section 5.5.4 discusses related work that aims to improve the

reliability of systems and Change Management in general.

5.5.1 IT Change Verification

The solution presented in [50] is our preliminary work on IT change verification. In this work

we propose an object-oriented reasoning algorithm to detect conflicting IT changes. Different to

the algorithms discussed herein, the algorithm’s runtime is factorial in the number of conflicting

changes but allows for a more expressive set of effects and predicates. Thus, the algorithm

has very limited scalability and cannot be applied to verify realistically sized Configuration

Management Databases.

In a subsequent work [51] we present the preliminary ideas of the extended partial-order

reduction approach and the efficient verification algorithm presented herein. However, the work

lacks the formal proves and theory of extended partial-order reduction and does not evaluate

extended partial-order reduction against the NuSMV and the SPiN model checker. To the best

of our knowledge, these investigations are the only ones to address the problem of IT change

verification in the context of IT Service Management.

5.5.2 Security Related Conflict Detection

There has been strong interest in the detection of conflicts or anomalies in the configuration of

security critical software systems. For example, Al-Shaer et al. [5, 6, 7] propose an algorithm

for the automated detection of conflicts in firewall policies. The notion of conflicts in these

investigations is restricted to specific anomalies in the configuration of firewall policies. Dif-

ferent to the work presented herein, conflict detection is performed over a static set of policies

while our solution takes into account the dynamic influence of changes on the configuration of

the infrastructure. In addition to that, our solution detects conflicts based on the preconditions

and effects of change activities while Al-Shaer et al. [5, 6, 7] detect conflicts from a previously
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given, fixed set of firewall policies.

Investigations that aim to detect similar conflicts are, for example, Yuan et al. [100], Gligor et

al. [43], Jajodia et al. [57] and Ferraresi et al. [40]. Because IT change verification focuses on

the detection of non-security related conflicts in the systems management domain, specific so-

lutions to detect conflicts in firewall configurations do not provide the logical expressiveness

and the dynamics necessary to describe a broader set of IT changes.

Hu et al. [55, 56] apply model checking to verify access control models, which restrict the

access of users to resources. The authors use the NuSMVmodel checker to verify the properties

of access control models. Thus, the work suffers from similar scalability issues as observed in

our analysis.

The authors of [19, 93] implement an algorithm to detect policy conflicts that incorporate

authorizations (i.e., constraints that allow or permit an action) and obligations (i.e., constraints

that require some action to be performed). The algorithm makes use of a theorem prover and

subsumption reasoning [92]. The strong focus of the solution on policies only involving autho-

rizations and obligations prevents its application to IT change conflict detection.

Another application domain for which conflict detection has been discussed is the domain of

call control in telecommunication systems [17]. The authors address the detection of conflicts

in a telecommunications domain. For example, two call forwarding policies that match for the

same call but specify to forward the call to different numbers.

Common to all these solutions is that they have been specifically tailored for an application

domain and its specific conflicts. It is important to mention that static policy conflict detection

can be achieved by solely analyzing the parameters of policies. In turn, this is not the case for IT

change conflict detection, which has to take into account the effects of changes on the configura-

tion and the satisfiability of safety constraints. Due to the solutions proximity to security-related

conflict detection, we will not further discuss them herein and focus on work that aims to detect

conflicts among different policies in the broader area of systems management.

5.5.3 Conflict Detection for Systems Management Policies

Early work to detect conflicts in systems management policies was done by Lupu et al. [68]. The

authors identify a set of policy conflicts and provide algorithms for their detection. Different to

our approach, conflicts cannot be inferred from the logical specification of preconditions and

effects of change activities, but conflict detection has to be explicitly specified for every policy.

In addition to that, the methodology introduced does not take into account the dynamic aspects

of change activities, i.e., that the state of the configuration changes over time by the application

of IT change operations.

Agrawal et al. [4] discuss conflict detection for systems management policies as well. In

their work a pair of policies conflicts if they are executable at the same time but issue different

directives that cannot be achieved simultaneously. This notion of conflict differs significantly

from our notion of conflicting change activities. IT change verification allows change activities

to have contradicting effects as long as the safety constraints remain satisfied. The validation of

policies specific for SAN systems is also discussed by the same author in [3].

Samak et al. [86] address conflict detection for policies that define the treatment of traffic

flows on different networked systems. The work focuses on conflicts in the QoS configuration

of network flows caused by the configuration of QoS parameters such as drop method, queue

sizes, or bandwidth allocation. Consequently, this work specifically aims to detect QoS conflicts
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for network flows and cannot be used to detect conflicts among a broader range of IT change

activities and safety constraints. However, the change verification logic enables the verification

of configuration parameters across several networked Configuration Items, e.g., to determine

whether queue sizes of several networked systems adhere to minimal size requirements.

Different to Lupu et al. [68], Dunlop et al. [37] propose a solution that supports the detec-

tion of policy conflicts at runtime. Different to our approach, their solution relies on capturing

conflict profiles first to determine conflicts. Thus, conflicts cannot be inferred from the specifi-

cation of preconditions and effects. Furthermore, the solution targets a restricted set of known

policy conflicts for which the authors propose efficient algorithms.

The authors of [13, 23, 24, 25] make use of the Event Calculus [63] to formalize policy

specifications and to detect conflicts among policies for differentiated services (DiffServ) net-

works. The solution addresses a fixed-set of previously known policy conflicts for DiffServ

networks. Compared to the change verification logic, their logic supports a notion of time and

variable/function symbols. Thus, their language is less restrictive than ours. However, this

comes at increased costs. Charalambides et al. [24] indicate polynomial scalability in the num-

ber of policies. Similar to Dunlop et al. [37] and different to our approach, the solution cannot

automatically infer conflicts from the specification of preconditions and effects of changes. In-

stead, rules need to be written beforehand to detect each conflict. Thus, conflicts need to be

known in advance.

Most related to our work are the investigations by Kikuchi et al. [61] and Radu et al. [83].

Both authors investigate the use of model checkers to detect policy conflicts in autonomic com-

puting systems. The authors distinguish three different concepts: (1) Operational rules that are

comparable to conditionally executable IT change activities, (2) constraints that are compara-

ble to safety constraints, and (3) final state conditions that need to hold in some future state

caused by the execution of operational rules. Thus, their execution model is comparable to our

notion of IT change verification while additional support for a final state constraint is provided.

Similar to the evaluation presented herein, the authors apply the SPiN model checker for verifi-

cation and report polynomial runtime complexity for their case study, which adds and removes

servers (operational rules) from a pool of servers while guaranteeing transaction throughput

goal policies and constraints on the number of sparse servers. The authors conclude that, for the

verification to be feasible, problem instances need to be small enough to avoid the state-space

explosion problem. The work presented herein extends their work by solving the scalability

issues on large Configuration Management Databases.

The challenge to develop scalable verification algorithms for the verification of distributed

systems and configurations has been noted by Calinescu et al. [22] as well.

5.5.4 Improving Reliability of Systems and Change Management

Similar to IT change verification, prior work on systems management aims to prevent the failure

of IT systems as well. Automation, e.g., the Smartfrog framework [44], aims to prevent fail-

ures by the automation of application configuration and deployment. Automation makes sense

for frequently applied standard changes. However, Amazon’s network change is a seldomly

executed, non-standard change, which is difficult to automate by deployment tools.

Practical validation, e.g., Tjang et al. [90], moves software systems from a production en-

vironment to an isolated validation environment where changes are conducted and validated.

If the validation succeeds, the system is moved back to the production site. Similar to our ap-
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proach, validation requires the specification of safety constraints or test scenarios. Practical

validation is difficult to apply to network changes (like in Amazon’s case) because a network

cannot be easily moved between a production and test environment and overloads might still oc-

cur even with network virtualization in place. Instead, logical verification reasons about changes

on a logical level without the danger inherent to the actual execution of change activities.

Oliveira et al. [79] propose Barricade, a framework for the mistake aware management of

systems that issues and lifts blocks from Configuration Items based on the prediction of tasks

and operator mistakes. The main difference is that - due to its prediction model - Barricade

cannot prevent false-positives and negatives when issuing blocks. Different to Barricade, we

assume complete knowledge about the tasks/changes currently being performed and derive con-

flicts from their logical description.

Besides the detection of conflicts, there have been other relevant research efforts to improve

IT service management and steps of the Change Management process.

For example, Bartolini et al. [14] address the simulation and optimization of the IT incident

management process to improve the handling of tickets in a service organization.

Similar to our work, the application of risk management to IT Change Management, among

others Sauvé et al. [87] and Wickboldt et al. [97], aims to reduce the risk associated with change

operations. Our work profits from risk assessment because it provides important clues about

critical change activities worthy to be checked by verification.

Of popular interest is the change scheduling problem, which has been examined in the shape

of different optimization problems. Among others, Setzer et al. [88] aim to reduce the risk that

comes with the execution/scheduling of change activities.

Another active research area that aims to make the execution of changes more reliable has

been that of change planning. Among others, the authors of [45, 53, 59] propose algorithms

for the automated planning of IT change operations. Similar to verification, planning aims

to make Change Management more reliable by means of automation but cannot guarantee the

correctness of changes happening beyond the planning system. Different to automated planners,

the approach proposed herein can also be applied to manual changes. Related work on IT

change planning is discussed in more detail in Section 6.6 and Section 7.1.

Machado et al. [69, 70] improve Change Management by solutions for the rollback of failed

change activities. Although a rollback was quickly initiated in Amazon’s case [1], it failed to

prevent the destabilization of the cluster and the outage [1].

5.6 Summary and Conclusions

This section summarizes the results of the evaluation experiments carried out in this chapter.

• The special purpose model checker outperforms the NuSMV and the SPiN model

checker in runtime complexity:

Independent of the model, workload, and optimization technique used, the special pur-

pose model checker always outperforms NuSMV with linear instead of polynomial and

SPiN with linear instead of exponential runtime complexity. See Section 5.4.2 and Ta-

ble 5.4 for more details.

• The special purpose model checker solves larger problem instances in time- and

memory-constrained environments:
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In a time- and memory-constrained verification environment the special purpose model

checker solves larger problem instances than the NuSMV and the SPiN model checker

independent of the optimization technique or model used. Consequently, even if an inex-

perienced change manager chooses the worst model and optimization technique for the

special purpose model checker, it still solves larger instances than the best choice that can

be made for the NuSMV or SPiN model checker. See Section 5.4.3 for details.

• The special purpose model checker is more robust than NuSMV and SPiN:

A bad choice made in the model and optimization technique of the special purpose model

checker causes a runtime increase linear in the size of the CMDB compared to the best-

case choice. In turn, the maximum penalty increases polynomially (NuSMV) or exponen-

tially (SPiN) when a bad model and optimization technique are chosen for both general

purpose model checkers. See Section 5.4.4 for details.

• Worst-case runtime performance of the special purpose model checker better than

best-case performance of NuSMV and SPiN:

Even if an inexperienced change manager chooses the worst-case combination of infras-

tructure model and optimization technique for the special purpose model checker, this

choice is still faster than the best-case choice that can be made for the NuSMV or the

SPiN model checker. See Section 5.4.5 for details.

Finally, we conclude that the special purpose model checker shows superior performance

over NuSMV and SPiN when it comes to verify the different workloads to have caused Ama-

zon’s network outage. The special purpose model checker was proven to be superior in runtime

complexity, practical runtime performance, robustness in respect to infrastructure models and

optimization techniques, and scalability to large problem instances for various workloads of

change activities to have caused Amazon’s data center outage.
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CHAPTER 6

A Comparison of Automated Planners for IT Change

Planning

In Chapters 2 through 5 we discussed the efficient verification of atomic IT change activities,

which can be used to increase the reliability of Change Management by automatically detect-

ing conflicts among pending atomic change activities and hosting safety constraints. However,

before atomic change activities can be verified, IT change plans need to be generated based on

Request for Changes (RFCs), which specify on an abstract level the goal to be achieved by a

major change operation. Similar to change verification, the automated generation of IT change

plans aims to make ChangeManagement more reliable by using automated and logically correct

algorithms to improve an important step of the Change Management process. The generation

of IT change plans has been subject to many investigations [32, 33, 46, 48, 53, 59, 71, 91].

Some investigations [32, 33, 48, 59] on this topic propose domain specific planning approaches

that have not been previously discussed in the automated planning community [41] as general

purpose planning algorithms. Others [46, 71, 91] use general purpose planning algorithms and

sometimes add slight modifications to them to make them more applicable to IT change plan-

ning. Despite these investigations, it remains unknown as to how existing planning algorithms

compare to each other when applied to IT change planning. In particular, the following two

questions remain unanswered:

• How well do the different algorithms scale with the number of Configuration Items (soft-

ware and hardware IT infrastructure components) in the ConfigurationManagement Data-

base to plan on?

• How difficult is it for a change manager to specify IT changes and to write efficient search

control for a planner, which is crucial to enable planning on realistically sized CMDBs?

Which way to specify search control most naturally matches to the domain of IT change

planning?

To investigate which planners are most suitable for IT change planning in respect to scalabil-

ity and usability, we compare four different domain independent automated planners (Graphlan
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[18], Prodigy [94], TLPlan [10], and SHOP2 [76]) that cover a wide range of planning paradigms

in a case study. The case study asks each planner to generate a high-level deployment plan of

a three-tier application using an Infrastructure as a Service (IaaS) cloud. We examine the plan-

ners scalability when it comes to plan on largeConfigurationManagement Databases (CMDBs)

comprising thousands of Configuration Items (CIs) under a metric that measures the percentage

of available resources in the Configuration Management Database. In addition to that, we dis-

cuss how well the different planners can be used by a logic- and algorithm-agnostic IT change

manager, in particular when it comes to specify search control knowledge to guide each planner.

To the best of our knowledge, this is the first work to examine different Artificial Intelligence

planning algorithms [41] in respect to their applicability to IT change planning.

We find that Hierarchical Task Network (HTN) planners are the ones to offer the best per-

formance as they scale to much larger CMDB sizes (up to 20,000 CIs) compared to the other

algorithms (≤ 1000 CIs) in our case study. This extends previous work [46, 91] that only argues

in favor of Hierarchical Task Network planning due to its natural fit to change planning but

does not show its performance benefits on large CMDBs. Similar to previous work [46, 91],

we claim that HTN algorithms naturally match to IT change planning. However, this is the first

work to support this claim by comparing alternatives to specify search control (among them,

linear temporal logic (LTL) [10] and algorithmic specific control rules [94]) in a change plan-

ning case study with the goal to gain experience about their usability for change planning.

The remainder of this chapter is organized as follows. Section 6.1 sets the basic terminology

and introduces the case study. Section 6.2 evaluates planning through planning graph analysis

followed by an analysis of a forward chaining planner using temporal control knowledge in

Section 6.3. Section 6.4 addresses planning through means-end analysis. Hierarchical Task

Network planning is evaluated in Section 6.5. We discuss related work in Section 6.6. Finally,

Section 6.7 summarizes our findings and concludes the chapter.1

6.1 Automated Planning and Case Study

6.1.1 Automated Planning

The Problem of Plan Generation

Automated planning [41] has been an active research area within the Artificial Intelligence

community for decades. The problem of plan generation (adapted to the IT change planning

domain) is as follows. Given the current configuration of a data center (i.e., the current state

of the hardware and software assets), a description of the goal to achieve, a description of the

preconditions and effects of atomic IT change activities/planning actions, find a set of atomic IT

change activities and a partial (sometimes total) order among them that achieve the goal when

executed in any topological order of the partial-order. We use actions and atomic IT change

activities synonymously, depending on whether we want to highlight the IT change planning

view (atomic change activities) or the planning view (actions). Among other criteria, planners

can be categorized in two distinct categories:

• Domain-specific planners are made, tuned, and tested for a specific domain and con-

straints. They do not perform well or at all in a domain they were not engineered for.

1Parts of this chapter previously appeared in [49].
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Figure 6.1: Object-oriented model instance of a Configuration Management Database and iso-

morphic set of ground atoms used by automated planners.

(:action start-vm

 :parameters  (?vmid ?pmid)

 :precondition  (and

  (vm ?vmid ?vmem ?vcpu) (state ?vmid off)

  (runs-on ?vmid ?pmid) (state ?pmid on)

  (bound-to ?osid ?vmid) (state ?osid connected)

 )

 :effect (and 

  (not (state ?vmid off)) (state ?vmid on)

 )

)

1
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11

atoms of

precondition

atoms added

and deleted 

Figure 6.2: Description of an atomic change activity/ planning action to start a virtual machine

written in the Planning Domain Definition Language (PDDL).

Most previous investigations on IT change planning [32, 33, 35, 46, 48, 59] fall into that

category. Comparing these planners is difficult due to several reasons: (1) They are engi-

neered for specific cases and have different expressiveness. Thus, finding a common case

study that works with all of them and does not penalize a planner is very difficult. (2)

Their source code/implementations are not publicly available.

• Domain-independent planners are generic planners that can be used for many planning

domains. They are not engineered for a specific domain, but much work was invested

[41] to optimize the performance of the algorithms over a variety of different domains.

Domain-independent planners take a definition of the preconditions and effects of actions

for planning. Thus, when atomic IT change activities are matched to planning actions,

domain independent planners can be applied to IT change planning. Different to domain-

specific IT change planners, domain-independent planners are easily comparable because

their logical expressiveness is much closer and they are publicly available.

All planners examined herein (except Graphlan [18]) offer means to describe search control,

which is specific to the planning domain and guides the planners search. However, the planners

differ significantly on how easily search control can be written by a change manager.

Transformation of Object-oriented CMDBs

Traditionally object-oriented models have been used to describe the current state of infrastruc-

ture and software hosted in a data center, e.g., in commercial CMDBs [60] or in the Common



104 6. A Comparison of Automated Planners for IT Change Planning

InformationModel (CIM) [21]. Automated planners [41] do not plan on object-orientedmodels,

but the state of the world is described in a function-free first-order language. Such a language

comprises the following concepts:

• Constant symbols: Constants are used to describe the configuration of a data center. For

example, there are constants that describe unique identifiers of Configuration Items, e.g.,

vm for a virtual machine or pm for a physical machine. Furthermore, there are constants

to describe states of Configuration Items, e.g., on, off, installed, or Integer constants to

describe resources available to Configuration Items.

• Variables: Variables can hold the values of constant symbols. If a variable is assigned

the value of a constant, it is called bound, otherwise unbound. For an unbound variable x

we write ?x not to confuse with x, which describes constant x.

• Atoms: Atoms are n-ary predicates whose variables are either bound or not. For example,

atom state is a 2-ary predicate that describes the current state of a Configuration Item.

An atom is called ground if all of its variables are bound to constants. For example,

(state vm on) is a ground instance of atom state describing the fact that vm is currently

in state on.

To be used by automated planners, the information stored in an object-oriented CMDB

needs to be translated to a set of ground atoms. Figure 6.1 depicts a part of the object-oriented

CMDB and the analogous ground atoms view used by all planners. To transform the object-

oriented CMDB, the properties of an object (i.e., Configuration Item) can be described as the

bound variables of a ground atom. For example, ground atoms (vm vm1 2048 1) and (state

vm1 off) describe all attributes of Configuration Item vm1 in Figure 6.1. References are trans-

lated to binary predicates. For example (runs-on vm1 pm1) describes that vm1 is hosted by pm1

using a reference between vm1 and pm2. Maghraoui et al. [71] have previously described this

transformation process in more detail.

Actions and IT Change Activities:

An action is an atom together with a precondition and effects. Precondition and effects are

described as a set of partially ground atoms. To apply an action, all of its unbound variables

need to be bound such that all atoms in the precondition become grounded and hold in the

current state of the knowledge base. At each point in time there might be multiple consistent

bindings among all variables of an action to instantiate it. For example, consider the atomic

change activity start-vm in Figure 6.2. The action has two variables / parameters ?vmid and

?pmid that need to be bound in order to apply the action (see Line 2 in Figure 6.2). If we choose

?vmid:=vm1, ?pmid:=pm1, and ?osid:=osim1, then start-vm(vm1,pm1) is an applicable action

in the state depicted in Figure 6.1 because all its ground precondition atoms in Lines 4-6 hold in

this state under the substitution. The effects of the action are the deletion of ground atom (state

vm1 off) from the knowledge base and the addition of (state vm1 on) to the knowledge base

(see Line 9).
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start-pm(pm1)bind(osim1,vm1)

start-pm(pm1)start-pm(pm1)

start-pm(pm1)start-vm(vm1,pm1)

start-pm(pm1)start-pm(pm2)

start-pm(pm1)start-pm(pm3)

start-pm(pm1)bind(osim2,vm2)

start-pm(pm1)bind(osim3,vm3)

start-pm(pm1)start-vm(vm2,pm2)

start-pm(pm1)start-vm(vm3,pm3)

start-pm(pm1)install-lb(vm3)

start-pm(pm1)install-was(vm2)

start-pm(pm1)install-db(vm1)

start-pm(pm1)start-lb(vm3)

start-pm(pm1)start-was(vm2)

start-pm(pm1)start-db(vm1)

Figure 6.3: Ideal partial-order plan solving the planning case study.

6.1.2 Planning Case Study

Three-tier Application Deployment Case Study

The planning problem to solve by all planners is the generation1 of a high-level deployment plan

of a three-tier business application (database, application server, and load balancer) making use

of an IaaS cloud. Figure 6.3 depicts a partial-order plan that solves this problem on a particular

instance of a CMDB. It consists of atomic change activities to turn on physical machines (act1−3)

and virtual machines (act7−9), to bind OS images to the virtual machines (act4−6), and to install

(act10−12) and start (act13−15) software. Although this plan omits more complex configuration

details inherent to applications and networks, its generation already causes serious trouble for

several planners when CMDBs reach a few hundred or thousand Configuration Items. All

planners need to take the following constraints into account:

• Disc images can only be bound to a single virtual machine.

• Virtual machines need to run exclusively on a physical machine.

• Database, application server, and load balancer need to run exclusively on a virtual ma-

chine.

• A service that depends on another software, e.g., application server on database, cannot

be installed/started without the other one already being installed/running due to configu-

ration and runtime constraints.

Although the constraints are quite specific, what matters is not the concrete constraint, but

the search effort a planner needs to put into finding the proper Configuration Items, i.e., con-

stants, that satisfy the precondition of an action. Consequently, the results presented herein

are comparable with different constraints for which up to one property of a Configuration Item

needs to be examined to find a match.

Shape of CMDB Used for Evaluation

The algorithms are evaluated on differently sized and shaped configurations of the Configu-

ration Management Databases. A configuration always consists to 1
4th

of physical machines,

virtual machines, OS images, and services no matter how large it is. Services consist to 1
3rd

of database, application server, and load balancer services. For example, a CMDB comprising

1All performance measurements are conducted on an Intel Xeon x86 CPU with 2.8Ghz and a maximum of

1024 MB RAM available to each planner. Planners run single threaded.
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8,000 Configuration Items comprises 2,000 physical machines, virtual machines, OS images,

and each 666 instances of database, application server, and load balancer services. The goal

to achieve is to create a valid three-tier application deployment plan (see Figure 6.3) in this

environment.

During the experiments we vary the selectivity (sel) of Configuration Items in the CMDB.

Selectivity describes the fraction of Configuration Items (physical machines, virtual machines,

OS images, services) that can be used to instantiate an atomic change activity/planning action

in such a way that its precondition is satisfied. For example, if 100 out of 300 OS images have

not yet been bound to a virtual machine, then OS images have a selectivity of 33% because 33%

of all OS images qualify for an atomic change activity that requires an OS image to be unbound

in order to bind it to a virtual machine. Thus, selectivity is a metric describing the fraction of

Configuration Items that satisfy the precondition of atomic change activities that have to choose

among resources.

Representativeness of Case Study

The case study presented herein is realistic and representative for IT change planning because:

• The case study requires the planners to plan for several atomic change activities that need

to be properly instantiated with resources, i.e., Configuration Items of the CMDB, such

that their preconditions are satisfied when they are about to be executed in the final plan.

For example, the case study comprises atomic change activities that bind virtual machines

to physical machines (the planner needs to decide which physical machine to chose) or

atomic change activities to place services on virtual machines (the planner needs to decide

on which virtual machine to place the service). These types of change activities are

typical for deployment scenarios and require a planner to efficiently select the resources

according to constraints.

• The case study comprises state-related change activities among dependent Configuration

Items [46, 48], e.g., the requirement for a database server to be in state on to start an

application server. State-related dependencies are typical for many distributed systems

when it comes to deployment, undeployment, migration, and operational changes.

• The decomposition of abstract change activities into finer-grained change activities [33,

35, 46, 91] has been previously addressed in the literature and has been noted to be typical

for IT change planning. The deployment case study can be expressed as the abstract

task to deploy a three-tier application, which requires the further decomposition of the

abstract change activity into finer-grained change activities. Thus, the deployment case

study is suitable to assess how well the planners cope with the decomposition concept

often present in IT change planning.

Thus, we can expect the results presented herein to hold for similar planning problems that

are dominated by atomic change activities that need to select resources over large CMDBs and

that need to take into account state-related dependencies.
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6.2 Planning Through Planning Graphs

6.2.1 The Graphlan Algorithm

The Graphlan algorithm [18] is a forward chaining search algorithm, i.e., it starts searching

from the initial state towards the goal state by applying actions. Graphlan takes as input a

description of each action/atomic change activity to consider for planning (see Figure 6.2 for

an example), a list of ground atom instances holding in the initial state, and a list of ground

atom instances that need to hold in the goal state. Graphlan creates a planning graph that

consists of several levels, so called proposition levels (comprising ground atoms) and action

levels (comprising instances of atomic change activities/actions). The i-th proposition level

comprises all ground atoms that can theoretically be obtained from the initial state by applying

i or less sets of parallel atomic change activities/actions. Similarly, action level i comprises all

atomic change activities/actions that can theoretically be applied based on the ground atoms of

the preceding proposition level. Thus, action levels are generated from proposition levels and

proposition levels from action levels.

The algorithm starts with the initial proposition level that matches the initial state of the

planning problem (specified as a set of ground atoms). To generate the action level, Graphlan

creates all possible ground instances of all actions that are applicable based on all ground atoms

in the proposition level. Thus, the action level comprises all possible instances of atomic change

activities/actions that can be applied given all the atoms of the proposition level. This means that

Graphlan instantiates every applicable version of every atomic change activity in each action

level. The proposition level, which follows the action level, comprises all atoms of the effects of

the atomic change activities/planning actions of the preceding action level (to take into account

the execution of each change activity) and all atoms that belong to the proposition level that

was preceding the action level (to take into account that no action of the action level might

be executed). Thus, the i-th proposition level comprises all atoms that might theoretically be

obtained from the initial state by the execution of i sets of atomic change activities. Graphlan

creates proposition and action levels until a proposition level is obtained that satisfies the goal

formula. Graphlan then starts a backward search to verify whether a valid plan exists. To create

a plan, the search picks from each action level atomic change activities/actions that are free of

conflicts. Actions from the same action level can be executed in parallel. For a more detailed

introduction to the Graphlan planning algorithm see [18].

6.2.2 Evaluation

Usability

With only 200 lines of code (LOCs) we found Graphlan’s action descriptions to be easily

writable because the change manager only needs to think about the preconditions and effects

of atomic change activities as shown in Figure 6.2. Furthermore, we found the idea of atoms,

which basically are tuples being added and deleted from a tuple store, to describe the current

state of the world, intuitive. However, as change managers are not trained in logics, they most

likely feel different about the logical representation. We do not consider this to be a big hurdle in

the adoption of automated planning approaches because the object-oriented and predicate-based

representation are isomorphic. This enables Domain Specific Languages (DSL) to describe IT

changes [46] that are closer to a change manager’s domain.
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Performance
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Figure 6.4: Planning performance of Sensory Graphlan (SGP) and TLPlan (with LTL search

control) depending on the size of the CMDB and selectivity.

Figure 6.4 depicts the log-log and semi-log graphs of the planning time of Sensory Graphlan

(SGP) [95], a LISP extension of Blum’s original algorithm [18], when solving the planning

case study. SGP is preferred over Blum’s original implementation because in our experiments

it solved larger problem instances when being memory constrained. From the log-log graph

(Figure 6.4a) it can be observed that all curves are straight lines with a slope larger than one.

Thus, runtime complexity is polynomial in the number of Configuration Items. This is also

confirmed by the corresponding semi-log graph in Figure 6.4b. In this graph, curves grow

slower than a straight line indicating that runtime complexity is less than exponential.

For an upper bound of 100s on the planning duration and a selectivity of 100%, a domain

cannot be larger than 60 Configuration Items, i.e., 15 physical machines, virtual machines, OS

images, and services to remain solvable (see Figure 6.4). SGP runs out of memory for domains

comprising more than 84 Configuration Items and 100% selectivity. However, if selectivity

decreases to 1%, a planning domain comprising 240 Configuration Items becomes feasible

within 100s. We conclude that the lower the selectivity and the smaller the CMDB, the faster

SGP becomes and the more likely it is that SGP can solve the problemwhen constrained to 1024

MB of memory. When the selectivity decreases, there are less valid choices that can be made

by the planner to instantiate actions. Thus, the number of actions instantiated in every action

level decreases and less atoms are added to the subsequent proposition level. This is the main

reason why Graphlan performs better if many resources are not available, i.e., when selectivity

is small.

All in all, the Graphlan algorithm shows an unsatisfactory performance for our case study

and can at best be used to solve small problem instances. This is the case because the algorithm

applies all instances of all atomic change activities/planning actions, independently of their
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contribution to the goal, in a breadth-first manner at each action level. When the CMDB size

or the selectivity increases, a larger number of Configuration Items qualify as valid bindings

to instantiate actions inflating the action and proposition levels. Decreased selectivities and

smaller CMDB sizes lead to less ways to instantiate an action and can make the difference

between solvable and unsolvable problems.

6.3 Planning Through ForwardChaining and Temporal Con-

trol Knowledge

6.3.1 The TLPlan Algorithm

Similar to Graphlan, TLPlan [10] is a forward chaining planner, but it uses domain specific

search control knowledge specified in a first-order version of linear temporal logic [11] to prune

plans causing undesired sequences of intermediate configurations of the CMDB. TLPlan starts

with the initial configuration of the CMDB and determines all applicable ground instances of

actions/atomic change activities that can be applied to the current CMDB. Based on these ac-

tions all successor CMDBs are created. TLPlan then continues in a depth-first search with the

exploration of a successor CMDB. However, TLPlan does only further explore a CMDB con-

figuration if the atomic change activity/state last added to the plan does not violate the temporal

logic control formula. Nevertheless, all successor worlds are created. TLPlan also offers the op-

tion to directly discard CMDB states violating the formula (causing less memory consumption),

but we were unable, due to stability issues of the planner, to derive a working LTL formula for

this early pruning option.

6.3.2 Evaluation

Usability

For TLPlan to solve the IT change planning case study, a change manager has to specify a

formula in linear temporal logic to guide the search. Let’s assume acti, i ∈ {1, . . . , n} are atomic

IT change activities, such that the sequence of atomic change activities 〈act1, act2, . . . , actn〉

forms a plan to achieve the deployment of a three-tier application. Then, let 〈s0, . . . , sn〉 be the

sequence of corresponding configurations si of the CMDB induced by the execution of the plan

(s0 initial state, sn valid goal state, si, i ∈ {1, . . . , n}, the state after the execution of acti).

A first-order linear temporal logic formula, which is evaluated on 〈s0, . . . , sn〉, can be spec-

ified by the change manager to prevent undesired plans. Two of the four LTL operators [10]

used in our control rules are �φ1 and ©φ (next φ operator)2. To prune portions of the search

space, atomic change activities that do not contribute to the goal state need to be disallowed by

a LTL formula. For example, it makes sense to only turn on virtual machines (action start-vm,

Figure 6.2) that are not running and are meant to be on in the goal state. Figure 6.5 depicts the

LTL formula of this constraint.

The formula (Figure 6.5) only permits sequences of intermediate CMDB configurations (�)

such that among subsequent configurations (©) only virtual machines are allowed to change

their state from off to on (left side of implication) if the virtual machine is explicitly specified

as on in the goal state (goal expression).

1
�φ means that φ holds for the current and all future configurations (states) of the CMDB.

2©φ means that φ holds in the subsequent configuration (state) of the CMDB.
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(� (∀ ?vmid, ∀ ?mem, ∀ ?cpu : (vm ?vmid ?mem ?cpu)

( (state ?vmid off) ∧

(© (state ?vmid on))

)→ (goal (state ?vmid on))

) )

Figure 6.5: Example LTL formula to guide the search of the TLPlan planner.

There are several problems with LTL formulas as a mean to formalize search control for IT

change planning:

• For some planning problems it can be impossible to determine whether an atomic change

activity contributes to the goal state or not. This is the case if effects of an atomic change

activity of a change plan are not visible in the goal state anymore. For example, assume

a software is not installed in the initial state and supposed to be running in the goal state.

A simple change plan would first install and then start the software. The effect of the first

atomic change activity to install the software (effect: software is in state installed) does

not match to the final state where the software is supposed to be in state running. Thus,

as the effect of the install software change activity only contributes indirectly to the goal

state (it enables the start action which achieves the goal state), we cannot tell that the

install action needs to be part of a plan by simply looking at the logical description of the

goal state as we did in the LTL formula in Figure 6.5.

• The LTL formula used in the change planning case study comprises 170 LOCs. A linear

temporal logic formula of that size is too large and complex to be practically used and

derived by an IT change manager.

• It is very unlikely that a change manager is willing and capable to cope with LTL and its

subtle semantics.

• We found it very difficult to write LTL formulas over a sequence of intermediate CMDB

states. Instead, given our experience, it seems more natural to specify LTL formulas over

valid and invalid sequences of atomic change activities because intermediate states are

more difficult to grasp than the constraints on sequences of atomic IT change activities.

Performance

The performance of TLPlan strongly depends on the usage of LTL search control.

Without LTL search control and a selectivity of 100%, TLPlan takes 10ms to solve the

change planning case study for 12 Configuration Items and 833s for a CMDB comprising 24

CIs. The problem becomes unsolvable within 12h for larger CMDBs and 1 GB of RAM. Thus,

TLPlan is impracticable to solve even small problems of the case study without LTL search

control.

With LTL search control (see Figure 6.4) TLPlan performs better than SGP/Graphlan for

every selectivity and every size of the CMDB. Different to SGP, which can only solve very

small instances of the case study when constrained to 1 GB of main memory at selectivities be-

tween 40% and 100%, TLPlan does not show this limitation. Similar to SGP, TLPlan struggles

to maintain performance with larger CMDBs. The time to derive a plan increases polynomially
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with the size of the CMDB and is slightly subdued by smaller selectivities because less succes-

sor CMDBs need to be managed by the planner. Different to Graphlan, TLPlan produces totally

ordered plans instead of partially ordered plans. Notice that the performance improvement is

achieved at the cost of complex LTL formulas that are difficult to specify.

6.4 Planning through Means-end Analysis

6.4.1 The Prodigy Algorithm

Different to the forward chaining approach pursued by Graphlan and TLPlan, Prodigy [94]

searches backwards from the goal (backward chaining). Prodigy uses means-end analysis, i.e.,

it chooses a ground atom of the goal state that has not yet been achieved and attempts to in-

stantiate an action in such a way that its effects produce that atom. The atoms in the action’s

precondition that do not yet hold become goal atoms that need to be subsequently achieved by

applying further actions. For example, consider the ground goal atom (state vm1 on). Ac-

tion start-vm(?vmid, ?pmid) in Figure 6.2 can be partially instantiated (choose ?vmid:=vm1)

such that it produces that atom. If atoms in the precondition of the action should not yet hold,

Prodigy keeps on working on these open goals. During planning Prodigy has several choices:

(1) which goal to achieve first, (2) which action to use to achieve the goal and how to instantiate

the action, e.g., how to instantiate variable ?pmid in start-vm(vm1, ?pmid), and (3) when to

apply an action. To ensure that the planner makes good choices (in terms of state-space explo-

ration), an IT change manager can specify control rules that tell the planner on how to make

these decisions.

6.4.2 Evaluation

Usability

Prodigy uses the same1 domain description as SGP and TLPlan for input. Thus, Prodigy’s

actions can be as easily engineered as Graphlan’s and TLPlan’s. For Prodigy to work efficiently,

control rules need to be specified. Control rules are if-then rules. For example, one of four

control rules used in the case study reads as follows. If the planner is working on the goal atom

(state ?vmid on) and tries to achieve it by instantiating action start-vm(?vmid,?pmid) (see

Figure 6.2 to comprehend why this achieves the goal), then variable ?pmid needs to be bound

to a physical machine that has no virtual machine running on it. The reason for this rule is that

when Prodigy later plans for a subsequent action, this placement constraint is checked leading

to costly backtracking if the wrong decision is made in the prior step.

Change managers need to look at the debug output and need to have a precise understanding

of how the algorithm works to write efficient control rules. With search control so closely

related to the algorithm, i.e., the need to examine the debug output of a planner, we conclude

that this approach is of no practical use to a change manager. However, if actions, problems,

and control rules have been carefully tuned, Prodigy’s control rules offer effective speedup.

Performance

Figure 6.6 depicts the planning performance of Prodigy and TLPlan (with LTL search control)

depending on the size of the CMDB, the use of control rules, and the selectivity.

1besides some syntactical differences
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Figure 6.6: Planning performance of Prodigy (with control rules if not mentioned otherwise)

depending on (1) size of the CMDB, (2) selectivity, and (3) use of control rules

compared to TLPlan (with LTL search control).

Prodigy performs better with control rules. For example, within a time boundary of 100s and

100% selectivity, Prodigy can solve the case study on a CMDB comprising 350 Configuration

Items without control rules compared to 700 Configuration Items with control rules. On small

CMDB sizes, TLPlan outperforms Prodigy even when control rules are used. Beyond 24 - 36

Configuration Items (depending on the selectivity), Prodigy becomes faster than TLPlan. Thus,

for realistic CMDB sizes Prodigy always outperforms TLPlan and SGP/Graphlan. Without

control rules TLPlan manages to stay ahead of Prodigy on slightly larger CMDBs. For example,

at 100% selectivity the CMDB must be larger than 60 Configuration Items for Prodigy (without

control rules) to outperform TLPlan.

From the log-log graph in Figure 6.6a we can observe that the measurements of Prodigy

converge towards a straight line with a slope larger than one with increasing CMDB size. Thus,

Prodigy has polynomial runtime complexity for the case study. Even without control rules

Prodigy performs significantly better than TLPlan (on larger CMDBs) for the deployment case

study (350 Configuration Items vs. 100 Configuration Items within 100s at 100% selectivity)

and thus better than Graphlan. Similar to TLPlan and SGP, we can observe better planning

performance with decreasing selectivity. This is the case because for every not yet achieved goal

atom that Prodigy decides to work on, it computes all ground instances of all actions that can

achieve this atom before it continues planning with one instance. Thus, the smaller the CMDB

and the smaller the selectivity, the less Configuration Items qualify to properly instantiate an

atomic change activity. This decreases the computational effort to compute the bindings of

applicable, atomic IT change activities.

The main performance improvement of Prodigy over TLPlan and SGP is due to the fact that

Prodigy only considers the application of actions that contribute to a goal atom. As the atoms
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start-pm(pm1)deploy-db(db1)

start-pm(pm1)bind(osim1,vm1)

start-pm(pm1)install-db(vm1)

start-pm(pm1)start-pm(pm1)

start-pm(pm1)provision-vm(vm1) start-pm(pm1)start-db(vm1)

start-pm(pm1)start-vm(vm1,pm1)

Figure 6.7: Simplified HTN decomposition tree created by an HTN algorithm for the deploy-

ment of a database.

of the goal state are already given, lots of choices on how to instantiate actions to produce these

atoms can be pruned. Notice that the results presented herein differ to the results presented by

Blum et al. [18]. That work shows that Graphlan outperforms Prodigy in two artificial planning

domains (2-Rockets domain and Link-repeat domain). However, for the IT change planning

problem, Prodigy outperforms Graphlan because it carefully chooses the actions that contribute

to the goal state.

6.5 Hierarchical Task Network Planning (HTN)

6.5.1 The SHOP2 Algorithm

Hierarchical Task Network (HTN) planners [42] differ from the previously examined planners

in a significant way: The goal to achieve is not specified as a set of ground atoms that need to

be satisfied in the goal state, but as an abstract task, e.g., to deploy a three-tier application, for

which the planner needs to derive a plan. Similar to the previous approaches, atomic IT change

activities are described as actions that add and delete ground atoms to and from the knowl-

edge base (see Figure 6.2 for an example). The domain specific search control is described by

HTN methods. Methods decompose an abstract task, i.e., a high-level, abstract IT change ac-

tivity, into finer-grained activities until atomic change activities are reached that can be directly

mapped to the planning actions. Figure 6.7 depicts an exemplary decomposition tree created by

an HTN planner for the abstract change activity to deploy a database on a specific CMDB con-

figuration. To generate an IT change plan that solves the high-level change deploy-db(db1),

SHOP2 [76], a forward chaining partial-order HTN planner, searches for a method to decom-

pose the abstract change activity. A method specified by a change manager instructs the planner

to decompose act1 by trying to achieve the finer-grained change activities provision-vm(vm1)

(act2), install-db(vm1) (act6), and start-db(vm1) (act7) in sequence (see Figure 6.7). Meth-

ods capture best practice problem solving strategies inherent to the domain. Planning is done

in a depth-first search according to the order on the subtasks (see numbers of change activities

in Figure 6.7). Notice that the decomposition stops at the leaf nodes of the decomposition tree

that cannot be further decomposed and directly map to the planning actions used by the other

algorithms as well. An HTN planner only tries to apply an action if it is directed to do so by

the decomposition tree. For example, the planner will never try to start a virtual machine (act5)

before an image has been bound (act4) because the decomposition tree directs the planner to do

it in the opposite order. The plan returned by an HTN planner only comprises the leaf nodes of

the decomposition tree. Notice that the leaf nodes match to the changes in Figure 6.3 and their

order of exploration in the depth-first search tree is a topological sort of the partial-order plan

in Figure 6.3.
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6.5.2 Evaluation

Usability

The SHOP2 domain description comprises around 700 LOCs, which is roughly 3.5-times the

size of the other planning domains. In addition to the specification of the preconditions and

effects of atomic IT change activities (needed for all other approaches as well, see Figure 6.2),

decomposition rules need to be specified to tell the planner how to decompose abstract change

activities into finer-grained change activities. Thus, more effort is needed to write and debug

such a domain. Once engineered, an HTN domain has several advantages: (1) HTN domains

are very reusable because newly added abstract change activities can make use of the logical

specification of already existing change activities and the decomposition rules written for them.

For example, an abstract change activity to deploy a three-tier application can, for instance,

rely on the specification of another abstract change activity to deploy a database system (see

Figure 6.7). (2) The idea of abstract task decomposition matches precisely to the IT change

planning problem that, given an abstract Request for Change [65], asks the change manager

to propose a plan of atomic change activities to implement that change. The change manager

stays within his/her domain of thinking (decomposition of abstract IT change activities) without

being distracted by LTL formulas or algorithm specific control rules. All in all, the specification

of decomposition rules seems to be the easiest and most natural way for a change manager to

describe domain specific search control knowledge. This conclusion is supported by Cordeiro

et al. [33, 35] who argue in favor of reusable plan templates that can be implemented using

HTN methods. Although the proximity of IT change planning to HTN planning has been noted

before [46, 91], we argue in this work that alternatives to describe search control, such as linear

temporal logic and algorithm specific control rules, are not a better solution to specify search

control.

Performance

Figure 6.8 depicts the planning performance of SHOP2 for two different domain descriptions,

one that has been carefully engineered to solve the problem without backtracking [31] and an-

other one that solves the problem with backtracking. The difference between both domains lies

in the way how constraints are enforced. Consider bind(osim1,vm1) (act4) in Figure 6.7. When

planning for the case study problem, a method is applied to decompose provision-vm(vm1)

(act2) into act3, act4, and act5. This means that an appropriate OS image needs to be deter-

mined to instantiate act4. In order for act4 to be executable, its precondition checks whether

the image is unbound. In the domain that does not prevent backtracking the planner binds pa-

rameter ?osid in act4 to an already bound image when decomposing act2, causing the planner

to backtrack over act4 because its precondition is infeasible (see measurements involving back-

tracking in Figure 6.8). Instead, the constraint that the image needs to be unbound can be added

to the method that decomposes act2. This prevents backtracking because then the method only

chooses an image that satisfies the precondition of act4 as well. This yields the no backtracking

measurements in Figure 6.8.

Similar to the other algorithms, the planning time increases polynomially with the size of the

CMDB because all measurements converge towards a straight line with a slope larger than one

in the log-log graph (see Figure 6.8a). However, the polynomial complexity is much more mod-

est compared to the other planners for the domain that solves the problem without backtracking.

Thus, problem sizes of up to 20,000 Configuration Items - 28 times the size limit of Prodigy

and 333 times that of SGP - can be solved within 100s at 100% selectivity (worst-case). The
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Figure 6.8: Planning performance of SHOP2 depending on the size of the CMDB, the selectiv-

ity, and the occurrence of backtracking.

performance is superior because when refining an abstract change activity, SHOP2 computes

all bindings of variables in the subtasks but only applies one instance of an action or method

during planning. Thus, SHOP2 does not inflate its search space by applying all unifications of

an IT change activity as Graphlan and TLPlan do. In addition to that, the decomposition tree

tells the planner precisely when to try an abstract or atomic IT change activity pruning large

portions of the search space.

If backtracking is not avoided, planning takes significantly longer than without backtrack-

ing because backtracking is more costly than enforcing binding constraints early. In case of

backtracking, the runtime increases when the selectivity decreases because the smaller the se-

lectivity, the more frequent the planner has to backtrack as it more often commits to unsuitable

Configuration Items to instantiate an action or method. In our benchmark we assumed the

worst-case scenario in which SHOP2 has to backtrack over all unqualified resources (whose

number is defined by the selectivity). If the planning domain without backtracking is used, the

runtime is dominated by computing all ground instances of actions and methods, which is lower

for smaller selectivities (exactly opposite to the backtracking case).

The observation that SHOP2 performs poorly for backtracking domains yields the ques-

tion whether a carefully engineered Prodigy domain with control rules outperforms a poorly

designed HTN domain that does not prevent backtracking?

This is indeed the case on large CMDBs. On small CMDBs a naively written SHOP2

domain (not avoiding backtracking) performs better than a carefully tuned Prodigy domain with

control rules for the case study (see Figure 6.9). However, with increasing CMDB size Prodigy

starts to outperform SHOP2 when SHOP2 makes use of backtracking. The CMDB size where

Prodigy overtakes SHOP2 is reached the later the higher the selectivity (for 10% selectivity from

90 Configuration Items onwards, for 40% selectivity from 200 Configuration Items onwards,
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for 60% selectivity from 750 Configuration Items onwards, see Figure 6.9) because the lower

the selectivity, the more SHOP2 has to backtrack making it easier for Prodigy to catch up

earlier. Prodigy fails to catch up with SHOP2 for 100% selectivity because backtracking does

not appear for the SHOP2 domain.

6.6 Related Work

Several solutions [32, 33, 35, 46, 48, 53, 59, 71, 91] have been proposed for the (semi-)automated

generation of IT change plans. All investigations propose domain specific algorithms for IT

change planning but do not analyze existing general purpose planning algorithms [41] for IT

change planning.

Keller et al. [59] propose CHAMPS, a system for the planning and scheduling of IT changes

that enables a high degree of parallelism among IT changes. The authors propose a planning

algorithm that is not based on automated planning algorithms [41]. A performance and usability

comparison with other planning algorithms is out of the scope of that paper.

Maghraoui et al. [71] are the first to apply an automated planner, UCPOP [82], to generate

IT change plans. Their highly customized version of the UCPOP algorithm is applied to a case

study with the size of a few hundred resources. The experience we gained about UCPOP for

our case study is that it is even slower than Graphlan without control knowledge.1 Furthermore,

control knowledge in UCPOP is extremely difficult to specify because it is very close to the

algorithm. A comparison to other algorithms than UCPOP is out of the scope of Maghraoui’s

work.

1This is also confirmed by the UCPOP project homepage (http://www.cs.washington.edu/ai/ucpop.html),

which recommends to use Grphlan instead of UCPOP due to its performance improvements.
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Cordeiro et al. [33, 35] propose ChangeLedge, a system for the generation of change plans

by capturing best practices in IT change design using change templates. Similar to CHAMPS

[59], the proposed algorithm does not reason about the preconditions and effects of IT changes

on a logical level. It remains unknown as to how the algorithm scales and how it compares to

automated planners [41].

In another work, Cordeiro et al. [32] propose a runtime constraint aware solution for the

automated decomposition of IT changes. The proposed algorithm captures the basic idea of

preconditions and effects of IT changes as known from automated planning [41]. It remains

open as to how their approach relates to automated planners in terms of performance and logical

soundness/completeness.

In a previous work [46] we propose to apply a hybrid of HTN and state-based planning

to solve the IT change planning problem. Similarly, Trastour et al. [91] propose a pure HTN

algorithm. Both work do not compare the proposed HTN solutions to other already existing

domain independent planners in respect to performance and usability as done in this work. The

work herein extends these investigations by providing evidence that HTN planning algorithms

are the fastest and most usable algorithms for IT change planning. In another previous work

[48] we present a pure state-space planner for IT changes. Similar to [46], a comparison with

general purpose planners has been out of the scope of that work.

Herry et al. [53] describe a prototype implementation of a configuration system based on

automated planning that generates and execute plans for configuration changes. Their prototype

shows that it is possible to combine automated planning and common system configuration

tools to automatically deploy change plans. Their system is general enough to be used with any

planning algorithm. A comparison of different planning algorithms is out of the scope of their

work.

Change plan generation is closely related to the execution of change plans, which can be

troublesome due to unpredictable failures. To proactively avoid failures when IT changes are

executed, we present in [47] an approach to render IT change plans feasible again if the CMDB

changes between planning and execution. The proposed solution is independent of the change

planning algorithm and we found it to be applicable to smaller sized IT change plans.

Others argue in favor of risk assessment [16, 96, 97] for IT change plans to proactively

treat risks during deployment. Similar to risk assessment, the planners evaluated in this work

contribute to the proactive treatment of problems because they guarantee the feasibility of the

generated plan on a logical level. If proactive solutions should fail, Machado et al. [69, 70]

propose a rollback solution to deal with failures during change implementation in a reactive

way by undoing partially executed change plans.

Besides the work mentioned herein, we would like to refer to Section 5.5, which provides

a broader comparison of related work from the systems management domain. Because change

planning - like change verification - aims to automate and make Change Management more

reliable, it similarly relates to these investigations as change verification.

6.7 Conclusions

To conclude this chapter, we return to the research questions asked at the beginning of this

chapter:

• Which algorithm is the best in terms of usability?

In terms of usability by a change manager, planners without any search control are eas-
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iest to use (see Graphlan, Section 6.2.2) because only preconditions and effects of IT

changes need to be specified. Unfortunately, the performance is quite bad in these cases.

Among the different ways to specify search control for IT changes, we found that al-

gorithm specific control rules (see Prodigy, Section 6.4.2) cannot be readily used by a

change manager because profound algorithmic understanding and debugging skills are

necessary. Although the linear temporal logic approach used by TLPlan is independent

of algorithmic knowledge, it requires a change manager to undergo training in linear tem-

poral logic. Furthermore, we found LTL formulas over state sequences to be an unnatural

way to specify search control for IT change planning (see Section 6.3.2). Instead, the

decomposition idea inherent to HTN planning very well matches to the generation of

change plans from Request for Changes as proposed by ITIL [65]. Decomposition rules

can be written without knowledge of the underlying planning algorithm. However, as evi-

denced by the comparison between the backtracking and no-backtracking measurements,

it does not hurt to have knowledge of the planning algorithm. Furthermore, additional

specification effort compared to domains without search control is required.

• Which algorithm is the best in terms of performance?

We found that planners without search control, e.g., Graphlan and TLPlan, can only solve

problem instances comprising a few Configuration Items (Section 6.2.2) for our deploy-

ment case study. TLPlan performs slightly better than Graphlan when search control is

specified. Means-end analysis performs better for the change planning case study (see

Prodigy, Section 6.4.2) than an undirected forward chaining planner (Graphlan) and a

temporally controlled one (TLPlan) because it does not instantiate all applicable actions

and prunes the largest portions of the search space. HTN planning delivers the best per-

formance for the case study because its rigorous decomposition concept prunes large

portions of the search space and considers the appropriate IT changes at the right time. A

naively written HTN domain for the case study is faster than Prodigy for small CMDBs

(the extent depends on the selectivity). However, on larger CMDBs Prodigy becomes

better. Nevertheless, we showed that a carefully engineered HTN domain (without back-

tracking) outperforms all other algorithms by a factor of 28 to 333 at 100% selectivity for

the deployment case study.

For automated planning approaches to emerge from research prototypes to commercial ser-

vice management products, performance on large CMDBs and usability by a change manager

are key factors of success. Given the results of the experiments presented in this chapter, we

believe that HTN algorithms possess both characteristics. But all that glistens is not gold. The

polynomial runtime complexity observed for SHOP2 herein still limits its scalability to a couple

of thousand Configuration Items. To address this problem, we discuss in Chapter 7 optimiza-

tions to further improve the runtime complexity of decomposition-based IT change planning

from polynomial to linear or even constant runtime.
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CHAPTER 7

Efficient Generation of IT Change Plans on Large

Infrastructures

In Chapter 6 we examined several general purpose planners for IT change planning and con-

cluded that Hierarchical Task Network (HTN) algorithms are most suitable for IT change plan-

ning in terms of performance and usability by an IT change manager. We observed that even

SHOP2 [76] - an HTN planner and the winner of that comparison - struggles to maintain ac-

ceptable planning performance on large CMDBs comprising a couple of thousand Configu-

ration Items. However, an IT change planner needs to scale to very large configurations of

the CMDB as configurations of infrastructures, e.g., a cloud computing provider’s Infrastruc-

ture as a Service cloud, can comprise up to millions of Configuration Items. Previous work

[32, 33, 35, 46, 48, 53, 59, 71, 91] on IT change planning has concentrated on proving the fea-

sibility of IT change plan generation for small to medium size planning problems and questions

of scalability have either been out of their scope or scalability could not be achieved by them.

To overcome the scalability issues of IT change planning, we propose and evaluate in this

chapter optimization techniques for decomposition-based IT change planning algorithms that

make IT change planning feasible on large infrastructures. The introduced optimizations re-

duce the runtime complexity of several key operations part of the simple task network planning

algorithm that is used by SHOP2 [76] and our IT change planning system. In a sensitivity anal-

ysis we examine the influence of several important characteristics of IT changes and the CMDB

on the runtime complexity of the proposed optimizations. The analysis shows that our opti-

mizations outperform SHOP2 [76] (the winner of the previous comparison among IT change

planners presented in Chapter 6) in terms of runtime complexity for a large percentage of IT

changes and CMDBs. In addition to that, the optimizations proposed herein are more robust

in respect to the characteristics of IT changes and the CMDB, i.e., the planner’s runtime is

less influenced by the characteristics of an IT change or the CMDB. A cloud deployment case

study of a three-tier business application and a virtual network configuration case study demon-

strate the feasibility of the approach and confirm the results from the sensitivity analysis. Our

optimizations beneficially influence related Change Management problems as well: A faster
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planner helps to improve the quality of plans as it can generate more plans within the same time

and select the best one among them. Furthermore, more time is left to also schedule IT changes

into change windows [84, 88, 102] - a step traditionally kept separately from change planning

due to its complexity.

The remainder of this chapter is organized as follows. In Section 7.1 we discuss related

work and contributions. Section 7.2 describes the planning algorithm and introduces the op-

timizations to improve decomposition-based IT change planning. In Section 7.3 we compare

both planning systems in a sensitivity and robustness analysis followed by a comparison using

case studies in Section 7.4. Finally, we conclude in Section 7.5.1

7.1 Related Work and Contributions

The CHAMPS system by Keller et al. [59] is the seminal work to address IT change planning.

The work proposes a planning algorithm that traverses a dependency tree to derive a plan. Dif-

ferent to the planning algorithm used herein, CHAMPS can only plan for IT changes once

dependencies among them have been explicitly specified and cannot infer a plan from precon-

ditions and effects of IT changes. The applicability and optimization of planning over large

infrastructures has not been explored by CHAMPS.

Maghraoui et al. [71] apply an optimization of the UCPOP [82] Artificial Intelligence (AI)

planning algorithm to IT change planning. Although the authors use a different case study,

scalability is reported to be a few hundred Configuration Items. Our experience with UCPOP for

IT change planning is that its performance is worse than that of all other planners we previously

examined in Chapter 6. In addition to that, UCPOP relies on first-order unification of which we

show herein that it has serious scalability issues.

Cordeiro et al. [33, 35] propose the ChangeLedge system and a constraint aware decompo-

sition approach [32] for IT change planning. The work focuses on the reuse of knowledge in

IT change design by capturing best practices and plan generation taking into account the ef-

fects IT changes have on one another. Similar to CHAMPS, this early research on change plan

generation does not address planning in the large.

Trastour et al. [91] propose ChangeRefinery, a system for operator-assisted decomposition

of IT change plans. SHOP2, ChangeRefinery, and our work share the same task network decom-

position algorithm. However, the authors report scalability up to a few hundred Configuration

Items. Applicability to very large CMDBs, a comparison with SHOP2, and a complexity anal-

ysis has been out of the scope of their work.

Herry et al. [53] describe a prototype implementation of a configuration system based on

automated planning that generates and execute plans for configuration changes. Their prototype

shows that it is possible to combine automated planning and common system configuration tools

to automatically deploy change plans. Their system is general enough to be used to with any

planning algorithm. Scaling planning algorithms to very large configurations is not a topic of

this work.

In a previous work [46] we propose a hybrid HTN and state-space planning algorithm for

IT change planning. Different to Trastour et al. [91], it supports planning according to state-

based constraints as well. A performance comparison including SHOP2, runtime complexity

optimizations, and scalability to large CMDBs have been out of the scope of that work.

1Parts of this chapter previously appeared in [45].
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In Hagen et al. [48] we also present a pure state-space planner for IT changes. The approach

can only be used to plan for a small subset of IT changes. However, the focus on a smaller set of

IT changes enables scalability to several thousand Configuration Items - still significantly less

than the numbers reported herein while the expressiveness of the algorithm and the case study

presented herein encompasses the constraints previously discussed in [48].

In a recent work [47] we propose an algorithm for the adaptation of infeasible change plans

due to unpredictable changes to the IT infrastructure. Although not stressed in this work, the

plans constructed by our algorithm are ready for adaptation using the techniques previously

presented in [47].

The basic ideas underlying the task-decomposition planning algorithm used in this chapter

were developed by Sacerdoti [85] and in the Nonlin planner [89] by Tate. HTN planning sys-

tems have been successfully applied to many real-world planning problems [98] and are among

the most widely practically used planning techniques. Among other domains, HTN planning

has been successfully applied to problems from crisis management [2], evacuation planning

[75], robotics [74], planning for spacecrafts [39], and military air campaign planning [99].

There are additional relevant research efforts published in the field of automated planning [41]

that explore the generation of plans as well. However, all Artificial Intelligence planners rely

on a first-order satisfiability solver, which performs well for smaller problem instances but - as

shown in this work - does not scale to domain sizes as they appear for IT change planning. Due

to this reason, the fact that these investigations do not address planning for IT changes, and the

common sense that knowledge-based planning algorithms perform better than those not making

use of search control [98], they are not approached in this work.

Related to IT change planning is the problem of IT change scheduling. IT change scheduling

[84, 88, 101, 102] aims to schedule a set of IT changes in accordance with their precedence con-

straints into change windows while minimizing a given metric. Different to IT change planning,

which generates a set of atomic change activities that, when executed, achieve a Request for

Change, change scheduling assigns atomic activities to change windows for execution. Thus,

planning determines what needs to be done and scheduling decides when to do it.

Several other aspects of IT management have been addressed in recently published work.

Among these are approaches to improve the process to manage IT incidents [14] or to staff

people [36], and towards connecting risk analysis with IT change prioritization [87]. A more

detailed discussion of broader related work in the area of systems and Change Management has

previously been given in Section 5.5.4 in the context of change verification. Similar to change

verification, change planning is automated and aims to increase the reliability of the Change

Management process. Thus, observations made for work related to change verification also

hold for change planning.

It is important to emphasize that our work aims at being generic enough for several con-

trolled, well known IT environments. Examples include private data centers and cloud comput-

ing. As for the specific management interfaces required for IT changes, we rely on the research

efforts that have been carried out to standardize them. Important examples can be found in the

context of cloud computing, where such efforts [52, 66] have been driven towards the interop-

erability across different cloud providers.



122 7. Efficient Generation of IT Change Plans on Large Infrastructures

start-pm(pm1)deploy-db(db1)

start-pm(pm1)bind(osim1,vm1)

start-pm(pm1)install-db(vm1)

start-pm(pm1)start-pm(pm1)

start-pm(pm1)provision-vm(vm1) start-pm(pm1)start-db(vm1)

start-pm(pm1)start-vm(vm1,pm1)

Figure 7.1: HTN decomposition tree of the abstract change activity to deploy a database (gray)

into atomic change activities (white).

7.2 Hierarchical Task Network Planning (HTN)

7.2.1 Introduction to HTN planning

For IT change planning based on Hierarchical Task Network (HTN) planning [42], a planning

problem is given by a Request for Change (RFC) for which a sequence of IT activities needs to

be computed so as to accomplish the objective of the RFC. Two different types of activities, i.e.,

IT tasks, are distinguished: abstract activities and atomic activities. Abstract IT activities are

those IT tasks expressed on a high level that are not directly executable. They need to be further

(recursively) decomposed into finer-grained activities until a sequence of atomic activities has

been determined to implement the abstract activity. The goal to plan for is provided by the RFC,

which is directly mapped onto an abstract activity. For example, Figure 7.1 depicts a decompo-

sition tree for the abstract activity (gray) / RFC to deploy a database. The rules to decompose

abstract activities into finer-grained change activities are called (HTN) methods. Several de-

composition rules, representing different problem solving strategies, can exist to decompose an

abstract activity. Atomic activities (white) in turn cannot be further decomposed because they

are the most basic IT activities out of which abstract activities are composed. An atomic activity

carries the specification of a precondition that needs to hold to apply it and a specification of

its effects. A Simple Task Network (STN) Planner, a simplified form of HTN planning, is a

forward-chaining (starting from the current state of the CMDB) ordered, depth-first search tree-

decomposition algorithm. The computed plan to implement the RFC only comprises the leaf

nodes of the decomposition tree, i.e., the atomic activities. For example, the computed plan to

deploy a database for the decomposition tree in Figure 7.1 comprises atomic activities 3, 4, 5, 6,

and 7. The planning algorithm guarantees that preconditions and effects of the atomic activities

complement each other in such a way that the plan is executable.

7.2.2 Planning Algorithm

Algorithm1 depicts a simplified version of a simple task network planning algorithm that is

the least common multiple of SHOP2 [76] and our algorithm. Key operations of the simple

decomposition algorithm have been optimized - often making the difference between constant,

linear, and polynomial runtime. The algorithm works in both planners as follows.

As long as the stack of IT activities to plan for is not empty (Line 3) an activity is popped

from the stack (Line 4) and planned for (depth-first search). If act is an atomic activity (Line 5),

its parameters are adapted (Line 8) until its precondition is satisfied (Lines 7-9). For example,

when planning for the atomic start-pm activity (activity 3) in Figure 7.1, the physical machine

parameter needs to be set to a physical machine that satisfies the precondition that comes with

the start-pm activity. For instance, the physical machine chosen needs to be in state off. In
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Algorithm 1: SimpleDecomposition(RFC,methods): Simple decomposition planning al-

gorithm

Data: RFC: the Request for Change to plan for, methods: list of HTN methods used for

planning

Result: totally ordered change plan

1 plan = 〈〉 ; ⊲O( 1 )

2 stack = 〈RFC〉 ; ⊲O( 1 )

3 while !stack.empty() do ⊲O( 1 )

4 act = stack.pop() ; ⊲O( 1 )

5 if act is atomic activity then ⊲O( 1 )

6 it = act.getParameterIterator() ; ⊲O( 1 )

7 while it.hasNextBinding() ∧ !act.precondition() do ⊲O( see Subsection 7.3.3 )

8 act.setNextParameterBinding() ; ⊲O( see Subsection 7.3.3 )

9 end

10 if act.precondition() then ⊲O( see Subsection 7.3.3 )

11 act.applyEffects() ; ⊲O( see Subsection 7.3.5 )

12 plan = plan ◦ act ; ⊲O( 1 )

13 else ⊲atomic activity not applicable

14 if !backtrack() then ⊲O( see Subsection 7.3.4 )

15 return fail ; ⊲if backtracking fails, no plan exists

16 end

17 end

18 else ⊲act needs to be further decomposed

19 choose parameters for act and a method m ∈ methods such that act can be

decomposed using m ; ⊲O( see Subsection 7.3.3 )

20 if act.precondition() then ⊲O( see Subsection 7.3.3 )

21 〈act1, ..., actn〉 = act.decompose(m) ; ⊲O( n )

22 stack.push(〈act1, ..., actn〉) ; ⊲O( n )

23 else ⊲act cannot be decomposed

24 if !backtrack() then ⊲O( see Subsection 7.3.4 )

25 return fail ; ⊲if backtracking fails, no plan exists

26 end

27 end

28 end

29 end

30 return plan ; ⊲planning successful, return plan



124 7. Efficient Generation of IT Change Plans on Large Infrastructures

Section 7.3.3 we compare the runtime complexity to determine valid parameter bindings for

change activities. If the atomic activity is executable (Line 10), i.e., Configuration Items were

found for the parameters of the change such that it became executable, its effects are applied

to the CMDB (Line 11, see Section 7.3.5 for complexity) and it is added to the end of the plan

(Line 12). The planner has to backtrack [31] if the atomic activity is not applicable, i.e., at a

previous decision point an abstract activity has to be decomposed differently or parameters of

an activity have to be altered to explore a different plan. For example, assume that in Figure 7.1

activity 6 to install the database on vm1 might not be executable. The planner would have to

backtrack over activities 5, 4, and 3 to introduce a different virtual machine for deployment in

activity 2. Section 7.3.4 examines the backtracking performance for both planners. Similar to

atomic activities, parameters have to be adapted such that a method can be used to decompose

an abstract IT activity (Line 19). For example, in Figure 7.1 the virtual machine parameter of ac-

tivity provision-vm can be restricted to specific virtual machines depending on the precondition

of activity 2 and the method used to decompose it. If a method is applicable, the method is used

to decompose the abstract activity (Line 21) and the children are pushed on the stack (Line 22).

If no decomposition is possible (Line 23), the planner needs to backtrack to choose different pa-

rameters or another decomposition alternative for an abstract activity that has been previously

planned for. When the stack of change activities to plan for runs empty and backtracking did

not fail previously, a valid plan can be returned (Line 30).

7.2.3 Unification vs. Object-oriented Planning

In this section we describe optimizations for several critical operations of Algorithm1 that

make the difference between constant, linear, and polynomial planning complexity compared

to SHOP2 - previously found to be the fastest planner in a comparison of IT change planners

in Chapter 6. Notice that our optimizations do not depend on a specific programming language.

However, some optimizations depend on the availability of pointers / references, which are

typically found in object-oriented languages.

Evaluation of Preconditions

To decide whether methods or atomic activities are applicable, preconditions need to be eval-

uated on Configuration Items. This happens several times in Algorithm1, e.g., in Lines 7, 10,

and 20. To evaluate a precondition, SHOP2 has to unify the precondition. Unification [9, 58] is

an algorithmic process that aims to solve a satisfiability problem. The goal of unification is to

find a substitution such that two seemingly different terms (the term describing the precondition

and the terms stored in the CMDB describing the configuration of the Configuration Items) are

equal. Unification is a potentially expensive operation (between linear and polynomial runtime

complexity). Readers interested in understanding the complexity, the logical background, and

the algorithms for unification may be referred to [9, 58]. Different to SHOP2, we do not make

use of unification to evaluate preconditions. Preconditions in our approach are implemented as

Boolean methods that are executed over an object-oriented CMDB model. The parameters of

atomic change activities are pointers / references to the Configuration Items the precondition is

evaluated on. Thus, the properties of the Configuration Items that are necessary to determine

the satisfiability of a precondition can be accessed in constant time through references. Con-

sequently, a precondition can be evaluated in constant (e.g., check whether a property holds a

value) or linear time (e.g., determine whether an element is comprised in a list). Different to the

specific preconditions and effects of the change verification logic, no requirements need to be
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enforced on the logical expressiveness of preconditions and effects for change planning because

the algorithm is a total-order planning algorithm.

Determining Parameters of IT Activities

During planning, parameters of an IT activity need to be bound to Configuration Items, e.g., in

Lines 8 and 19, so as to satisfy the activity’s precondition. To determine parameter bindings for

activities, SHOP2 makes use of an optimized version of the unification algorithm proposed in

Nilsson [77]. Different to SHOP2, we do not use unification but determine Configuration Items

of parameters by simply iterating over the CMDB until an assignment of Configuration Items to

parameters is found that satisfies the precondition. To achieve this, we scan through the CMDB

in linear time (to determine one parameter). This is often an improvement over the polynomial

complexity caused by Nilsson’s algorithm [77].

Application of Effects

During planning, the effects of atomic change activities need to be applied (Line 11, Algo-

rithm1) to the CMDB to take into account their influence on IT activities being planned for

hereafter. SHOP2 describes effects as a list of predicates to be added and deleted from the

CMDB that is maintained as a list of predicates. In the worst-case, this operation involves a lin-

ear scan over the CMDB to find the predicate to remove and eventually a costly unification step

should predicates only be known partially. In turn, our CMDB is described by a set of (Java)

objects each matching to a Configuration Item. Our effects are implemented as Java-methods

that implement code that change these objects, i.e., the Configuration Items of the CMDB. Us-

ing references, the affected Configuration Items can be accessed in constant time and the effects

can be applied to them immediately.

Undo of Effects

When backtracking over a previously planned atomic activity (Lines 14 and 24), the effects of

the activity need to be undone. SHOP2 needs to conduct a linear scan of all predicates to revert

activities by removing predicates previously added by the activity to the CMDB. We optimize

this process to constant runtime because our Configuration Items keep a copy of the values of

their properties prior to the application of an atomic change activity to quickly restore their

previous version should changes need to be undone in our object-oriented knowledge base.

7.3 Sensitivity and Robustness Analysis

7.3.1 Design of Microbenchmarks

Microbenchmarks (MBs) are used to practically analyze the runtime-complexity of the non-

trivial parts of Algorithm1 depending on several characteristics of IT activities and the CMDB.

Among these are the complexity of an activity’s precondition or effects, the layout of the

CMDB, and the proportion of Configuration Items that satisfy preconditions.

Our optimization of the simple task decomposition algorithm (Algorithm1) and the runs

of the microbenchmarks have been carefully engineered such that the same search space is

explored by both planners. Thus, SHOP2 and our optimized algorithm decompose and apply

activities in the same order, choose parameters in the same order, and backtrack at the same
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time over the same activities. It is also important to keep in mind that the microbenchmarks do

not have side-effects. Thus, their individual results can be combined to assess the runtime when

combining different types of IT activities over different instances of a Configuration Manage-

ment Database in a case study. Consequently, a case study is a weighted, cumulative combi-

nation of microbenchmarks because they individually stress a specific operation of Algorithm1

while solving other operations in constant time.

7.3.2 Parameters of Sensitivity Analysis

Layout of the Configuration Management Database

Let p be a parameter of an IT activity act and pre(p) a precondition of act whose truth value

depends on the value assigned to p. Each Configuration Item (CI) can appear in either one of

the two roles in respect to precondition pre and its parameter p:

• Qualified CI:AConfiguration Item ci is called qualified CI in respect to a change activity

act and a precondition pre(p) if pre holds when the value of parameter p is set to ci,

i.e., pre(p := ci) == true. For example, consider the atomic change activity to start a

physical machine whose precondition requires the machine to be in state off. Thus, all

machines that are in state off are qualified Configuration Items in respect to that change

and precondition.

• Unqualified CI: A Configuration Item ci is called unqualified CI in respect to a change

activity act and a precondition pre(p) if pre does not hold when the value of parameter

p is set to ci, i.e., pre(p := ci) == false. For example, consider an activity act to start a

database. A precondition pre of act is that the database is installed and in state off. Thus,

all database Configuration Items that are either not installed or running are unqualified

Configuration Items for act.

Unqualified Configuration Items are a threat to the planner’s performance because they cannot

be used to instantiate an IT activity such that its precondition is satisfied. Consequently, the ex-

istence of unqualified Configuration Items can prolong the search for proper parameter bindings

or cause backtracking. Whether this is the case depends on the layout of the CMDB that de-

scribes the order Configuration Items are stored. SHOP2 and our approach maintain the CMDB

as a list of Configuration Items/predicates. Thus, we distinguish two layouts of a CMDB:

• Qualified-unqualified (Q-UQ) layouts: In Q-UQ layouts all qualified Configuration

Items appear before unqualified Configuration Items.

• Unqualified-qualified (UQ-Q) layouts: In UQ-Q layouts all unqualified Configuration

Items appear before qualified Configuration Items.

Both layouts cover the best- and worst-case situations of SHOP2 and our algorithm in terms

of the distribution of Configuration Items in the CMDB. Consequently, as we are interested in

the best- and worst-case runtime performance of the algorithms, we do not consider statistical

distributions for the location of Configuration Items stored in the CMDB.

Selectivity

The layout of the Configuration Management Database describes the order qualified and un-

qualified Configuration Items appear in the CMDB, but it does not characterize the percentage
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of qualified or unqualified Configuration Items existing in the CMDB. The selectivity sel of a

precondition of a change activity denotes the proportion of qualified Configuration Items among

all Configuration Items of the CMDB. Thus,

sel =
|qualified CIs|

|CMDB|
.

Large selectivity means that many Configuration Items can be chosen as valid parameters for

IT activities, thus, leaving less wrong choice opportunities for the planner. The benchmarks

consider three values for selectivity to assess a performance trend:

• 100% selectivity: The CMDB only comprises qualified Configuration Items, i.e., all

Configuration Items of a certain type are suitable to render the precondition of an IT

activity true. Notice that the CMDB layout does not have any influence in this case

because Q-UQ and UQ-Q layouts reduce to Q layouts.

• 50% selectivity: Half of the CMDB’s Configuration Items are qualified CIs. Depending

on the CMDB layout these are either located at the front (Q-UQ) or the end of the CMDB

(UQ-Q).

• 0% selectivity: The CMDB comprises only the minimal number of qualified Config-

uration Items for the planning problem to be solvable. The CMDB layout determines

whether these Configuration Items appear at the beginning (Q-UQ) or the end of the

CMDB (UQ-Q).

Notice that the best- and worst-case runtimes are always covered by 0% and 100% selectivity.

Similar to the CMDB layout, we omit a distribution for the selectivity as we are interested in a

comparison of best- and worst-case performance.

7.3.3 Influence of Complexity of Preconditions

Microbenchmark1 (MB1) compares the performance of both planners when it comes to adapt

parameters of activities such that their preconditions are satisfied (Lines 7, 8, and 10) or that they

can be decomposed by a decomposition method (Lines 19 and 20). Besides the CMDB layout

and the selectivity, the following parameters also influence the matching of preconditions: (1)

the number of Configuration Items the precondition addresses and (2) whether parameters are

chosen in an atomic activity, i.e., in Line 8, or during decomposition of an abstract activity, i.e.,

in Line 19 of Algorithm1. Table 7.1 summarizes the complexity results of all 24 configurations

of MB1.

Performance

Our optimizations result in constant runtime on qualified-unqualified (Q-UQ) CMDBs as the

first Configuration Items chosen for the parameters satisfy the precondition. SHOP2 shows

polynomial and linear runtime for Q-UQ CMDBs depending on whether the unification algo-

rithm to compute parameter bindings scales linearly or polynomially with the size of the CMDB.

Thus, for Q-UQ CMDBs our planner always outperforms SHOP2 in runtime complexity. Due

to the strong results, we do not further discuss the performance on Q-UQ CMDBs herein. Read-

ers interested in the graphs of MB1 on Q-UQ CMDB layouts may be referred to FigureD.2 in
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Microbenchmark1 parameters Complexity Relative Performance

CMDB Pre. in #CIs Selectivity OWN SHOP2 OWN SHOP2

(1) Q-UQ Method 1 0% const linear same fastest

(2) Q-UQ Method 1 50% const polyn same intermediate

(3) Q-UQ Method 1 100% const polyn same slowest

(4) Q-UQ Method 2 0% const polyn same slowest

(5) Q-UQ Method 2 50% const polyn same fastest

(6) Q-UQ Method 2 100% const polyn same slowest

(7) Q-UQ Activity 1 0% const [const:linear] same slowest

(8) Q-UQ Activity 1 50% const [const:linear] same intermediate

(9) Q-UQ Activity 1 100% const [const:linear] same fastest

(10) Q-UQ Activity 2 0%, const polyn same slowest

(11) Q-UQ Activity 2 50% const polyn same intermediate

(12) Q-UQ Activity 2 100% const [const:linear] same fastest

(13) UQ-Q Method 1 0% linear linear slowest fastest

(14) UQ-Q Method 1 50% linear polyn intermediate intermediate

(15) UQ-Q Method 1 100% const polyn fastest slowest

(16) UQ-Q Method 2 0% polyn polyn slowest slowest

(17) UQ-Q Method 2 50% polyn polyn intermediate fastest

(18) UQ-Q Method 2 100% const polyn fastest slowest

(19) UQ-Q Activity 1 0% linear [const:linear] slowest same

(20) UQ-Q Activity 1 50% linear [const:linear] intermediate same

(21) UQ-Q Activity 1 100% const [const:linear] fastest same

(22) UQ-Q Activity 2 0% polyn [const:linear] slowest same

(23) UQ-Q Activity 2 50% polyn [const:linear] intermediate same

(24) UQ-Q Activity 2 100% const [const:linear] fastest same

Table 7.1: Runtime complexity of Microbenchmark 1

AppendixD.

The runtime complexity of both planners is closer to each other on unqualified-qualified

(UQ-Q) CMDBs. Figure 7.2 depicts the log − log1 plots of the planning time depending on the

CMDB size for the four configurations of MB1 on UQ-Q CMDB layouts.

Figure 7.2a depicts the case of matching over a single Configuration Item inside a method

(Line 19, Algorithm1) on a CMDB where unqualified Configuration Items precede qualified

Configuration Items (UQ-Q layout). If the selectivity is 100%, our optimizations have constant

runtime because in this case the CMDB only comprises qualified Configuration Items and the

first choice for a parameter satisfies the precondition. In turn, SHOP2 has polynomial complex-

ity for 100% selectivity. If the selectivity is 50%, SHOP2 still shows polynomial complexity

because of the unification costs and our optimizations only degrade to linear runtime because

the planner has to search the prefix of unqualified Configuration Items at the front of the CMDB

until a qualifying CI is found. At 0% selectivity SHOP2’s runtime becomes linear - the same

complexity as our planner. However, our planner outperforms SHOP2 for CMDBs of up to 2

million Configuration Items.

1In log − log plots the processing complexity is O(αn) ↔ slope == 1, O(αnslope) ↔ slope > 1 and below

linear for slope < 1. All measurements were made on an Intel Xeon Processor with 2.8Ghz and 4 GB of RAM.
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(d)MB1 (22,23,24): UQ-Q, Activity, 2 CIs

Figure 7.2: Runtime performance of Microbenchmark 1 for UQ-Q CMDB layouts.

Notice that the actual runtime complexity of our algorithm is sometimes disguised by Java’s

Just In Time Compiler (JITC). For example, in Figure 7.2a, for 0% and 50% selectivity we can

observe linear growth (slope of curves is one) between 1,000 and 10,000 Configuration Items.

Then, the JITC jumps in and compiles frequently used code for native execution instead to

interpret it in the Java virtual machine. Performance becomes even faster for larger problem

instances (between 10,000 and 100,000) because more code is being compiled with increasing

size of the CMDB causing a larger gain in performance than the additional runtime caused by

the increasing CMDB size. For even larger problem instances runtime however tends to increase

again once the performance advantage of compiled code vs. interpreted code is outweighed by

the increasing problem size (beyond 100,000 Configuration Items). However, growth in runtime

is less strong than at the beginning because compiled code takes less execution time.

Figure 7.2b depicts a similar configuration ofMB1, but the precondition needs to be matched

over two Configuration Items. Again, our optimizations result in constant runtime at 100% se-

lectivity because the Configuration Items chosen first satisfy the precondition. SHOP2 has

polynomial runtime for all selectivities, similar to our optimized version for 0% and 50% selec-
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tivity because it has to search the whole prefix of unqualified Configuration Items of the CMDB

until the first pair of qualifying Configuration Items is found. The larger the selectivity, the

smaller the UQ part of the CMDB, resulting in faster planning times when selectivity increases.

Despite having the same runtime complexity as SHOP2, our approach nevertheless outperforms

SHOP2.

Figure 7.2c depicts the case where the precondition of an atomic activity needs to be matched

over a single Configuration Item. Similar to the previous cases, our optimizations perform this

task in constant time if the selectivity is 100% as the CMDB only comprises qualified Config-

uration Items. For lower selectivities our optimizations degrade to linear runtime performance

as the UQ prefix of the CMDB needs to be searched again. This takes the longer the lower the

selectivity. In Figure 7.2c our approach always outperforms SHOP2.

Figure 7.2d depicts the only case of MB1 where SHOP2 has better runtime complexity than

our optimizations: matching a precondition over two Configuration Items in an atomic activity

on a UQ-Q CMDB. If the selectivity is 100%, the CMDB only comprises qualified Config-

uration Items immediately yielding a valid choice of Configuration Items for our approach.

For lower selectivities a polynomial search through the prefix of unqualified Configuration

Items to find the first pair of matching qualified Configuration Items becomes necessary for

our approach. However, SHOP2 always shows linear runtime on unqualified-qualified (UQ-Q)

CMDBs when matching the precondition in an activity because unification in activities matches

from the back of the CMDB leading to an immediate hit because of the UQ-Q layout.

All in all, our approach outperforms SHOP2 in 22 out of 24 configurations of MB1 (92%).

Robustness

To make a statement about the robustness of both approaches, we examine whether each param-

eter of Microbenchmark 1 influences the runtime performance of both planners. We group the

performance results of all configurations of MB1 by every distinct combination of n − 1 bench-

mark parameters to determine whether the n-th parameter influences the runtime performance.

For example, Table 7.1 is grouped by every distinct combination of 〈CMDB layout, precondi-

tion, #CIs〉. Thus, looking at the last two columns of Table 7.1, we can observe that in 50% of all

configurations of MB1 the performance of our optimizations is independent of the selectivity,

but for SHOP2 this is only the case for 6 (configurations 19 through 24) out of 24 configurations

of MB1. Thus, the performance of SHOP2 is only independent of the selectivity in 25% of all

cases making our optimizations more robust than SHOP2 in MB1.

Similarly, in 100% vs. 17% of all configurations our planner’s performance is the same for

matching a precondition in an atomic or abstract activity. In 66% vs. 33% of all configurations

of MB1 our optimizations show the same performance when matching one or two preconditions.

However, this result is compensated by SHOP2, which is in 66% of all configurations agnostic

of the CMDB layout. In turn, this is only the case in 32% of all configurations for our approach.

All in all, we conclude that taking into account all parameters of MB1 our approach is less

influenced by the specific characteristics of the planning domain.

7.3.4 Influence of Backtracking

Backtracking [31] is an inherent part of the planning algorithm (Algorithm1, Lines 14 and 24).

During backtracking previously planned IT activities need to be undone and a different decom-

position choice or choice of parameters needs to be made. Microbenchmark 2 (MB2) measures

the runtime complexity in a backtracking scenario taking into account (1) the layout of the
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Microbenchmark2 parameters Complexity Relative Performance

CMDB effect? Selectivity OWN SHOP2 OWN SHOP2

(1) UQ-Q yes 0% linear polyn slowest slowest

(2) UQ-Q yes 50% linear polyn intermediate intermediate

(3) UQ-Q yes 100% const polyn fastest fastest

(4) UQ-Q no 0% linear polyn slowest slowest

(5) UQ-Q no 50% linear polyn intermediate intermediate

(6) UQ-Q no 100% const polyn fastest fastest

(7) Q-UQ yes 0% const polyn same same

(8) Q-UQ yes 50% const polyn same same

(9) Q-UQ yes 100% const polyn same same

(10) Q-UQ no 0% const polyn same same

(11) Q-UQ no 50% const polyn same same

(12) Q-UQ no 100% const polyn same same

Table 7.2: Runtime complexity results of Microbenchmark 2
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(a)MB2 (1,2,3): UQ-Q, with effect

0.001

0.01

0.1

1

10

100

1000

1 10 100 1000 10000 100000

P
la

n
n
in

g
 t

im
e
 [

s
]

Number of CIs

own 0%
own 50%

own 100%
shop2 0%

shop2 50%
shop2 100%

x

(b) MB2 (7,8,9): Q-UQ, with effect

Figure 7.3: Selected cases of the runtime performance of Microbenchmark 2 on UQ-Q and Q-

UQ CMDB layouts.

CMDB, which determines whether backtracking occurs, (2) the selectivity, which influences

the extent to which backtracking occurs, and (3) whether the planner has to revert effects during

backtracking. Table 7.2 depicts the runtime complexity of both planners for all 12 configura-

tions of MB2.

The runtime complexity of SHOP2 is always polynomial because when the size of the

CMDB increases linearly, the time spent for first-order unification increases polynomially. We

can observe a polynomial increase in the number of calls made to Nilsson’s first-order unifica-

tion algorithm. In 66% of all cases - when qualifying Configuration Items are ordered at the

beginning of the CMDB or selectivity equals 100% - our algorithm solves the backtracking

benchmark in constant time because backtracking does not occur for these cases as the first

choice made for the parameters satisfies the preconditions right away. In 33% of the cases -

when unqualified Configuration Items exist at the front of the CMDB - our approach has linear
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Microbenchmark3 parameters Runtime complexity Relative Performance

CI at front #effect? OWN SHOP2 OWN SHOP2

(1) yes 1 const linear fastest fastest

(2) yes 4 const linear intermediate intermediate

(3) yes 8 const linear slowest slowest

(4) no 1 const linear fastest fastest

(5) no 4 const linear intermediate intermediate

(6) no 8 const linear slowest slowest

Table 7.3: Runtime complexity of Microbenchmark 3

runtime complexity because our optimized version of the algorithm has to backtrack through

a prefix of unqualified Configuration Items at the front of the CMDB. In these cases, planning

time increases linearly because the number of unqualified Configuration Items at the front of

the CMDB increases linearly.

Figure 7.3a depicts the runtime performance when backtracking over actions with effects on

UQ-Q CMDBs. The biggest gap in performance is visible for 100% selectivity. For example,

for 10,000 Configuration Items our approach solves the backtracking microbenchmark within

a few ms, while SHOP2, depending on the selectivity, easily reaches 100s. If selectivities are

smaller than 100%, our approach degrades to linear runtime performance as it has to backtrack

through the UQ prefix of the CMDB. However, this still outperforms the polynomial runtime of

SHOP2.

When the layout of the CMDB is changed to Q-UQ (see Figure 7.3b), backtracking does

not occur as the first choice is a valid choice. Thus, our approach solves the planning problem

in constant time while SHOP2 still shows polynomial runtime. This makes us conclude that

the occurrence of backtracking (as long as it increases the search space linearly as it is the

case for our benchmark) does not seem to further degrade the performance of SHOP2 beyond

polynomial runtime complexity. Nevertheless, the performance penalty caused by backtracking

remains clearly visible for SHOP2. Different to our approach, where the performance gap

between backtracking and no backtracking increases linearly with the size of the CMDB, it

increases polynomially for SHOP2.

The graphs of the remaining cases of MB2 are similar to the ones of Figure 7.3 and can be

found in FigureD.1 in AppendixD. All in all, our planner outperforms the SHOP2 planner in

all cases of Microbenchmark 2.

Besides planning performance, robustness of planning time is important as well. From

Table 7.2 it can be observed that both planners are only independent of the selectivity on Q-UQ

CMDBs. Both planners also have the same robustness for the CMDB layout parameter and the

parameter that describes whether the planner has to revert effects on backtracking. Thus, both

planners have the same robustness for MB2, but our optimizations outperform SHOP2 in terms

of runtime performance in all configurations of MB2.

7.3.5 Influence of Complexity of Effects

Microbenchmark 3 (MB3) analyzes the influence that the complexity of effects of atomic ac-

tivities have on the runtime of the planner (Line 11, Algorithms1). The following parameters

influence the costs to apply effects: (1) the location of a Configuration Item in the CMDB (either
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Figure 7.4: MB3 (1,2,3): CI at front

at the front or the back of the CMDB) that is changed by the effects of an atomic activity and

(2) the number of Configuration Items affected by the activity (1, 4, or 8). Microbenchmark 3

measures the time to perform 10 IT activities where each activity affects 1, 4, or 8 distinct Con-

figuration Items. A mixture of six blind writes, arithmetic effects, and reference manipulation

effects are applied to each affected Configuration Item.

Table 7.3 depicts the complexity results for the six configurations of MB3. Our approach

always outperforms SHOP2 by constant instead of linear runtime because our optimizations can

access Configuration Items in constant time to directly apply an effect. Figure 7.4 depicts the

benchmark results when the Configuration Items affected are ordered at the front of the CMDB.

Confirming the general intuition, atomic change activities that affect more Configuration Items

yield longer planning durations.

Consequently, our approach is insensitive to the location of a Configuration Item in the

CMDB and the size of the CMDB when applying an effect. In contrast, the performance of

SHOP2 to apply an effect to a Configuration Item depends on its location and the size of the

CMDB: The more to the front of the CMDB the Configuration Item is located or the larger

the CMDB, the more expensive the application of effects. This is caused by the different costs

to perform unification and to add/remove predicates to/from the CMDB. The planning time

increases with the number of Configuration Items affected by the activity for both planners.

All in all, our implementation outperforms SHOP2 in all cases and is more robust regarding

the position of a Configuration Item in the CMDB - a benefit as order of Configuration Items in

the CMDB cannot be controlled by a change manager.

7.4 Change Planning Case Studies

In this section we evaluate the performance of both planners using case studies instead of iso-

lated characteristics of change activities.
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Case study parameters Runtime complexity Relative Performance

CMDB BT domain Selectivity OWN SHOP2 OWN SHOP2

(1) Q-UQ Yes 0% const polyn slowest same

(2) Q-UQ Yes 50% const polyn intermediate same

(3) Q-UQ Yes 100% const polyn fastest same

(4) Q-UQ No 0% const polyn slowest slowest

(5) Q-UQ No 50% const polyn intermediate intermediate

(6) Q-UQ No 100% const linear fastest fastest

(7) UQ-Q Yes 0% linear polyn slowest slowest

(8) UQ-Q Yes 50% linear polyn intermediate intermediate

(9) UQ-Q Yes 100% const polyn fastest fastest

(10) UQ-Q No 0% linear polyn slowest slowest

(11) UQ-Q No 50% linear polyn intermediate intermediate

(12) UQ-Q No 100% const linear fastest fastest

Table 7.4: Complexity results for three-tier application deployment.

7.4.1 Deployment of a Three-tier Application

Description of Case Study

This case study evaluates the planning time to deploy a three-tier application (database, applica-

tion server, and load balancer). The case study comprises 28 abstract IT activities, 48 different

decomposition rules, and 16 atomic IT activities. We describe next the constraints according to

which a plan is created:

• Placement constraints: During planning several placement decisions according to con-

straints need to be made. For example, virtual machines need to be placed on suit-

able physical machines, unbound OS images need to be connected to virtual machines,

database, application server, and load balancer need to be placed on virtual machines. The

concrete placement constraint, e.g., whether enough memory is available on a machine

or whether an image has not yet been bound to a machine, does not influence the runtime

performance because the time to evaluate constraints on Configuration Items is the same

assuming that the same number of properties of Configuration Items need to be matched.

However, the CMDB layout and the selectivity of Configuration Items for a placement

constraint influence the planning performance.

• State-based constraints: During planning, actions need to be planned according to state-

related constraints. For example, a physical machine needs to be in state on to start a vir-

tual machine on it, an OS image needs to bemounted to start a virtual machine, a database

needs to be installed/running to install/start an application server, or an application server

needs to be installed/running to install/start a load balancer.

The generated deployment plan comprises atomic activities to bind resources according to the

constraints above, activities to mount OS images, change the state of physical machines and vir-

tual machines, and install/start database, application server, and load balancer according to the

constraints above. All in all, the case study used herein is comparable to the one in Section 6.1.

However, in this chapter we use a highly optimized first-order knowledge base that describes

the planning domain with the minimal number of predicates necessary (every Configuration
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(c) Three-tier application deployment (7,8,9): UQ-Q,

backtracking domain

0.01

0.1

1

10

100

1000

10 100 1000 10000 100000 1e+006

P
la

n
n
in

g
 t

im
e
 [

s
]

Number of CIs

own 0%
own 50%

own 100%
shop2 0%

shop2 50%
shop2 100%

x

(d) Three-tier application deployment (10,11,12): UQ-

Q, no backtracking domain

Figure 7.5: Runtime performance of three-tier application deployment benchmark for different

layouts of the CMDB and the occurrence of backtracking or not.

Item is mapped to one predicate) to reduce the work caused by unification to a minimum. Con-

sequently, although the case studies are comparable, the absolute numbers presented herein for

the SHOP2 planner are better than in Chapter 6.

Evaluation

The case study has several change activities for which to select the proper Configuration Items

as parameters. Thus, CMDB layout and selectivity have an influence on the performance of

the deployment case study because they determine how fast suitable Configuration Items can be

found during planning. In addition to that, we examine different planning domains, i.e., problem

solving strategies, to solve the case study. One makes use of backtracking (BT) [31] (see col-

umn named BT domain in Table 7.4) during planning because it commits to parameter bindings

of IT changes high up in the decomposition tree that later need to be backtracked over because

they do not satisfy the precondition of lower-level atomic activities. Another domain solves the
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problem without backtracking because placement decisions are made at the latest practicable

date when all constraints are known. We consider these two domain descriptions because it

mainly depends on the skills and experience of an IT operator how efficiently a planning do-

main is written: The planning domain without backtracking requires advanced knowledge and

experience in formalizing decomposition-based planning domains. Table 7.4 summarizes the

complexity results obtained for the three-tier application deployment case study.

On qualified-unqualified (Q-UQ) CMDBs (see Figure 7.5a and 7.5b) our optimizations have

constant runtime as the initial choice made for parameters is correct and backtracking does

not occur. In turn, SHOP2 shows polynomial runtime behavior on qualified-unqualified (Q-

UQ) CMDBs despite the case where selectivity is 100% and the domain is engineered to solve

the problem without backtracking. Similar to the microbenchmarks, the runtime of SHOP2 is

dominated by the time to perform first-order unification.

Figure 7.5c (Figure 7.5d) depicts the runtime on UQ-Q CMDBs for the domain that solves

the three-tier application deployment with backtracking (without backtracking). Different to the

constant runtime on Q-UQ CMDBs, our optimizations degrade to linear runtime when selectiv-

ity is not 100% on UQ-Q CMDBs because our planner has to backtrack (Figure 7.5c) or search

(Figure 7.5d) through a prefix of unqualified Configuration Items at the front of the CMDB.

For both approaches backtracking through that prefix is more expensive than just to linearly

search it. When the backtracking domain is used, SHOP2 can only derive a plan in polyno-

mial time on UQ-Q CMDBs. When switching to the domain that solves the problem without

backtracking, SHOP2 has polynomial runtime despite for 100% selectivity. When backtracking

occurs (Figure 7.5c) our planner more significantly outperforms SHOP2. For example, for 0%

selectivity SHOP2 can solve a CMDB comprising 3,600 Configuration Items within 10s while

our optimizations easily solve problem instances of 1.2 million Configuration Items within 10s

(333x the size in 10s). Both planners are closer together (7,200 Configuration Items for SHOP2

vs. 108,000, within 1s, 15x the size) on the optimized domain without backtracking (see Fig-

ure 7.5d).

SHOP2 is slightly more robust than our approach when it comes to the deployment case

study. The selectivity of the CMDB always influences our optimizations in the deployment

case study. In turn, this is only the case in 75% of the benchmark configurations for SHOP2.

However, our approach is more robust in respect to the formalization of the domain (backtrack-

ing/no backtracking domain). In 66% of all cases our optimizations perform equally for both

planning domains while this is never the case for SHOP2. However, SHOP2 is less influenced

by the CMDB layout. In 50% of all cases of the deployment benchmark, the performance of

SHOP2 is agnostic of the CMDB layout. This is only the case in 33% of all configurations for

our optimizations. Taking the influence of all parameters into account, our optimizations are

slightly more agnostic (37.5% vs. 25%) to the parameters of the case study than SHOP2.

7.4.2 Virtual Network (Un)configuration Case Study

Description of Case Study

In this case study we evaluate the complexity to configure virtual routers and links on top of a

physical network substrate. More specifically, a virtual network is to be configured among three

physical machines (pm1, pm2, pm3) such that network connectivity is established between the

pairs (pm1, pm2) and (pm2, pm3). Such a change could be part of a larger deployment change,
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Case study parameters Runtime complexity Relative Performance

CMDB Selectivity OWN SHOP2 OWN SHOP2

(1) UQ-Q 0% polyn polyn slowest slowest

(2) UQ-Q 50% polyn polyn intermediate intermediate

(3) UQ-Q 100% const polyn fastest fastest

(4) Q-UQ 0% const polyn same slowest

(5) Q-UQ 50% const polyn same fastest

(6) Q-UQ 100% const polyn same fastest

Table 7.5: Complexity results of virtual network configuration case study.

Case study parameters Runtime complexity Relative Performance

CMDB Depth of NW OWN SHOP2 OWN SHOP2

(1) NW-PMS 3 const linear fastest fastest

(2) NW-PMS 4 const linear intermediate intermediate

(3) NW-PMS 5 const linear slowest slowest

(4) PMS-NW 3 const linear fastest fastest

(5) PMS-NW 4 const linear intermediate intermediate

(6) PMS-NW 5 const linear slowest slowest

Table 7.6: Complexity results of virtual network unconfiguration case study.
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(b) Network configuration case study (4,5,6): UQ-Q

CMDB

Figure 7.6: Runtime performance of the virtual network configuration case study depending on

the layout of the CMDB.

e.g., the three-tier application deployment case study. The constraints taken into account during

planning are those that occur when configuring a Logical Router Service on Juniper routers as

imposed by the JUNOS operating system [62]: (1) a physical router cannot host more than 16

virtual routers and (2) every physical or logical interface can only be used by one virtual router.

The planner needs to choose three physical machines such that the interfaces and routers on

the network path connecting the physical machines can be properly configured according to



138 7. Efficient Generation of IT Change Plans on Large Infrastructures

0.001

0.01

0.1

1

10

100000 1e+006

P
la

n
n
in

g
 t

im
e
 [

s
]

Number of physical machines

own depth 3
own depth 4
own depth 5

shop2 depth 3
shop2 depth 4
shop2 depth 5

Figure 7.7: Network unconfiguration case study (1,2,3): NW-PMS CMDB layout.

the constraints. Backtracking occurs if the configuration fails among the path. The network

layout is of a strict hierarchical nature where the higher-level router aggregates/connects the

routers or machines of the lower level. The depth of the network, which is a parameter of the

unconfiguration case study, describes the number of hops to the highest level router. Thus, for

a depth of n, a total of 2× n links have to be traversed among any pair of machines. In a second

RFC we also evaluate the complexity to unconfigure the virtual network. To plan for both RFCs,

the planning domain comprises 14 different abstract IT activities, 22 decomposition rules, and

4 atomic activities (to configure/unconfigure a router/interface).

Evaluation

Table 7.5 depicts the runtime complexity of the virtual network configuration case study. On

qualified-unqualified (Q-UQ) CMDBs our optimizations outperform SHOP2 by constant in-

stead of polynomial runtime complexity (see Figure 7.6a) because the first choice made for

the physical machines yields a configurable network path (qualified Configuration Items are

ordered at the front of the CMDB). Again, SHOP2 spends polynomial time in performing first-

order unification. On unqualified-qualified (UQ-Q) CMDBs our approach degrades to polyno-

mial runtime complexity for selectivities below 100%, the same complexity as for SHOP2 (see

Figure 7.6b). In this case SHOP2 and our optimizations start backtracking as network config-

uration fails among all triples of physical machines chosen from the UQ prefix of the CMDB

until the first triple of physical machines is chosen from the postfix of qualified Configuration

Items such that the network can be configured. Nevertheless, Figure 7.6b shows that - despite

the same complexity - our optimizations easily outperform the SHOP2 planner.

In terms of robustness both planners are comparable. Our optimizations are agnostic of the

selectivity in 50% of all cases. Different to that, this is never the case for the SHOP2 planner.

However, in 30% of all cases SHOP2 is agnostic of the CMDB layout. In turn, this is never the

case for our optimizations.

When planning for the virtual network unconfiguration case study (see Table 7.6 and Fig-

ure 7.7), our approach always outperforms SHOP2 by constant instead of linear runtime. Undo-

ing the network configuration is easier to handle by both approaches because more parameters

of IT changes are already bound to Configuration Items. For example, the physical machines
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among which to unconfigure the virtual network are already given. Thus, no suitable combi-

nation of physical machines needs to be found avoiding the polynomial complexity inherent to

the configuration case study. Nilsson’s unification algorithm causes linear runtime for SHOP2

in the unconfiguration case study. In turn, our optimizations solve the problem in constant time

because we do not use unification but references to quickly derive the parameters of IT activities

during decomposition.

Both planners have the same robustness for the network unconfiguration case study. Both

are influenced by the depth of the network. The deeper the network, the more routers and inter-

faces need to be reconfigured causing longer planning durations due to larger networks. Notice

that we do not examine selectivity in this case study because it does not have an influence on

the runtime performance. This is the case because all changes are completely instantiated in

the network unconfiguration case study (it is obvious which routers and interface need to be

unconfigured due to the deterministic path among the machines) thus leaving only a few pred-

icates to be considered by unification. The planning performance is influenced by the CMDB

layout indifferently. On larger networks we can observe that SHOP2 tends to be penalized by

PMS-NW CMDB layouts (all physical machine Configuration Items ordered before network

Configuration Items) because more predicates need to be matched in the NW part of the CMDB

causing more efforts to scan through the PMS prefix of the CMDB until a match is found. It is

difficult to determine robustness as measurements lie closely together on smaller CMDB sizes.

All in all, none of the both planners seems to outperform the other one in terms of robustness

for the network unconfiguration case study.

7.5 Conclusions

Planning in the large is an imperative feature required of IT change planners in order to cope

with the increasing size and complexity of IT infrastructures in most modern organizations. In

spite of this, investigations carried out in the context of IT change planning have either left this

requirement out of scope, or simply do not deal satisfactorily with CMDBs that contain up to

millions of Configuration Items.

To bridge this gap, in this chapter we proposed and discussed optimization techniques for

decomposition-based IT change planning over object-oriented CMDBs. The proposed tech-

niques enable a substantial reduction in the runtime complexity of the decomposition process:

from polynomial to linear or even constant complexity as evidenced in the various case studies

and microbenchmarks presented in this chapter.

Our evaluation has evidenced two important aspects regarding IT change planning. First,

object-oriented planning and our optimizations have shown to be a promising approach to deal

with planning over very large CMDBs. This is of vital importance to most modern organizations

that have to manage up to several change requests a day over large infrastructures in a timely

manner. And second, first-order unification suffers from scalability issues. Consequently, typ-

ical Artificial Intelligence planners cannot be satisfactorily used for IT change planning in the

large as they do not scale for very large CMDBs.

As prospective directions for future research, we suggest research towards algorithms that

integrate planning and scheduling while maintaining scalability on large Configuration Man-

agement Databases.
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CHAPTER 8

Conclusions and Future Work

With businesses relying on the support of IT systems and IT change operations threatening the

availability of IT systems, the need to prevent severe outages such as the one caused by a net-

work reconfiguration change in one of Amazon’s data centers in April 2011 arises. Although

Change Management, a process of the Information Technology Infrastructure Library (ITIL),

defines the proper steps and strategies to minimize outages, not much has been done to sup-

port the process by automated reasoning techniques. Automated planning and verification of IT

change operations are among the most promising steps to be automated in order to guarantee

correctness and soundness of IT changes. For that purpose we proposed in this work algorithms

for the efficient verification and planning of IT change operations that, compared to previous

work on these topics, improve the runtime complexity of change verification and planning from

exponential/polynomial to linear or even constant complexity. Thus, both solutions enable the

verification and planning of IT change operations on large configurations for the first time.

First, we introduced extended partial-order reduction, a finer-grained version of the partial-

order reduction model checking paradigm that enables the efficient verification of safety con-

straints given a set of concurrent, always-executable effects. Different to partial-order reduction,

extended partial-order reduction does not require state commutativity and the stutter criterion

of partial-order reduction to hold, but further assumptions about the characteristics of effects

and atomic propositions have been introduced for the correctness of partial-order reduction. We

showed that extended partial-order reduction is applicable in cases where partial-order reduc-

tion fails to further reduce the search space. Extended partial-order reduction was proven to

be correct and theorems were provided to efficiently apply extended partial-order reduction to

complex, compound formulas. To apply extended partial-order reduction to IT change verifica-

tion, we introduced a many-sorted logic for IT change verification and proved its compliance

with the theory of extended partial-order reduction. We introduced a prototypical implementa-

tion of an extended partial-order reduction model checker for IT change verification that solves

IT change verification problems in linear time if change activities and safety constraints are

roughly equally distributed over the Configuration Items of the CMDB. Finally, we showed that
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the change verification logic can be used in practice to model several static and dynamic rout-

ing network changes that could have caused a recent network outage in one of Amazon’s data

centers. The extended partial-order reduction model checker was evaluated against the state

of the art general purpose model checkers NuSMV and SPiN in a total of 256 configurations

of 32 benchmarks that differ in change operations to have caused Amazon’s network outage,

models describing the configuration of the CMDB, and model checker specific optimization

techniques. The results showed that extended partial-order reduction significantly outperforms

the model checkers NuSMV and SPiN with linear instead of polynomial (NuSMV) or expo-

nential (SPiN) runtime complexity and that even its worst-case performance surpasses the best-

case performance of NuSMV and SPiN. Furthermore, extended partial-order reduction was also

shown to be more robust than the SPiN and NuSMV model checker - a significant advantage

over NuSMV and SPiN - because their performance is more dependable on the modeling skills

of the change manager.

Second, we addressed the problem to efficiently generate IT change plans for Request for

Changes (RFCs), i.e., abstract goal specifications of IT changes. We examined four prominent

planning paradigms (Hierarchical Task Network Planning (HTN) [76], Means End Analysis

[94], Forward Chaining [10], and Planning Graphs [18]) in respect to their applicability to large-

scale IT change planning and their usability by change managers. We found that Hierarchical

Task Network planners (SHOP2) are, due to their rigorous decomposition concept and the hi-

erarchical nature of IT change planning, the ones best suited for IT change planning in terms

of performance and usability. However, even SHOP2 does not scale to large configurations

due to the use of first-order unification algorithms. To enable IT change planning in the large,

we proposed optimizations for decomposition-based IT change planning that significantly re-

duce the runtime complexity of a simple task decomposition planner from polynomial to linear

or even constant runtime. Several micro benchmarks, which examine different characteristics

of IT change activities, demonstrated the superior performance of the proposed optimization

techniques. A three-tier application deployment and a network (un)configuration case study

demonstrate the feasibility of the approach and confirm the results of the micro benchmarks: IT

change planning has evolved from planning in the small to planning in the large.

In this work we laid the foundation to plan for and verify IT change operations on large

configurations. Whether our algorithms can be applied in a practical setting with a broader

set of IT changes than the ones addressed herein, is a question that concerns four aspects:

The expressiveness, practicability, completeness, and capability of the approach to deal with

uncertain management domains. In the following we discuss all four aspects and highlight

directions for future work.

Expressiveness

To apply the change planning and verification algorithms to a larger set of change activities than

the ones addressed herein, the change verification logic needs to be expressive enough to de-

scribe a broad spectrum of IT changes. While it might not always be possible to model a change

verification or planning problem in the most direct way, there is - based on our experience - al-

ways a combination of infrastructure model and effects/predicates from the change verification

logic that sufficiently describes a verification or planning problem. In the worst case one can

always fall back to an abstract model that describes changes in an abstract way, for instance,

a change might just change one property of a Configuration Item that describes whether the
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change has been applied to the Configuration Item or not. As we provided the precise require-

ments for extended partial-order reduction to be applicable (see Chapter 2) in this work, it is

possible to extend the change verification logic with further predicates and effects should future

research deem it appropriate.

Practicability

The systematic capture and specification of change activities, safety constraints, and IT in-

frastructure models remains an obstacle for the wider deployment of automated planners and

verification tools. The experience gained through our experiments is that writing a domain can

require significant work and is often difficult to do without prior basic knowledge in logic. We

see two measures that can be undertaken to hide the complexity caused by the logical specifi-

cation of change activities and safety constraints from the IT change manager:

• Introduction of logic templates for IT change operations: Previous work [33, 35] ar-

gues in favor of capturing existing knowledge in IT change design using plan templates.

In a similar way, logic templates can be introduced that comprise the pre-defined specifi-

cation of an IT change in change verification logic. Thus, a change manager only has to

associate a change to a logic template and does not have to deal with its logical specifica-

tion anymore. This approach works particularly well with hierarchical planners (such as

our change planner discussed in Chapter 7) because higher-level change activities can be

built of existing, more concrete change activities and a logical specification needs to be

only provided for atomic change activities. However, providing the specification for the

atomic change activities remains a challenge for the change manager. To avoid this, fu-

ture research is necessary to automatically extract the preconditions and effects of atomic

IT change activities from configuration snapshots taken before and after the application

of a change activity. A similar approach was previously shown to work well to derive IT

change templates [34].

• Introduction of application and safety constraint templates: Similar to the idea of

change activity logic templates, which provide the pre-defined logical specification of IT

change activities, typical configuration procedures could be captured in decomposition

rules. Furthermore, safety constraints often used for software and IT systems could be

provided as templates as well. Basic configuration constraints could be described inde-

pendent of the concrete software or hardware product enabling its reuse.

Completeness

Finding and capturing the proper change activities and safety constraints to prevent an outage

before it appears remains another obstacle to apply change verification. As Amazon’s network

outage already appeared, it was easy to formalize safety constraints and change activities in

retrospective. To overcome this challenge, change verification and risk management need to

be further integrated. Risk management [87, 96, 97] provides the means to detect risky change

activities, which can then be chosen to be protected by means of verification.

Uncertainty

The uncertainty inherent to some infrastructures remains an obstacle for the deployment of au-

tomated planners and verification tools as well. The knowledge of a configuration can often be
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incomplete due to the existence of different management domains, due to the heterogeneity of

applications, and due to the lack of tools to systematically record a configuration. In such en-

vironments, probabilistic model checking [64] is a promising approach to decide the likelihood

of the violation of safety constraints. Furthermore, planning algorithms have been developed

for uncertain planning domains as well [41]. It remains an open research question to what ex-

tent the certainty constraint can be relaxed without losing the runtime complexity necessary for

large-scale IT change planning and verification.
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APPENDIXA

Verification Theory

A.1 Proof of Proposition 2

This section presents the proof of Proposition 2 (see Section 2.3.4).

Proposition. Relationships among effects

Let φ be a formula, then:

1. NTRLs(φ) ∪ SUPPs(φ) = PPs(φ)

2. NTRLs(φ) ∪ THRTs(φ) = NPs(φ)

3. NTRLs(φ) ∪ SUPPs(φ) ∪ THRTs(φ) = PPs(φ) ∪ NPs(φ)

4. NTRLs(φ) ∪ SUPPs(φ) ∪ THRTs(φ) ∪ AMBGs(φ) = E

5. THRTs(φ) ∩ NTRLs(φ) = ∅

6. SUPPs(φ) ∩ NTRLs(φ) = ∅

7. SUPPs(φ) ∩ THRTs(φ) = ∅

Proof. 1.

NTRLs(φ) ∪ SUPPs(φ) =Def. 3 (2.11), (2.9)

(PPs(φ) ∩ NPs(φ)) ∪ (PPs(φ) ∩ NPs(φ)) =

PPs(φ)
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2.

NTRLs(φ) ∪ THRTs(φ) =Def. 3 (2.11), (2.10)

(NPs(φ) ∩ PPs(φ)) ∪ (NPs(φ) ∩ PPs(φ)) =

NPs(φ)

3.

NTRLs(φ) ∪ SUPPs(φ) ∪ THRTs(φ) =

NTRLs(φ) ∪ SUPPs(φ) ∪ NTRLs(φ) ∪ THRTs(φ) =1.

PPs(φ) ∪ NTRLs(φ) ∪ THRTs(φ) =2.

PPs(φ) ∪ NPs(φ)

4.

E =

(PPs(φ) ∪ NPs(φ)) ∪ (PPs(φ) ∪ NPs(φ)) =3.

NTRLs(φ) ∪ SUPPs(φ) ∪ THRTs(φ) ∪ (PPs(φ) ∪ NPs(φ)) =Def. 3 (2.12)

NTRLs(φ) ∪ SUPPs(φ) ∪ THRTs(φ) ∪ AMBGs(φ)

5.

e ∈ THRTs(φ) →Def. 3 (2.10)

e ∈ (NPs(φ) ∩ PPs(φ)) →

e ∈ NPs(φ) ∧ e < PPs(φ) →

e < (NPs(φ) ∩ PPs(φ)) →Def. 3 (2.11)

e < NTRLs(φ)

Thus, THRTs(φ) ∩ NTRLs(φ) = ∅.

6.

e ∈ SUPPs(φ) →Def. 3 (2.9)

e ∈ (PPs(φ) ∩ NPs(φ)) →

e ∈ PPs(φ) ∧ e < NPs(φ) →

e < (PPs(φ) ∩ NPs(φ)) →Def. 3 (2.11)

e < NTRLs(φ)

Thus, SUPPs(φ) ∩ NTRLs(φ) = ∅.

7.

e ∈ SUPPs(φ) →Def. 3 (2.9)

e ∈ (PPs(φ) ∩ NPs(φ)) →

e < NPs(φ) →

e < (NPs(φ) ∩ PPs(φ)) →Def. 3 (2.10)

e < THRTs(φ)

Thus, SUPPs(φ) ∩ THRTs(φ) = ∅.

�
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A.2 Proof of Proposition 3

This section presents the proof of Proposition 3 (see Section 2.3.4).

Proposition. Relationships for negated formulas

Let φ be a formula, then:

1. PPs(φ) = NPs(¬φ)

2. SUPPs(φ) = THRTs(¬φ)

3. NTRLs(φ) = NTRLs(¬φ)

4. AMBGs(φ) = AMBGs(¬φ)

Proof. 1.

e ∈ PPs(φ) ↔Def. 1

∀s ∈ S : (s |= φ→ e(s) |= φ) ↔

∀s ∈ S : (s |= ¬¬φ→ e(s) |= ¬¬φ) ↔

∀s ∈ S : (s 6|= ¬φ→ e(s) 6|= ¬φ) ↔Def. 2

e ∈ NPs(¬φ)

2.

SUPPs(φ) =Def. 3 (2.9)

PPs(φ) ∩ NPs(φ) =1.

NPs(¬φ) ∩ PPs(¬φ) =Def. 3 (2.10)

THRTs(¬φ)

3.

NTRLs(φ) =Def. 3 (2.11)

PPs(φ) ∩ NPs(φ) =1.

NPs(¬φ) ∩ PPs(¬φ) =Def. 3 (2.11)

NTRLs(¬φ)

4.

AMBGs(φ) =Def. 3 (2.12)

PPs(φ) ∪ NPs(φ) =1.

NPs(¬φ) ∪ PPs(¬φ) =Def. 3 (2.12)

AMBGs(¬φ)

�



148 A. Verification Theory

A.3 Proof of Proposition 4

This section presents the proof of Proposition 4 (see Section 2.3.4).

Proposition. Support and threat complements

Let e ∈ E be an effect and φ a formula, then

1. e decisively supports φ ↔ e decisively threatens ¬φ

2. e indecisively supports φ ↔ e indecisively threatens ¬φ

Proof. 1. To prove:

(e ∈ SUPPs(φ) ∧ e is a decisive PP effect of φ) ↔

(e ∈ THRTs(¬φ) ∧ e is a decisive NP effect of ¬φ)

From Proposition 3, Statement (2) we obtain that e ∈ SUPPs(φ)↔ e ∈ THRTs(¬φ).

It remains to be shown that

(e is a decisive PP effect of φ)↔ (e is a decisive NP effect of ¬φ)

e a decisive PP effect of φ ↔Def. 1

∀s ∈ S : e(s) |= φ ↔

∀s ∈ S : e(s) 6|= ¬φ ↔Def. 2

e is a decisive NP effect of ¬φ

2. To prove:

(e ∈ SUPPs(φ) ∧ e is an indecisive PP effect of φ) ↔

(e ∈ THRTs(¬φ) ∧ e is an indecisive NP effect of ¬φ)

From Proposition 3, Statement (2) we obtain that e ∈ SUPPs(φ)↔ e ∈ THRTs(¬φ).

It remains to be shown that

(e is an indecisive PP effect of φ)↔ (e is an indecisive NP effect of ¬φ)

e is an indecisive PP effect of φ ↔Def. 1

∃s ∈ S : e(s) 6|= φ ↔

∃s ∈ S : e(s) |= ¬φ ↔Def. 2

e is an indecisive NP effect of ¬φ

�
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A.4 Proof of Proposition 11

This section presents the complete proof of Proposition 11 (see Section 3.4.1) stating that all

support, threat, and neutral relationships among effects and predicates of the change verification

language are correct.

Proof. Every entry in Table 3.3a is proven separately. We denote by p1, and p2 integer constants

in ΣP and by ∆c1, ∆c2 fixed integer constants in Σ
C.

1. To prove:

inc(p1,∆c1) indecisively supports p1 ≥ p2 and p1 > p2 ↔Def. 3

inc(p1,∆c1) ∈ PPs(p1 ≥ p2)
︸                              ︷︷                              ︸

(1)

∧ inc(p1,∆c1) < NPs(p1 ≥ p2)
︸                               ︷︷                               ︸

(2)

We only proof this case for p1 ≥ p2. The proof for p1 > p2 is done analogously.

Proof of (1): To prove (Def. 1):

∀cmdb ∈ CMDBs : cmdb |= p1 ≥ p2 → inc(p1,∆c1)(cmdb) |= p1 ≥ p2

This is the case iff (Def. 15)

∀cmdb ∈ CMDBs : ≥def (pcmdb1 , pcmdb2 ) → ≥def (p
inc(p1 ,∆c1)(cmdb)

1
, p

inc(p1,∆c1)(cmdb)

2
)

Let ∆c
def

1
be the absolute increase to pcmdb

1
induced by the application of inc(p1,∆c1) to

cmdb. Then,

p
inc(p1,∆c1)(cmdb)

2
= pcmdb2 and

p
inc(p1,∆c1)(cmdb)

1
= pcmdb1 + ∆c

def

1

Thus, it remains to be proven that:

∀cmdb ∈ CMDBs : ≥def (pcmdb1 , pcmdb2 ) → ≥def (pcmdb1 + ∆c
def

1
, pcmdb2 )

which is trivially satisfied.

Proof of (2): To prove (Def. 2):

∃cmdb ∈ CMDBs : (cmdb 6|= p1 ≥ p2 ∧ inc(p1,∆c1)(cmdb) |= p1 ≥ p2)

This is the case iff (Def. 15)

∃cmdb ∈ CMDBs : <def (pcmdb1 , pcmdb2 ) ∧ ≥def (p
inc(p1 ,∆c1)(cmdb)

1
, p

inc(p1,∆c1)(cmdb)

2
)

Let pcmdb
1
= 0 and pcmdb

2
= 1 and ∆c

def

1
= 2. Then, we obtain with p

inc(p1,∆c1)(cmdb)

1
= 2:

<def (0, 1) ∧ ≥def (2, 1)

which is trivially satisfied. Thus, inc(p1,∆c1) < NPs(p1 ≥ p2).
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inc(p1,∆c1) is an indecisive PP effect because for pcmdb
1
= 2 and pcmdb

2
= 5 and ∆c

def

1
= 2,

we obtain

p
inc(p1 ,∆c1)(cmdb)

1
= pcmdb1 + ∆c

def

1
= 2 + 2 = 4

p
inc(p1 ,∆c1)(cmdb)

2
= pcmdb2 = 5

but p
inc(p1,∆c1)(cmdb)

1
� p

inc(p1,∆c1)(cmdb)

2
.

Consequently, inc(p1,∆c1) is not a threat or neutral effect to p1 ≥ p2 (Proposition 2, (6)

and (7)).

2. To prove:

inc(p1,∆c1) indecisively threatens p1 ≤ p2 and p1 < p2

This can be directly concluded from Statement (1):

Statement (1) ≡

inc(p1,∆c1) indecisively supports p1 ≥ p2 and p1 > p2 ≡Proposition 4

inc(p1,∆c1) indecisively threatens p1 � p2 and p1 ≯ p2 ≡

inc(p1,∆c1) indecisively threatens p1 < p2 and p1 ≤ p2

3. To prove:

inc(p2,∆c2) indecisively supports p1 ≤ p2 and p1 < p2

This can be directly concluded from Statement (1):

Statement (1) ≡

inc(p1,∆c1) indecisively supports p1 ≥ p2 and p1 > p2 ≡Substitution: p2↔p1 and ∆c2↔∆c1

inc(p2,∆c2) indecisively supports p2 ≥ p1 and p2 > p1 ≡

inc(p2,∆c2) indecisively supports p1 ≤ p2 and p1 < p2

4. To prove:

inc(p2,∆c2) indecisively threatens p1 ≥ p2 and p1 > p2

This can be directly concluded from Statement (3):

Statement (3) ≡

inc(p2,∆c2) indecisively supports p1 ≤ p2 and p1 < p2 ≡Proposition 4

inc(p2,∆c2) indecisively threatens p1 � p2 and p1 ≮ p2 ≡

inc(p2,∆c2) indecisively threatens p1 > p2 and p1 ≥ p2

5. To prove:

dec(p2,∆c2) indecisively supports p1 ≥ p2( and p1 > p2) ↔Def. 3

dec(p2,∆c2) ∈ PPs(p1 ≥ p2)
︸                               ︷︷                               ︸

(1)

∧ dec(p2,∆c2) < NPs(p1 ≥ p2)
︸                               ︷︷                               ︸

(2)

We only proof this case for p1 ≥ p2. The proof for p1 > p2 is done analogously.
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Proof of (1): To prove (Def. 1):

∀cmdb ∈ CMDBs : cmdb |= p1 ≥ p2 → dec(p2,∆c2)(cmdb) |= p1 ≥ p2

This is the case iff (Def. 15)

∀cmdb ∈ CMDBs : ≥def (pcmdb1 , pcmdb2 ) → ≥def (p
dec(p2 ,∆c2)(cmdb)

1
, p

dec(p2,∆c2)(cmdb)

2
)

Let ∆c
def

2
be the absolute decrease to pcmdb

2
induced by the application of dec(p2,∆c2) to

cmdb. Then,

p
dec(p2,∆c2)(cmdb)

2
= pcmdb2 − ∆c

def

2
and

p
dec(p2,∆c2)(cmdb)

1
= pcmdb1

Thus, it remains to be proven that:

∀cmdb ∈ CMDBs : ≥def (pcmdb1 , pcmdb2 ) → ≥def (pcmdb1 , pcmdb2 − ∆c
def

2
)

which is trivially satisfied.

Proof of (2): To prove (Def. 2):

∃cmdb ∈ CMDBs : (cmdb 6|= p1 ≥ p2 ∧ dec(p2,∆c2)(cmdb) |= p1 ≥ p2)

This is the case iff (Def. 15)

∃cmdb ∈ CMDBs : <def (pcmdb1 , pcmdb2 ) ∧ ≥def (p
dec(p2 ,∆c2)(cmdb)

1
, p

dec(p2,∆c2)(cmdb)

2
)

Let pcmdb
1
= 2 and pcmdb

2
= 3 and ∆c

def

2
= 2. Then, we obtain with p

dec(p2,∆c2)(cmdb)

2
= 1:

<def (2, 3) ∧ ≥def (2, 1)

which is trivially satisfied. Thus, dec(p2,∆c2) < NPs(p1 ≥ p2).

dec(p2,∆c2) is an indecisive PP effect because for pcmdb
1
= 2 and pcmdb

2
= 4 and ∆c

def

2
= 1,

we obtain

p
dec(p2,∆c2)(cmdb)

1
= pcmdb1 = 2

p
dec(p2,∆c2)(cmdb)

2
= pcmdb2 − ∆c

def

2
= 4 − 1 = 3

but p
dec(p2 ,∆c2)(cmdb)

1
� p

dec(p2,∆c2)(cmdb)

2
.

Consequently, dec(p2,∆c2) is not a threat or neutral effect to p1 ≥ p2 (Proposition 2, (6)

and (7)).

6. To prove:

dec(p2,∆c2) indecisively threatens p1 ≤ p2 and p1 < p2

This can be directly concluded from Statement (5):

Statement (5) ≡

dec(p2,∆c2) indecisively supports p1 ≥ p2 and p1 > p2 ≡Proposition 4

dec(p2,∆c2) indecisively threatens p1 � p2 and p1 ≯ p2 ≡

dec(p2,∆c2) indecisively threatens p1 < p2 and p1 ≤ p2
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7. To prove:

dec(p1,∆c1) indecisively supports p1 ≤ p2 and p1 < p2

This can be directly concluded from Statement (5):

Statement (5) ≡

dec(p2,∆c2) indecisively supports p1 ≥ p2 and p1 > p2 ≡Substitution: p2↔p1 and ∆c2↔∆c1

dec(p1,∆c1) indecisively supports p2 ≥ p1 and p2 > p1 ≡

dec(p1,∆c1) indecisively supports p1 ≤ p2 and p1 < p2

8. To prove:

dec(p1,∆c1) indecisively threatens p1 ≥ p2 and p1 > p2

This can be directly concluded from Statement (7):

Statement (7) ≡

dec(p1,∆c1) indecisively supports p1 ≤ p2 and p1 < p2 ≡Proposition 4

dec(p1,∆c1) indecisively threatens p1 � p2 and p1 ≮ p2 ≡

dec(p1,∆c1) indecisively threatens p1 > p2 and p1 ≥ p2

Every entry in Table 3.3b is proven separately. We denote by p a constant in ΣP and by c1,

c2 fixed-constants in Σ
C with values c

de f

1
, c

de f

2
.

1. To prove:

set(p, c1) decisively supports hasValue(p, c1) ↔Def. 3

set(p, c1) ∈ PPs(hasValue(p, c1))
︸                                     ︷︷                                     ︸

(1)

∧ set(p, c1) < NPs(hasValue(p, c1))
︸                                     ︷︷                                     ︸

(2)

Proof of (1): To prove (Def. 1):

∀cmdb ∈ CMDBs : cmdb |= hasValue(p, c1) → set(p, c1)(cmdb) |= hasValue(p, c1)

This is the case iff (Def. 15)

∀cmdb ∈ CMDBs : hasValuedef (pcmdb, c
def

1
) → hasValuedef (pset(p,c1)(cmdb), c

def

1
)

Because pset(p,c1)(cmdb) = c
def

1
, this is trivially satisfied.

Proof of (2): To prove (Def. 2):

∃cmdb ∈ CMDBs : (cmdb 6|= hasValue(p, c1) ∧ set(p, c1)(cmdb) |= hasValue(p, c1))

This is the case iff (Def. 15)

∃cmdb ∈ CMDBs : ¬hasValuedef (pcmdb, c
def

1
) ∧ hasValuedef (pset(p,c1)(cmdb), c

def

1
)

Let pcmdb = c
def

2
and c

def

2
, c

def

1
, then

¬hasValuedef (pcmdb, c
def

1
) ≡ true and

hasValuedef (pset(p,c1)(cmdb), c
def

1
) ≡ true

because pset(p,c1)(cmdb) = c
def

1
. Consequently, set(p, c1) is a decisive support and neither a

threat nor neutral effect to hasValue(p, c1) (Proposition 2, (6) and (7)).
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2. To prove:

set(p, c2) decisively threatens ¬hasValue(p, c2)

This can be directly concluded from Statement (1):

Statement (1) ≡

set(p, c2) decisively supports hasValue(p, c2) ≡Proposition 4

set(p, c2) decisively threatens ¬hasValue(p, c2)

3. To prove:

set(p, c1) decisively supports ¬hasValue(p, c2) ↔Def. 3

set(p, c1) ∈ PPs(¬hasValue(p, c2))
︸                                       ︷︷                                       ︸

(1)

∧ set(p, c1) < NPs(¬hasValue(p, c2))
︸                                       ︷︷                                       ︸

(2)

Proof of (1): To prove (Def. 1):

∀cmdb ∈ CMDBs : cmdb |= ¬hasValue(p, c2)→ set(p, c1)(cmdb) |= ¬hasValue(p, c2)

This is the case iff (Def. 15)

∀cmdb ∈ CMDBs : ¬hasValuedef (pcmdb, c
def

2
) → ¬hasValuedef (pset(p,c1)(cmdb), c

def

2
)

Because pset(p,c1)(cmdb) = c
def

1
, c

def

2
, this is trivially satisfied.

Proof of (2): To prove (Def. 2):

∃cmdb ∈ CMDBs : (cmdb 6|= ¬hasValue(p, c2) ∧ set(p, c1)(cmdb) |= ¬hasValue(p, c2))

This is the case iff (Def. 15)

∃cmdb ∈ CMDBs : hasValuedef (pcmdb, c
def

2
) ∧ ¬hasValuedef (pset(p,c1)(cmdb), c

def

2
)

Let pcmdb = c
def

2
and c

def

2
, c

def

1
, then

hasValuedef (pcmdb, c
def

2
) ≡ true and

¬hasValuedef (pset(p,c1)(cmdb), c
def

2
) ≡ true

because pset(p,c1)(cmdb) = c
def

1
, c

def

2
. Consequently, set(p, c1) is a decisive support and

neither a threat nor neutral effect to ¬hasValue(p, c2) (Proposition 2, (6) and (7)).

4. To prove:

set(p, c1) decisively threatens hasValue(p, c2)

This can be directly concluded from Statement (3):

Statement (3) ≡

set(p, c1) decisively supports ¬hasValue(p, c2) ≡Proposition 4

set(p, c1) decisively threatens hasValue(p, c2)
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Every entry in Table 3.3c is proven separately. We denote by p a list or set constant in ΣP

and by c1, c2 fixed-constants in Σ
C that describe elements of list or set p.

1. To prove:

add(p, c1) decisively supports contains(p, c1) on lists and sets ↔Def. 3

add(p, c1) ∈ PPs(contains(p, c1))
︸                                     ︷︷                                     ︸

(1)

∧ add(p, c1) < NPs(contains(p, c1))
︸                                      ︷︷                                      ︸

(2)

Proof of (1): To prove (Def. 1):

∀cmdb ∈ CMDBs : cmdb |= contains(p, c1) → add(p, c1)(cmdb) |= contains(p, c1)

This is the case iff (Def. 15)

∀cmdb ∈ CMDBs : containsdef (pcmdb, c
def

1
) → containsdef (padd(p,c1)(cmdb), c

def

1
)

For any configuration padd(p,c1)(cmdb) comprises at least one instance of c
def

1
(if p is a list) or

exactly one instance of c
def

1
(if p is a set) independently of the value of pcmdb . Thus, the

implication is trivially satisfied.

Proof of (2): To prove (Def. 2):

∃cmdb ∈ CMDBs : (cmdb 6|= contains(p, c1) ∧ add(p, c1)(cmdb) |= contains(p, c1))

This is the case iff (Def. 15)

∃cmdb ∈ CMDBs : ¬containsdef (pcmdb, c
def

1
) ∧ containsdef (padd(p,c1)(cmdb), c

def

1
)

Let pcmdb = ∅, then

¬containsdef (pcmdb, c
def

1
) ≡ true and

containsdef (padd(p,c1)(cmdb), c
def

1
) ≡ true

because pcmdb = ∅ does not comprise an instance of c
def

1
and padd(p,c1)(cmdb) = {c

def

1
} com-

prises one instance of c
def

1
.

add(p, c1) is a decisive PP effect because

∀cmdb ∈ CMDBs : add(p, c1)(cmdb) |= contains(p, c1).

Consequently, add(p, c1) is not a threat or neutral effect to contains(p, c1) (Proposition 2,

(6) and (7)).

2. To prove:

add(p, c1) decisively threatens ¬contains(p, c1) on lists and sets

This can be directly concluded from Statement (1):

Statement (1) ≡

add(p, c1) decisively supports contains(p, c1) on lists and sets ≡Proposition 4

add(p, c1) decisively threatens ¬contains(p, c1) on lists and sets
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3. To prove:

remove(p, c1) decisively (indecisively) supports ¬contains(p, c1) on sets (lists)

↔Def. 3

remove(p, c1) ∈ PPs(¬contains(p, c1))
︸                                            ︷︷                                            ︸

(1)

∧ remove(p, c1) < NPs(¬contains(p, c1))
︸                                             ︷︷                                             ︸

(2)

Proof of (1): To prove (Def. 1):

∀cmdb ∈ CMDBs :

cmdb |= ¬contains(p, c1) → remove(p, c1)(cmdb) |= ¬contains(p, c1)

This is the case iff (Def. 15)

∀cmdb ∈ CMDBs : ¬containsdef (pcmdb, c
def

1
) → ¬containsdef (premove(p,c1)(cmdb), c

def

1
)

By assumption pcmdb does not contain an instance of c
def

1
. Consequently, premove(p,c1)(cmdb)

does not comprise an instance of c
def

1
as well. Thus, the implication is trivially satisfied.

Proof of (2): To prove (Def. 2):

∃cmdb ∈ CMDBs :

(cmdb 6|= ¬contains(p, c1) ∧ remove(p, c1)(cmdb) |= ¬contains(p, c1))

This is the case iff (Def. 15)

∃cmdb ∈ CMDBs : containsdef (pcmdb, c
def

1
) ∧ ¬containsdef (premove(p,c1)(cmdb), c

def

1
)

Let pcmdb = {c
def

1
}, then

containsdef (pcmdb, c
def

1
) ≡ true and

¬containsdef (premove(p,c1)(cmdb), c
def

1
) ≡ true

because pcmdb = {c
def

1
} comprises c

def

1
and premove(p,c1)(cmdb) = ∅ does not comprise c

def

1
.

remove(p, c1) is a decisive support (PP effect) on sets because for a set p:

∀cmdb ∈ CMDBs : remove(p, c1)(cmdb) |= ¬contains(p, c1).

However, on lists remove(p, c1) is an indecisive support (PP effect) because, for example,

for pcmdb = {c
def

1
, c

def

1
} we obtain:

remove(p, c1)(cmdb) |= contains(p, c1)

Consequently, remove(p, c1) is not a threat or neutral effect to ¬contains(p, c1) (Proposi-

tion 2, (6) and (7)).
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4. To prove:

remove(p, c1) decisively (indecisively) threatens ¬contains(p, c1) on sets (lists)

This can be directly concluded from Statement (3):

Statement (1) ≡

remove(p, c1) decisively (indec.) supports ¬contains(p, c1) on sets (lists) ≡Proposition 4

remove(p, c1) decisively (indec.) threatens contains(p, c1) on sets (lists)

5. To prove (for c
def

1
, c

def

2
):

remove(p, c2) is a neutral effect in respect to contains(p, c1) on lists and sets

↔Def. 3

remove(p, c2) ∈ PPs(contains(p, c1))
︸                                          ︷︷                                          ︸

(1)

∧ remove(p, c2) ∈ NPs(contains(p, c1))
︸                                          ︷︷                                          ︸

(2)

Proof of (1): To prove (Def. 1):

∀cmdb ∈ CMDBs :

cmdb |= contains(p, c1) → remove(p, c2)(cmdb) |= contains(p, c1)

This is the case iff (Def. 15)

∀cmdb ∈ CMDBs : containsdef (pcmdb, c
def

1
) → containsdef (premove(p,c2)(cmdb), c

def

1
)

The number of instances of c
def

1
is the same in pcmdb and premove(p,c2)(cmdb) for any configu-

ration cmdb. Thus, the implication is trivially satisfied.

Proof of (2): To prove (Def. 2):

∀cmdb ∈ CMDBs :

cmdb 6|= contains(p, c1) → remove(p, c2)(cmdb) 6|= contains(p, c1)

This is the case iff (Def. 15)

∀cmdb ∈ CMDBs : ¬containsdef (pcmdb, c
def

1
) → ¬containsdef (premove(p,c2)(cmdb), c

def

1
)

For any configuration cmdb, the number of instances of c
def

1
is the same in pcmdb and

premove(p,c2)(cmdb). Thus, the implication is trivially satisfied.

6. To prove:

remove(p, c2) is a neutral effect in respect to ¬contains(p, c1) on lists and sets

This can be directly concluded from Statement (5):

Statement (5) ≡

remove(p, c2) neutrals contains(p, c1) on lists and sets ≡Proposition 3, Statement (3)

remove(p, c2) neutrals ¬contains(p, c1) on lists and sets
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7. To prove (for c
def

1
, c

def

2
):

add(p, c2) is a neutral effect in respect to contains(p, c1) on lists and sets

↔Def. 3

add(p, c2) ∈ PPs(contains(p, c1))
︸                                     ︷︷                                     ︸

(1)

∧ add(p, c2) ∈ NPs(contains(p, c1))
︸                                      ︷︷                                      ︸

(2)

Proof of (1): To prove (Def. 1):

∀cmdb ∈ CMDBs : cmdb |= contains(p, c1) → add(p, c2)(cmdb) |= contains(p, c1)

This is the case iff (Def. 15)

∀cmdb ∈ CMDBs : containsdef (pcmdb, c
def

1
) → containsdef (padd(p,c2)(cmdb), c

def

1
)

The number of instances of c
def

1
is the same in pcmdb and padd(p,c2)(cmdb) for any configuration

cmdb. Thus, the implication is trivially satisfied.

Proof of (2): To prove (Def. 2):

∀cmdb ∈ CMDBs : cmdb 6|= contains(p, c1) → add(p, c2)(cmdb) 6|= contains(p, c1)

This is the case iff (Def. 15)

∀cmdb ∈ CMDBs : ¬containsdef (pcmdb, c
def

1
) → ¬containsdef (padd(p,c2)(cmdb), c

def

1
)

The number of instances of c
def

1
is the same in pcmdb and padd(p,c2)(cmdb) for any configuration

cmdb. Thus, the implication is trivially satisfied.

8. To prove:

add(p, c2) is a neutral effect in respect to ¬contains(p, c1) on lists and sets

This can be directly concluded from Statement (7):

Statement (7) ≡

add(p, c2) neutrals contains(p, c1) on lists and sets ≡Proposition 3, Statement (3)

add(p, c2) neutrals ¬contains(p, c1) on lists and sets

�



158 A. Verification Theory



159

APPENDIXB

Verification Benchmarks

B.1 Verification Time Depending onModel, CMDB Size, and

Change Workload

B.1.1 Model 1
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(a) SHTp workload on Model1.
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(b) SHTn workload on Model1.

Figure B.1: Time to verify different workloads on Model1 depending on the number of servers,

the model checker, and optimization technique used.
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(a) FOp workload on Model1.
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(b) FOn workload on Model1.
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(c) SHTp& SHTn workload on Model1.
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(d) FOp&FOn workload on Model1.
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(e) SHTp& SHTn&FOp&FOn workload on Model1.

Figure B.2: Time to verify different workloads on Model1 depending on the number of servers,

the model checker, and optimization technique used.
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B.1.2 Model 2

0.1

1

10

100

1000

1 10 100 1000 10000 100000 1e+006

V
e
ri
fi
c
a
ti
o
n
 t

im
e
 [

s
]

Number of servers (255 servers per cluster)

y=x
SPIN_DMA
SPIN_NCP

SPIN_CP
NUSMV_BDD_CTL
NUSMV_BDD_LTL
NUSMV_SAT_LTL

OWN_NOJITC
OWN_JITC

(a) SHTp workload on Model2.
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(b) SHTn workload on Model2.
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(c) SHTp& SHTn workload on Model2.

Figure B.3: Time to verify different workloads on Model2 depending on the number of servers,

the model checker, and optimization technique used.
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B.1.3 Model 3
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(a) FOp workload on Model3.
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(b) FOn workload on Model3.
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(c) FOp&FOn workload on Model3.

Figure B.4: Time to verify different workloads on Model3 depending on the number of servers,

the model checker, and optimization technique used.
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B.1.4 Model 4
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(a) SHTp workload on Model4.
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(b) SHTn workload on Model4.
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(c) FOp workload on Model4.
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(d) FOn workload on Model4.
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(e) SHTp& SHTn workload on Model4.
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(f) FOp&FOn workload on Model4.

Figure B.5: Time to verify different workloads on Model4 depending on the number of servers,

the model checker, and optimization technique used.
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Figure B.6: Time to verify SHTp& SHTn &

FOp&FOn workload on Model4.
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B.1.5 Model 5

0.1

1

10

100

1000

1 10 100 1000 10000 100000

V
e

ri
fi
c
a
ti
o
n
 t

im
e
 [

s
]

Number of networks (no servers per network modeled)

y=x
SPIN_DMA
SPIN_NCP

SPIN_CP
NUSMV_BDD_CTL
NUSMV_BDD_LTL
NUSMV_SAT_LTL

OWN_NOJITC
OWN_JITC

(a) HCRIncrM workload on Model5.
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(b) LCRDecrM workload on Model5.
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(c) HCRIncrM& LCRDecrM workload on Model5.

Figure B.7: Time to verify different workloads on Model5 depending on the number of servers,

the model checker, and optimization technique used.
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B.1.6 Model 6
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(a) HCRIncrOSPF workload on Model6.
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(b) LCRDecrOSPF workload on Model6.
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(c) HCRIncrOSPF& LCRDecrOSPF workload on

Model6.

Figure B.8: Time to verify different workloads on Model6 depending on the number of servers,

the model checker, and optimization technique used.
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B.1.7 Model 7

0.1

1

10

100

1000

1 10 100 1000

V
e
ri
fi
c
a
ti
o
n
 t

im
e
 [

s
]

Number of networks (255 servers per network)

y=x
SPIN_DMA
SPIN_NCP

SPIN_CP
NUSMV_BDD_CTL
NUSMV_BDD_LTL
NUSMV_SAT_LTL

OWN_NOJITC
OWN_JITC

(a) HCRIncrM workload on Model7.
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(b) LCRDecrM workload on Model7.
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(c) HCRIncrM& LCRDecrM workload on Model7.

Figure B.9: Time to verify different workloads on Model7 depending on the number of servers,

the model checker, and optimization technique used.
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B.1.8 Model 8
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(a) HCRIncrOSPF workload on Model8.
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(b) LCRDecrOSPF workload on Model8.
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(c) HCRIncrOSPF& LCRDecrOSPF workload on

Model8.

Figure B.10: Time to verify different workloads on Model8 depending on the number of

servers, the model checker, and optimization technique used.
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B.2 Robustness of Verification Performance
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Figure B.11: Maximum penalties for all model checkers and workloads.
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B.3 Best- vs. Worst-case Verification Performance
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Figure B.12: Worst-case times of our model checker vs. best-case times of SPiN and NuSMV

model checkers (selected among all models and optimization techniques).
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(c) LCRDecrM workload.
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Figure B.13: Worst-case times of our model checker vs. best-case times of SPiN and NuSMV

model checkers (selected among all models and optimization techniques).
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APPENDIXC

Verification Models
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Figure C.1: LCRDecrM change activity and safety constraints in a one-server EBS cluster in

Model5.
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Figure C.2: LCRDecrOSPF change activity and safety constraints in a one-server EBS cluster

in Model6.
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Model7.
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Figure C.4: LCRDecrOSPF change activity and safety constraints in a one-server EBS clus-

ter in Model8.
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APPENDIXD

Planning Benchmarks and Microbenchmarks

This chapter provides the remaining graphs of the benchmarks that have have been summarized

in Table 7.1 (Microbenchmark 1, Section 7.3.3), Table 7.2 (Microbenchmark 2, Section 7.3.4),

Table 7.3 (Microbenchmark 3, Section 7.3.5), and Table 7.6 (network unconfiguration case study,

Section 7.4.2).
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(b)MB2 (10,11,12): Q-UQ, without effect.

Figure D.1: Runtime performance of Microbenchmark 2 without effects.
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(b)MB1 (4,5,6): Q-UQ, Method, 2 CIs.
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(c)MB1 (7,8,9): Q-UQ, Activity, 1 CI.
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(d)MB1 (10,11,12): Q-UQ, Activity, 2 CIs.

Figure D.2: Runtime performance of Microbenchmark 1 for Q-UQ CMDB layouts.
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