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Abstract

Analytical query processing in database systems aims at providing the requested infor-
mation within an acceptable response time while affecting the performance of concurrently
executed transactional workloads as little as possible. Scalability in the context of ana-
lytical query processing refers to the ability of the database system to process highly data
intensive and complex queries efficiently and to take advantage of additional resources to
improve query execution performance. In order to achieve the goal of scalable analytical
query processing, we examine the following three approaches, which focus on response
time, robustness, and resource utilization of analytical queries.

First, we focus on synergy-based workload management for exploiting synergies be-
tween a multitude of analytical queries, which are executed concurrently. The knowledge
of the synergies among queries for a given workload allows to process them in an efficient
way with respect to our goals. E.g., for caching synergies, by executing queries reading
the same data in parallel, we minimize the buffer pool requirements as well as the I/O
time of these queries. Based on the fact that both, positive and negative synergies, are
reflected by the execution time of the workload, we develop a black box approach, which
flexibly adapts to any database system or hardware configuration. By monitoring and
collecting the execution times of different query sets at runtime and by correlating this
information, we draw conclusions regarding the synergies of queries. This information can
instantly be applied by the scheduling component in order to maximize performance.

Second, we concentrate on the robust query execution of single database queries. In
particular, we examine the join operator, a central operator in many analytical queries.
Due to outdated statistics or mistaken optimizer decisions, query execution might be far
from optimal and, in particular, not predictable at all in terms of both duration and
resource utilization. This impedes an effective resource allocation to different workloads
submitted to the database. We propose to obviate the need for possibly wrong optimizer
decisions regarding physical join operators by replacing the traditional join algorithms
by a single one which provides a performance at least as good as that of the most ap-
propriate traditional join algorithm. Generalized join (g-join) combines the advantages
of sort-merge join (exploits interesting orders), hash join (exploits different input sizes
and fast probing for join partners), and index nested loops join (exploits persistent in-
dexes). The experimental comparison of g-join and the traditional join algorithms proves
its competitiveness.

Third, we turn our attention toward modern architectures with increasing core num-
bers and main memory capacity. We develop a suite of massively parallel sort-merge
(MPSM) joins that aim at exploiting the parallelization potential of multi-core processors
in order to improve response times of analytical queries. We cover a disk-based highly
parallel join algorithm for scenarios in which intermediate data must be written to disk,
and a range-partitioned main memory join algorithm, which addresses the challenges of
non-uniform memory access (NUMA) architectures. MPSM works on independently cre-
ated runs in parallel, thereby avoiding synchronization. It scales almost linearly with
the number of employed cores and is unsusceptible to data skew, which is indispensable
for robust query processing. In a comparative experimental evaluation, MPSM clearly
outperforms competing hash join proposals.
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1

Chapter 1

Introduction

Database management systems are typically confronted with a multitude of different
workloads at a time. These workloads can be categorized into transactional workloads
denoted as Online Transaction Processing (OLTP) and analytical workloads called Online
Analytical Processing (OLAP). OLTP workloads realize the operational, i.e., day-to-day
business, and typically consist of rather simple and short-running queries processing only
a small part of the recent data. On the other hand, OLAP workloads form the basis of
business intelligence applications and consist of complex, long-running queries processing
large portions of (mostly historical) data. While OLTP workloads must be processed at
a high throughput rate, for OLAP queries the focus is on response time. Because of the
very different characteristics and requirements of these workloads, they were separated
in the past: OLTP workloads were run against transactional database systems, while
OLAP workloads were processed by data warehouse systems. This separation allowed
for a dedicated optimized physical design of the systems and guaranteed that resource
intensive OLAP queries would not affect the OLTP throughput. However, analytical
results were obtained based on possibly outdated data. In today’s fast-paced times, the
freshness of information is crucial for strategic planning. The emerging demand for real-
time business intelligence finally led to the reintegration of OLTP and OLAP workloads
within one system. That is, transactional and analytical queries are run against the
companies’ up-to-date operational databases at the same time. Now, the challenge is to
process complex and long-running OLAP workloads in a way that leaves enough resources
for time-critical OLTP workloads. This work focuses on the efficient and robust processing
of OLAP workloads to achieve this goal.
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Figure 1.1: Concurrent execution of OLAP and OLTP workloads in a database manage-
ment system: long-running and computation intensive OLAP queries incur
high CPU and I/O load and use large parts of the buffer pool – they are
competing for the resources with the short-running and time-critical OLTP
transactions

1.1 Problem Statement

Operational database systems are optimized for processing OLTP transactions at a high
throughput. However, they now face the necessity to efficiently handle both, analytical
and transactional workloads, at the same time. Heavy OLAP queries providing important
information for business reports and continuously submitted OLTP transactions consti-
tuting the operational business differ greatly with respect to response time, data access
behavior, and resource utilization. They compete for the system’s CPUs, I/O bandwidth,
and buffer pool frames. This scenario is illustrated in Figure 1.1.

The additional load on the database system introduced by the concurrent OLAP pro-
cessing needs to be limited in order to affect OLTP performance as little as possible. In
the first place, this requires a very (time) efficient execution of OLAP workloads. That
way, the obtained OLAP query results deliver useful information to business intelligence
applications within short response times, which enables an effective strategic planning.
Furthermore, by minimizing the execution time of OLAP workloads, the load on the
database system is reduced and the free database resources can be used for OLTP pro-
cessing. As analytical queries are typically executed in batches, techniques of multi-query
optimization are applicable. The goal of these techniques is to minimize the total execu-
tion time of the OLAP workload by exploiting characteristics of the workload queries to
save work.

OLAP queries conduct complex computations on huge amounts of data and are thus
long-running and resource intensive. When there is a high variance in their execution
times, the unpredictable load on the database system caused by the OLAP workloads
prevents an effective allocation of resources to transactional and analytical workloads.
Also, unstable response time performance of the system leads to users of business intel-
ligence applications being unsatisfied. This is why, besides execution time, robust query
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execution with predictable performance is of great interest, too. Query performance in
relational database systems heavily relies on the execution plan chosen by the database
optimizer. Poor optimization of a complex OLAP query leads to unexpectedly bad ex-
ecution behavior and causes additional resource contention within the database system.
An approach to achieving robust query execution therefore is to avoid disadvantageous
query optimizer decisions.

An optimized resource management and an efficient query processing are significant
in order to handle a high arrival rate of OLTP transactions and to answer OLAP queries
quickly within one database system. However, they can only be leveraged up to a cer-
tain level, and increasing requirements make it inevitable – at some point – to scale the
underlying hardware with respect to main memory capacity and processing cores. The
additional resources must be used by the database system in an effective way to serve the
needs of both OLTP and OLAP clients and to achieve scalable performance. In particular,
OLAP query processing can profit greatly from intra-query parallelism within database
operators. However, simply porting existing algorithms to parallel environments and
main memory databases, possibly with underlying non-uniform memory access (NUMA)
architecture, may result in a totally unbalanced load and thus in suboptimal and, in
particular, in unpredictable execution times. Shifting query processing within database
systems from single-threaded and disk-based to highly parallel and in-memory processing
requires database algorithms to be revised to make efficient use of modern hardware with
multiple cores per socket and huge main memory.

To sum it up, OLAP workloads consist of very data intensive and complex queries and
cause heavy load in the database system. They are executed on transactional databases
as up-to-date information is decisive for the strategic planning of companies. At the
same time, guaranteeing the required OLTP throughput is crucial for the day-to-day
business. The database system must allocate and use resources in a way such that OLAP
workloads provide the requested data promptly and enough resources are still available
for processing the OLTP workloads. A prerequisite to achieving this goal is to execute
analytical workloads efficiently and to provide robust query performance while taking
advantage of additional resources in query processing.

1.2 Contributions

This work examines three different approaches to the efficient, robust, and scalable exe-
cution of analytical workloads:

Synergy-based workload management focuses on the interplay of multiple queries
within an OLAP workload. The concurrently executed queries may have a positive impact
on the execution of each other, e.g., due to caching or complementary resource consump-
tion, or they may impede each other’s execution, e.g., in the case of resource contention.
By exploiting positive impacts and avoiding negative ones, the execution time of OLAP
workloads and thus the time they occupy resources can be minimized. Both positive and
negative impacts are reflected by the execution time of the workload. For instance, posi-
tive caching impacts imply less I/O overhead and result in a shorter execution time. On
the other hand, contention for main memory is a negative impact, which leads to thrash-
ing and increased I/O and thus to a longer execution time. The influence of a query on
another query – we call this the synergy between the two queries – depends on a mul-
titude of factors, e.g., the system’s hardware and configuration, implementation details
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of the database operators, and programs running on the same system as the database.
Thus, the prediction of query influences is a complex task and prediction models are of-
ten based on probably arguable assumptions. We present a different approach considering
the database as a black box. By monitoring the execution times of different query sets
at runtime, we draw conclusions regarding the synergies of queries. This information can
also instantly be applied by the scheduling component in order to maximize efficiency of
OLAP workload execution. In contrast to prior work, our approach does not focus on a
certain source of synergy and does not require an offline phase for information gathering.
Using a simulation framework, we evaluate our approach and find that it is capable of
quickly detecting synergies and of exploiting those synergies. We further show that our
approach is applicable to analytical workloads run on a commercial database system.

Robust query execution concentrates on the efficient and predictable behavior of
single database queries. In order to effectively allocate resources to different workloads
submitted to the database, it is necessary to ensure a certain predictability of query
execution. For query execution to be predictable, each of the query’s execution plan
operators needs to perform in a calculable way. In this work, we examine the join operator,
a central operator to OLAP-style queries. Due to outdated statistics or mistaken optimizer
decisions, join execution might be far from optimal and, in particular, not predictable at
all in terms of both duration and resource utilization. We propose to obviate the need
for possibly wrong optimizer decisions regarding physical join operators by replacing the
traditional join algorithms by a single one which provides a performance at least as good as
the most appropriate traditional join algorithm. Generalized join (g-join) combines the
advantages of sort-merge join (exploits interesting orders), hash join (exploits different
input sizes and fast probing for join partners), and index nested loops join (exploits
persistent indexes). We present the g-join algorithm and discuss and evaluate different
design decisions and their performance impacts. Further, we conduct an experimental
comparison of g-join and the traditional join algorithms proving its competitiveness.

Massively parallel sort-merge join algorithms provide scalable analytical query ex-
ecution tailored to modern hardware architectures with increasing core numbers and main
memory capacity. The developments in hardware lead to a shift in database processing
from single-threaded and I/O-bound to multi-threaded and in-memory. The additional
resources can, in particular, be employed to speed up analytical query processing. In
order to make effective use of parallel processing and in-memory data, the traditional
query processing needs to be revised. In particular, the non-uniform memory access
(NUMA) behavior of modern main memory architectures needs to be considered. We de-
velop a suite of massively parallel sort-merge (MPSM) joins, which is carefully designed
to meet the challenges of modern hardware. MPSM works on independently created runs
in parallel and avoids synchronization. Thereby, it exploits the parallelization potential
of multi-core processors best in order to improve response times of analytical queries.
We devise a disk-based MPSM variant for scenarios in which intermediate data must be
written to disk, and a range-partitioned main memory MPSM variant. The presented
algorithms are unsusceptible to data skew, which is indispensable for robust query pro-
cessing. MPSM scales almost linearly with the number of cores and thus allows an effective
use of additional processing resources with predictable effects. We conduct a comparative
experimental evaluation and show that MPSM clearly outperforms competing hash join
proposals. Further, we investigate MPSM for non-inner joins and in multi-join scenarios
for a comprehensive study.
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1.3 Outline

This thesis is organized as follows:

• Chapter 2 covers our approach for synergy-based workload management. We define
synergies between queries and describe how they can be derived from measured
execution times. Then, we show how synergies can be exploited for the synergy-
based scheduling of OLAP workloads. We evaluate the approach using a simulation
framework and show how it can be applied to real database scenarios.

• Chapter 3 presents and evaluates the g-join operator as a robust alternative to
traditional join operators. We depict design alternatives and discuss their impact
on robustness and performance. Further, we prove the competitiveness of g-join
compared to traditional join algorithms in an extensive experimental evaluation.

• Chapter 4 investigates the challenges that NUMA architectures pose to the design of
database algorithms. Based on our findings, we then introduce a suite of massively
parallel sort-merge (MPSM) join algorithms for main memory multi-core database
systems and evaluate them. We show that by careful design, MPSM achieves linear
scalability in the number of cores and outperforms current state-of-the art parallel
join algorithms by factors.

• Chapter 5 concludes the thesis and gives an outlook how the presented techniques
can be combined to achieve the goal of efficient, robust, and scalable execution of
analytical workloads.
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Chapter 2

Synergy-based Workload Management

Analytical workloads consist of complex and long-running queries which process large
portions of the database. In order to affect the performance of transactional workloads
being processed concurrently within the same database system as little as possible, the
execution of these analytical workloads needs to be efficient with respect to time and
resources. Most databases execute multiple queries of one workload in parallel in order
to best utilize the available system resources like processors and main memory. The
concurrently executed queries may influence each other’s execution either positively or
negatively. By grouping together queries with positive effects and avoiding groups with
negative effects, the overall performance of the database system can be improved. A vast
number of approaches have been developed within this context, most of them belonging
to one of two categories: analysis or monitoring. However, they mainly either focus only
on one possible kind of impact of queries on each other’s execution time (e.g., caching),
or require an offline phase for information gathering.

In this chapter, we present a monitoring-based approach which does not require an
offline phase and is not limited to a certain source of query impacts. It flexibly adapts
to any database system or hardware configuration. Our approach bases on the fact that
both positive and negative impacts of queries on each other’s execution are reflected by
the execution time of the workload. The impacts between request types are derived fully
automated and transparent to the database at runtime from the measured execution
times of different query sets. The gained knowledge about impacts can further instantly
be applied by the scheduling component in order to maximize the efficiency of the work-
load execution. Our approach works completely independent from changing synergies or
configurations and easily handles new query types.

Parts of the work presented in this chapter appeared in Albutiu and Kemper (2009)
and in Albutiu et al. (2009).
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Figure 2.1: Execution of analytical workloads in a database management system: mul-
tiple queries are submitted to the database system concurrently where
they are queued until the scheduler chooses them for execution based on
a scheduling strategy as soon as system resources are available

2.1 Introduction

In database systems, queries are executed concurrently in order to provide a good uti-
lization of the system’s resources like processors and main memory. The number of par-
allel queries is typically limited to prevent the database from overload. As illustrated
in Figure 2.1, requests submitted to the database system are not directly processed but
intercepted and queued. As soon as system resources are available (i.e., freed by previ-
ously executed requests), the scheduler selects one or more queries from the queue to be
executed next. It bases its decision on a scheduling strategy. A very simple strategy is
to start queries in a first-in-first-out (FIFO) manner, i.e., the oldest query in the queue
is admitted to the database first. This strategy is fair as queries are started in the order
they arrive at the database system. However, more complex strategies can be employed
in order to improve overall system performance.

We present a scheduling strategy which focuses on the interplay of multiple concur-
rently executed queries within a workload. The concurrently running queries may interact
with each other and thus influence each other’s execution time positively or negatively. A
common example for positive interactions between queries running in a database system
are caching effects. Negative interactions may occur in the case of resource contention. By
detecting and exploiting positive influences between queries, the workload performance in
the database system can be maximized. On the other hand, negative query combinations
with high or unpredictable execution times can be avoided. The influence of a query on
another query – we call this the synergy between the two queries – depends on a multi-
tude of factors, like the system’s hardware and configuration (e.g., available main memory
and number of cores), implementation details of the database operators (e.g., in-place or
not), and programs running on the same system as the database (and sharing the lim-
ited resources). They can be classified into resource-based, data-based, and query-based.
Resource-based synergies refer to the efficient utilization of system resources like CPUs
and buffer pools. Scheduling should be targeted at using the resources to full capacity
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but not overloading them. Data-based synergies appear when multiple queries process the
same data and thus can profit from shared scanning or caching. Executing those queries
at the same time or with little time-lag is beneficial. Query-based synergies occur when
queries share parts of their execution plans. Such common subqueries can be optimized
and executed only once, and intermediate results can be shared.

Most sources of synergies cannot clearly be assigned to one of these categories but
have impacts on at least two of them. For instance, when common subexpressions (query-
based synergy) can be exploited, no repeated optimization and execution of subqueries is
conducted and this reduces both, the CPU utilization (resource-based synergy), as com-
putations are only conducted once, and the number of disk accesses (data-based synergy),
as the data is also read only once. Furthermore, the effects of different sources of syner-
gies overlap and may cancel each other out. Thus, the prediction of query influences is a
complex task and prediction models are often based on probably arguable assumptions.
We present a different approach considering the database as a black box. We rely on the
fact that both positive and negative synergies between queries are reflected by the execu-
tion time of these queries. By monitoring the execution times of different query sets at
runtime, we draw conclusions regarding the synergies of the queries. This information can
also instantly be applied by the scheduling component in order to maximize the efficiency
of OLAP workload execution.

2.2 Related Work

Workload management, which includes scheduling techniques, is a part of many products
like the HP Workload Manager for Neoview by HP (2007), the IBM Query Patroller for
DB2 described by Niu et al. (2006), the Microsoft SQL Server by Microsoft (2007), and
the Oracle Database Resource Manager by Oracle (2001). Krompass et al. (2008) present
an overview of current workload management techniques and implementations. Common
approaches for scheduling are FIFO and priority-based. However, none of the commercial
products considers influences of queries on each other.

Approaches that take into account impacts of queries can be classified according to
the technique of impact detection: those based on analysis examine the workload queries
in order to determine sources of synergies. For example common subqueries investigated
by Choenni et al. (1997) and Subramanian and Venkataraman (1998) need only be op-
timized once for all the queries in which they occur. But also shared data is a source
of performance gains, e.g., by using cooperative scans as introduced by Zukowski et al.
(2007). Analysis techniques focus on one specific source of synergy, which is then ex-
ploited. However, there are a great number of different sources of positive and negative
synergy to be taken into consideration, which may also neutralize each other. Further-
more, the analysis of queries is often a complex task requiring a lot of information, which
is not always provided by a database system. By contrast, approaches based on monitor-
ing consider the database system and the queries as black boxes. Information is gained
by observing the execution of queries and drawing conclusions. O’Gorman et al. (2002)
compare the number of disk accesses for the pairwise sequential and concurrent execu-
tion of queries defined by the TPCH benchmark. That way, they identify caching effects
without analyzing the underlying data of both queries. However, this approach only de-
tects pairwise synergies and requires the synergy detection to take place before the actual
scheduling.
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An approach which is similar to ours in terms of the computational model is that
of Ahmad et al. (2008). However, their approach is only applicable to batch workloads
and it requires an offline sampling phase. As opposed to that, our approach focuses on the
optimization of continuous workloads and acquires knowledge during the online phase.

2.3 Basic Approach

Our approach for the detection and exploitation of query synergies is totally independent
from the database system used, takes into consideration all sources of synergies, and is
transparent to the clients issuing the database requests. In this section we present the
underlying principles of the approach and the architecture of the optimization component.

2.3.1 Monitoring of Execution Times

We focus on a monitoring approach which considers the database system as well as the
executed queries as black boxes. That is, we do not analyze the structure of requests and
cannot anticipate their resource requirements. Furthermore, no information about the
configuration of the database system or its current load is available. Only measurements
that can be obtained by monitoring the system serve as input to the optimization model.
We choose to use execution time as an indicator for the overall synergy of queries rather
than, e.g., CPU load or number of cache misses. Measuring one of those bears the risk of
strictly focusing on one certain source of synergy and missing other influential factors. For
instance, a low CPU utilization does not provide any information about the buffer pool
utilization. Both, thrashing (continuously triggering page loading as a result of buffer
pool over-utilization) and execution of I/O-bound queries (under-utilizing the buffer pool
while waiting for slow disk operations), result in the same low CPU load measurement
and thus cannot be distinguished. By contrast, the execution time of queries is affected
by all influences in combination. A short overall execution time indicates that the order
in which the workload queries are executed permits to exploit sources of synergies like
caching and, at the same time, avoids counterproductive effects like resource contention.
Although it is not obvious what the sources of synergies are, the main goal of scheduling,
i.e., minimizing the workload execution time, is met. Our approach therefore considers
execution time as the main indicator for good, i.e., synergy-aware, scheduling.

2.3.2 Architecture

In order to realize the approach in a database independent way, we use the architecture
depicted in Figure 2.2: A middleware layer between client and database intercepts the
client requests and forwards them to the optimization component. This middleware layer
can be realized as a wrapper around the database driver, e.g., a modified JDBC driver for
Java clients which falls back on a database specific JDBC driver for establishing database
connections and sending requests to the database. The optimization component first
classifies the requests, i.e., determines the type of each request. The classification identi-
fies queries only differing in parameter values but having the same SQL skeleton. Those
queries are assigned the same type. Under certain assumptions like uniformly distributed
data, queries having the same type will have the same execution characteristics (like
CPU-intensive, short-running, etc.). However, in case of skewed data, this assumption
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Figure 2.2: Architecture of the optimization component

may not apply as Reddy and Haritsa (2005) demonstrate. A query q being short-running
with parameter x ∈ [0, 100] may become long-running with parameter y ∈ [101, 110]. The
approach can easily handle such a case by including parameter values into the classifi-
cation process, thus forming two types of queries q1 and q2 out of the SQL skeleton of
q for the intervals [0, 100] and [101, 110], respectively. x and y can be determined using
2D classification techniques. The classified queries are then queued in the middleware.
Whenever the database can accept new requests, a scheduling algorithm determines a set
of queries out of the queue to be executed next. The size of the set is determined in ad-
vance such that the database load is maximized. After the execution of the query set has
finished, the monitored execution time is fed back into the optimization component where
the synergies are computed. The interception of queries by the optimization component
is completely transparent to both clients and database system.

2.3.3 Training and Optimization Phases

The approach consists of two phases: the training phase and the optimization phase.
Depending on the phase, different scheduling algorithms are applied. During training,
the main goal of scheduling is to determine synergies between queries. By executing cer-
tain combinations of queries, we intend to obtain a broad knowledge about the queries’
influences on each other within short time. Here, the optimization of database perfor-
mance is of secondary importance. In order to avoid the risk of missing yet unknown
even higher synergies, we don’t make use of already known synergies in the scheduling of
the training phase. As the scheduling algorithms aim at maximal knowledge acquisition
about all query types, the workload performance during the training phase is not affected
negatively compared to random or FIFO scheduling. Having learned about the synergies
between queries of the workload, scheduling during the optimization phase makes use of
them in order to minimize the total execution time. That is, those queries yielding the
highest positive synergies are executed together. In both phases, the knowledge base con-
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load
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Figure 2.3: Adaptive switching between training and optimization depending on system
load

sisting of different query combinations and their execution times is continuously extended
by feeding back new monitoring data. If it is possible without performance decrease,
new query combinations can also be tested during the optimization phase. That way,
the possibly insufficient information can be completed even after the training phase has
finished. Further, long-term changes in synergies can be detected and new query types
can be integrated into the optimization.

There is no general best point in time for switching from training to optimization
phase. It depends on the database workload and the system load as well as on the amount
of synergy information already obtained. There exists a trade-off between completeness
and accuracy of synergy information, and the duration of unoptimized scheduling. How-
ever, as new information is continuously fed into the model not only during training but
also during optimization, yet incomplete synergy information may be completed later
on. After finishing the training phase, the system is not limited to the (possibly incom-
plete) knowledge gathered by that time but dynamically adapts to changing conditions.
Furthermore, if load on the database system varies, it is possible to dynamically switch
between training and optimization as illustrated in Figure 2.3. During low system load
phases, the free resources are exploited for determining unknown or enhancing inaccurate
synergy values. When system load is high, scheduling based on the detected synergies
improves system performance.

2.4 Synergy-based Scheduling

We now describe how to derive synergy values from measured execution times. Then,
we present our scheduling algorithms for the training and optimization phases. In this
context, we assume the following scenario: Workloads consist of multiple instances of
certain query types differing in parameter values. The queries are not dependent on
the results of each other and thus can be reordered arbitrarily. In order to prevent the
database from overload, the number of concurrently executed requests – called multi-
programming level (MPL) – is limited. Determining a good MPL is crucial for database
performance. We assume that a reasonable target MPL has been identified, e.g., using the
methods described by Schroeder et al. (2006), and determine a good scheduling within
the constraints of that given MPL.
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2.4.1 Synergy Computation

In order to accurately determine influences of certain queries on others, we execute the
queries of a workload block-wise, i.e., only after all queries of one block have finished
execution, the next block is submitted to the database.

Within a block of MPL many queries, each of the queries influences the execution of
each of the other block queries, either positively or negatively. In other words, there exist
pairwise synergies between the queries of one concurrently executed block, which either
result in a shorter overall execution time (if the synergies are mainly positive) or in a
longer one (if they are mainly negative). Thus, the overall execution time of a block of
queries (rt, response time) can be represented by a linear combination of

(
MPL

2

)
execution

time shares sxy of two query types x and y. The execution time for a block of four
concurrently executed queries of types a, b, c, and d is thus:

rtabcd = sab + sac + sad + sbc + sbd + scd

Each share sxy represents the influence that the concurrent execution of the queries x
and y has on the overall execution time. The execution time shares are symmetric, i.e.,
sxy = syx. If all of the block’s queries have equal execution times and there are no
synergies, the influences (shares) are equal. A block consisting of queries of different
complexity (and thus different execution times) results in greater values of the shares
containing complex queries and smaller values of the shares representing less complex
queries. Further, if two of the queries have (positive) synergies, their share is smaller
which also results in a smaller response time of the block.

The synergy of a query x with respect to another query y is determined by putting
their execution time share sxy in relation to the execution time shares of x with all known
query types. The set of known query types is denoted by Q and may increase during
runtime. We define the synergy synxy between two queries x and y, i.e., the impact on
the execution time of x caused by the concurrent execution of y, as the difference between
the average execution time share of x with all other known query types q and the share
of x and y:

synxy =

∑

q∈Q sxq

|Q|
− sxy.

Yet unknown share values sxy distort the computed synergy as subtracting 0 from
∑

q∈Q sxq

|Q|

will result in the highest possible synergy value synxy. This is why we assume unknown
values sxy to be equal to the average of all known values sxk, k ∈ Q, containing query
type x, so that the resulting synergy is 0. Contrary to the execution time shares, the
synergy between two query types is not symmetric, i.e., synxy 6= synyx. Query x may
benefit more from the concurrent execution of query y than the other way round, e.g.,
if the data needed by y is a superset of the data needed by x and caching is the main
source of synergy. The determined synergies can be stored in a matrix, called the synergy
matrix.

In order to determine accurate values of the execution time shares, each query pair is
executed in several combinations with other query types in Q, thus collecting a number
of response time values that form a linear system of equations of the following form:

rtabcd = sab + sac + sad + sbc + sbd + scd + eabcd
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The slack variable eabcd accounts for measurement errors or execution time fluctuations.
If a combination is executed repeatedly, the response time value rt is set to the average of
the measured execution times. Thereby, the model adapts to execution time variations,
which may be accidentally (e.g., due to external influences) or reasonable (e.g., if the
system configuration has been changed). The execution of new combinations provides
new equations to the system, thereby allowing a more precise solution to be determined.

By definition, solving a linear system of equations with n unknowns requires n equa-
tions. In our case, if we assume that |Q| = 5 there are

(
5
2

)
+5 = 15 different shares (of

which
(
5
2

)
are of the form sxy with x 6= y and 5 are of the form sxx). Without considering

the slack variables, this would require 15 different combinations to be executed. From our
example above one can conclude that at the beginning of the workload execution, nearly
every combination will contribute a few new unknowns and just one equation. Therefore,
the linear system of equations is generally under-determined and requires an optimization
objective. We employ the principle of maximum entropy proposed by Markl et al. (2007)
for estimating selectivities of composed predicates. Following this principle, we include
all of the collected knowledge about combination execution times in the computation but
don’t make any further assumptions. The uncertainty due to the under-determination of
the system of equations is distributed equally over the variables. Our objective function
thus has two goals: to equally distribute the execution time over the different execution
time shares and to minimize the slack variables:

opt = min

{

σ(S)

avg(S)
+
∑

e∈E

e

}

,

where σ denotes the standard deviation, S is the set of all shares sxy, E is the set of all
slack variables e, and avg(S) = 1

|S|

∑

sxy∈S
sxy.

The coefficient of variation σ(S)
avg(S)

models the equal distribution of the execution time

over the shares. The error sum
∑

e∈E e ensures that the slack variables are minimized.

2.4.2 Example

The following example briefly demonstrates the approach. We assume that the MPL is
set to three and the system knows of four different query types a, b, c, and d by now.
First, the combination consisting of the types a, b, and c is executed in 200 time units.
This results in the first equation:

rtabc = sab + sac + sbc + eabc = 200

The solution of this system of equations is sab = sac = sbc = 67 as shown in Figure 2.4a.
As enforced by the objective function, the uncertainty is equally distributed over the
variables contributing to the equation. All other variables are still unknown. The next
block consists of the query types a, b, and d and is finished in 180 time units. The
corresponding equation is:

rtabd = sab + sad + sbd + eabd = 180

The solution of the new system of equations is shown in Figure 2.4b: sab = 63, sac = 68,
sbc = 68, sad = 58 und sbd = 58.
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(d) Synergies synxy

Figure 2.4: Development of the shares and the synergy matrix

At this point, it can already be noticed that the shares sad, sbd, and sab contribute to
the response time of the combinations with smaller values than the shares sac and sbc.
This indicates that the corresponding query pairs have greater synergies. After executing
another two combinations containing a, c, and d, respectively b, c, and d, the system of
equations is extended as follows:

rtacd = sac + sad + scd + eacd = 250

rtbcd = sbc + sbd + scd + ebcd = 260

Furthermore, the combination a, b, and c is executed a second time, with a measured time
of 190 time units. The equation system is updated by computing the average value of rt
for the first equation:

rtabc = sab + sac + sbc + eabc = 195

The resulting shares are given in Figure 2.4c and the synergies computed out of these
shares are shown in Figure 2.4d. There is a high positive synergy between the types a and
b, which is also indicated by the small values of the shares containing a and b: synab = 21
and synba = 24. As stated above, the influence of a query type x on another type y is not
necessarily equal to the influence of y on x. In the example computation, c benefits from
the concurrent execution of a (synca = 13) while a is penalized by the parallel processing
of c (synac = −14).

2.4.3 Scheduling in the Training Phase

The scheduling algorithms during both the training and the optimization phase determine
a group of MPL many queries to be executed next. During training, the main scheduling
goal is to gather as much information as possible about synergies, i.e., to best fill the
synergy matrix. This is done by systematically executing different query combinations
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and monitoring their execution times. Each of the monitored combination execution
times provides either a new equation (and thus at least one new value in the synergy
matrix) or contributes to a more meaningful average execution time of an already executed
combination (and thus results in more precise values in the synergy matrix). We examined
the following different scheduling algorithms for training:

FIFO The queries are executed in the order in which they arrive.

MinUnknown The goal of this strategy is to fill the synergy matrix with as precise values
as possible by selecting combinations of queries for which most of the variables in
the system of equations are known.

MaxUnknown The goal of this strategy is to quickly fill the synergy matrix by selecting
combinations of queries which provide the most new synergy values. In contrast to
the MinUnknown strategy, the detected values may be quite imprecise because they
rely on a small set of combinations.

MinComb This strategy selects combinations which have been executed the rarest. Fol-
lowing this strategy, the matrix will be enhanced by at least one new value after
each combination execution. After each of the combinations has been executed at
least once, the combinations’ execution times are updated uniformly.

MinCombMinUnknown The goal of this strategy is to combine the goals of MinComb
and MinUnknown, i.e., to fill the matrix with precise values and uniformly update
the system of equations. It therefore favors combinations which have not yet been
executed (often) and consist of a minimum number of unknown shares. This guar-
antees that the same combinations are not executed again and again as this does
not add new equations to the system and therefore no additional information for
the computation of new synergies.

MinCombMaxUnknown The goal of this strategy is to combine the goals of MinComb
and MaxUnknown, i.e., to quickly fill the matrix and uniformly update the sys-
tem of equations. Analogous to MinCombMinUnknown, this strategy favors rare
combinations, however with many unknown shares.

In the example in Figure 2.5, two combinations abc and abd have already been exe-
cuted. Therefore, the shares sab, sac, sbc, sad, and sbd are known. The queue contains the
query types a, b, c, d, and e, so that the query combinations listed in Figure 2.5c may be
executed next. The different scheduling algorithms result in the following choices:

Scheduling algorithm Choice Explanation

FIFO abc order in the queue
MinUnknown abc minimal number (0) of unknown shares
MaxUnknown cde maximal number (3) of unknown shares: scd, sce, sde
MinComb abe minimal number (0) of executions
MinCombMinUnknown acd minimal number (0) of executions and unknown

shares
MinCombMaxUnknown cde minimal number (0) of executions and maximal

number (3) of unknown shares: scd, sce, sde
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combination shares

abc sab, sac, sbc
abd sab, sad, sbd

(a) Already executed combina-
tions and known shares

e d c b a

(b) Queued query types

combination known shares unknown shares # executions

abc sab, sac, sbc 1
abd sab, sad, sbd 1
abe sab sae, sbe 0
acd sac, sad scd 0
ace sac sae, sce 0
ade sad sae, sde 0
bcd sbc, sbd scd 0
bce sbc sbe, sce 0
bde sbd sbe, sde 0
cde scd, sce, sde 0

(c) Enumeration of possible combinations, their known and unknown shares,
and the number of times they have been executed

Figure 2.5: Example data for training algorithms (MPL=3)

2.4.4 Scheduling in the Optimization Phase

During the optimization phase, the workload is executed as efficiently as possible based
on the knowledge gathered during the training. The main scheduling goal is to exploit the
queries’ synergies by selecting the query combinations to be executed based on the synergy
matrix. In addition, monitoring data is still collected so that insufficient information is
completed and long-term changes are detected. During the optimization the following
strategy is used:

The scheduling algorithm MaxSyn chooses the combination c of queries with the high-
est combination synergy sync, which is computed as follows using the synergies of the
contained query pairs:

sync =
∑

sxy∈c

(
synxy + synyx

)

Some of the queries may have positive synergies, while others may influence each other’s
execution in a negative way. Positive and negative synergies between query pairs within
a combination can cancel each other out. However, the combination containing the most
synergetic query pairs has the highest combination synergy value. The computation of a
complete schedule for the workload has exponential complexity and is thus not efficiently
applicable. The MaxSyn strategy therefore employs a greedy approach which determines
only one query combination to be executed at a time.1

1Please note that, in general, greedy approaches might lead to the problem of starvation. In the
scenarios considered in this work, starvation cannot occur and is thus not addressed.
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Source of synergy Type Simulation

Caching positive caching(q1, q2) = c, c ∈ N , where c is the number
of disk operations that can be saved due to caching
advantages

Complementary re-
source requirements

positive query types with complementary requirements of
different resources

Resource contention negative query types with high requirements of the same re-
source

Lock contention negative decrease of processor share (and thus progress) by
locking(q1, q2) = l, l ∈ N

Memory thrashing negative limited database main memory, main memory re-
quirements of query types, thrashing penalty

Table 2.1: Simulated sources of synergies

2.5 Simulation

We developed a database simulation framework which enables us (1) to evaluate different
scheduling algorithms in a timely manner and (2) to verify the synergy matrix values.
The second point is of particular importance as the presented approach is based on un-
supervised learning and thus the solution cannot be validated using real data.

2.5.1 Simulation Framework

The simulation framework allows for modeling different types of queries, e.g., short-
running, long-running, data intensive, or processor intensive. Further, a database system
model is described by its cache size and resource capacities. Based on these parameters,
the framework computes the execution time of the simulated queries corresponding to
their resource requirements and impacts on each other. There are numerous sources of
synergies, some of them like caching are obvious while others are not. In our simulation
framework we had to choose a set of synergy sources on which to focus. Of course this
set is not complete but nevertheless, it provides a reasonable database simulation for our
purposes. The following sources of (anti-)synergies are supported by the framework as de-
scribed in Table 2.1: caching, complementary resource requirements, resource contention,
lock contention, and memory thrashing.

Caching and complementary resources are sources of positive synergy. Caching by-
passes the slow disk access times and thus results in better performance. If computation
intensive queries are executed concurrently with data intensive queries, they don’t affect
each other negatively with respect to resources. On the contrary, their parallel execution
results in a good utilization of the system resources. Resource and lock contention as well
as memory thrashing are sources of negative synergy (anti-synergy). They prevent queries
from progressing by not providing enough resource capacity and holding back needed data
or paging it out of memory, respectively.

In the simulation framework, query types are identified by their total amount of used
processor cycles and disk operations, and the required main memory. By varying the
query type parameters we can model computation intensive queries like highly complex
data analysis as well as disk intensive queries reading a lot of data. A high main memory
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Parameter Value

processor cycles per second 100
disk cycles per second 100
maximum processor quota per query 100
maximum disk quota per query 100
buffer pool size 21
out of RAM penalty 1

Table 2.2: Parameters for database simulation

value represents, e.g., query types containing sorting or other main memory intensive
functions. Furthermore, we model the cache synergies and lock anti-synergies between
queries as partial binary functions. The cache synergies of two query types q1 and q2 are
given by caching(q1, q2) = c, c ∈ N , where c is the number of disk operations that can be
saved due to caching advantages. Lock anti-synergies are realized by reducing the number
of processor cycles that can be assigned to a certain query by locking(q1, q2) = l, l ∈ N .
The simulated database is characterized by the processor and disk capacities, i.e., the
processor cycles and disk cycles the database can perform per second, and the buffer pool
size. Additional parameters are an out of RAM penalty and maximum processor and disk
quotas per query. They allow for modeling memory thrashing and resource contention
when combined with the query type parameters processor cycles, disk operations, and
main memory requirements.

The execution of a set of queries is simulated by (1) computing each query’s share of
the system resources and (2) determining the queries’ progress assuming they are assigned
the computed shares. The first step is conducted for the current point in time based on
the queries’ requirements and impacts on other queries, and on the system parameters.
In the second step, a short period of execution time is simulated during which the queries
consume their resource shares. After that, the two steps are repeated for the new point
in time.

2.5.2 Benchmark Settings

For our benchmarks we used the database configuration given in Table 2.2 and defined a
workload consisting of the five different query types given in Figures 2.6a to 2.6e. They
have similar numbers of disk operations ranging from 50 to 72 units and require 3 to 8
units of main memory. Query type 5 has constant disk and processor requirements over
time while the remaining query types have changing requirements during their execution.
In Figures 2.6a to 2.6e, the ratio of processor and disk requirements over time is shown.
Query types 1 and 2 are partly complementary with respect to processor and disk usage.
Query types 3 and 4 exhibit similar processor and disk utilization, however, their main
memory requirements differ greatly. The query types have more or less cache synergies
and some of them have lock anti-synergies as shown in Figures 2.6f and 2.6g. We chose
this workload to demonstrate the influences of resource requirements of different query
types on how well they behave in combination.

Figure 2.7 shows the synergies for our benchmark workload. Query type 1 has the
largest synergy value 592 with itself. This is because the required disk cycles and main



20 2. Synergy-based Workload Management

-1e+011

 0

 1e+011

 2e+011

 3e+011

 4e+011

 5e+011

 6e+011

 7e+011

-10 -5  0  5  10

ra
ti

o
 C

P
U

 t
o
 I

/O

time

query type 1 (disk operations = 50, main memory = 3)

(a) Query type 1

-3.5e+012

-3e+012

-2.5e+012

-2e+012

-1.5e+012

-1e+012

-5e+011

 0

 5e+011

-10 -5  0  5  10

ra
ti

o
 C

P
U

 t
o
 I

/O
time

query type 2 (disk operations = 50, main memory = 4)

(b) Query type 2

-2.5e+007

-2e+007

-1.5e+007

-1e+007

-5e+006

 0

 5e+006

 1e+007

 1.5e+007

 2e+007

-10 -5  0  5  10

ra
ti

o
 C

P
U

 t
o
 I

/O

time

query type 3 (disk operations = 61, main memory = 3)

(c) Query type 3

-6e+006

-4e+006

-2e+006

 0

 2e+006

 4e+006

 6e+006

-10 -5  0  5  10

ra
ti

o
 C

P
U

 t
o
 I

/O

time

query type 4 (disk operations = 61, main memory = 8)

(d) Query type 4

 0.99

 0.995

 1

 1.005

 1.01

-10 -5  0  5  10

ra
ti

o
 C

P
U

 t
o
 I

/O

time

query type 5 (disk operations = 72, main memory = 8)

(e) Query type 5

1

2

3

4

5

1 2 3 4 5
q1
q2

20 10

6 9

27 12

8

(f) caching(q1,q2)

1

2

3

4

5

1 2 3 4 5
q1
q2

50 23

29

50 29

17

23 17 50

(g) locking(q1,q2)

Figure 2.6: Simulation workload setting: query types and their (anti-)synergies
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-608 313 345 -84 32

Figure 2.7: Synergy values for the simulation workload

memory are moderate compared to the other query types. The smallest synergy value
−803 of query type 1 and 5 can be explained by the high locking anti-synergies between
the types. The same holds for query type 1 and 3. However, they compete less for main
memory. Although types 3 and 4 are very similar in their processor cycle requirements
compared to disk cycles, combining query type 3 with itself has much higher synergy
values than combining query type 4 with itself. This is because of the higher main
memory requirements of query type 4, which lead to thrashing.

We scale the workload size by uniformly adding queries of the different types. The
workload is shuffled before each benchmark. Throughout the benchmarks we employed a
MPL of three.

2.5.3 Training Phase

We conducted a set of benchmarks in order to evaluate different training algorithms with
respect to their ability to fill the synergy matrix quickly and with accurate values. The
more accurate the values in the synergy matrix are, the more precisely we can predict the
execution time of a certain combination of queries during the optimization phase, thereby
enabling us to schedule the queued queries in a way that minimizes the total execution
time. The quality measure we employ in order to evaluate the accuracy of the synergy
matrix values is the deviation of the estimated execution time of a combination c, denoted
by est-rtc, from the simulated (and later real) execution time real-rtc, which we call the
error coefficient ecc:

ecc =
|est-rtc − real-rtc|

real-rtc
The prediction error errpred is defined as the average error coefficient ecc over all possible
query combinations of size MPL, denoted by the set C:

errpred =
1

|C|

∑

c∈C

ecc

As this measure is meaningful only after the matrix has been filled for the most part, we
also consider a second measure, the net prediction error, which is computed the same way
as the prediction error but only for non-empty matrix entries.
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(b) Net prediction error (only known synergy matrix fields)

Figure 2.8: Prediction error subject to the number of training queries and the training
algorithm

Figure 2.8a shows the prediction error depending on the number of queries during
training for the different training algorithms. From a training phase of 70 queries, the
prediction error is acceptable for each of the training algorithms, and does not change
significantly anymore. MinComb and its variations MinCombMaxUnknown and Min-
CombMinUnknown perform best, FIFO lies in the middle field, and MinUnknown and
MaxUnknown achieve the worst results. MinCombMaxUnknown and MinCombMinUn-
known both quickly reach a small prediction error after only about 30 training queries
while MinComb results in the greatest prediction error of all training algorithms with such
a training length. When considering the net prediction error shown in Figure 2.8b, the
reason for this becomes obvious. MinComb has the smallest net prediction error while the
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net prediction error of MinCombMaxUnknown and MinCombMinUnknown is almost equal
to the prediction error. Thus, the bad overall prediction error performance of MinComb
follows from empty synergy matrix fields, which of course result in a high error coefficient
for the combinations containing the respective query pairs. The results in Figure 2.8a
prove that the intended goal of the strategies MinCombMaxUnknown and MinCombMi-
nUnknown to combine the strengths of MinComb and MaxUnknown, or MinComb and
MinUnknown, respectively, is achieved. The prediction error for these strategies is close
to the minimum of their base strategies. The behavior of FIFO is as expected, because
as many good combinations (i.e., combinations that provide important information for
the synergy matrix) as bad combinations (e.g., always the same combination not serving
for new information) may be selected by chance, thus resulting in a middle-rate per-
formance. Also the prediction error of MaxUnknown is not surprising as this strategy
quickly fills the synergy matrix with (unprecise) values, but does not effectively try to
improve the values after that. The bad performance of MinUnknown compared to Min-
CombMinUnknown with regard to both the prediction error and the net prediction error
can be explained by having a look at the implementation of those algorithms. Both of
them prefer combinations with the least unknown variables, however, the first criterion of
MinCombMinUnknown is the number of occurrences for the different combinations, which
are examined in a sorted order. Therefore, it is more likely that those combinations are
selected which not only provide a precise new value but at the same time also provide new
information for the already known variables. This improves the precision of the synergy
matrix in total.

The comparison of Figures 2.8a and 2.8b also confirms another expectation. With
five query types and the MPL being set to three there are 35 different combinations of
queries (10 with different query types, 20 with two queries of the same type, and 5 with
all three queries of the same type), resulting in equations with 3 (different query types), 2
(two queries of the same type), or 1 (all three queries of the same type) possibly unknown
values of shares. Therefore, we expect the synergy matrix to be filled after a training
phase of 10 ·3+20 ·2+5 ·1 = 75 queries. As the graphs in Figures 2.8a and 2.8b are quite
equal for training phases of this length or longer, i.e., the net prediction error does not
differ from the prediction error because of empty synergy matrix fields, our expectation
is met.

The response times of combinations executed in a database is subject to fluctuations
due to external processes reserving system resources or the database buffer containing
required data or not at the time the queries are executed. In order to quantify the
influence of such fluctuations on the training algorithms, we extended the simulation to
enable uniformly distributed execution time fluctuations in an ±ε interval around the real
value. Figure 2.9a shows the relative prediction error of the training phase with ε = 30%.
Compared to the execution without fluctuations shown in Figure 2.8a, the prediction error
increases only slightly. The same holds for the net prediction error shown in Figure 2.9b.
By repeated execution of the query combinations and computation of the average of the
measured response times, fluctuations are compensated within the synergy computation
over time.

The strategy MinCombMaxUnknown shows the best balanced behavior regarding the
precision and the fast filling of the synergy matrix. We therefore use it in the following
evaluation of the optimization phase.
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Figure 2.9: Prediction error subject to the number of training queries and the training
algorithm with a simulated execution time deviation of 30%

2.5.4 Optimization Phase

The primary goal of the optimization phase is to minimize the execution time of all
waiting queries. In order to achieve comparable results, we chose a batch scenario for
the evaluation where all queries are queued at the beginning of the optimization phase.
Thus, no deviations due to different arrival times of queries can occur as it is the case for
interactive workloads.

We analyze the optimization phase with respect to the effect of synergy exploitation
and the importance of accurate synergy values in Figure 2.10. First, we compare the
total execution times of workloads of varying size using FIFO scheduling and the MaxSyn
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Figure 2.10: Effect of synergy exploitation and feedback during the optimization phase

scheduling algorithm based on synergies. The result is shown in Figure 2.10a. The
larger the workload, the more significant is a good scheduling to achieve a short workload
execution time. The unoptimized execution of a workload containing 150 queries using
FIFO takes almost twice as long as the optimized execution with a preceding training
phase of 50 queries and continuous feedback of execution time information into the synergy
computation. We then examine the impact of the training phase duration on the accuracy
and completeness of the computed synergy values. Figure 2.10b shows the total execution
times for the execution of workloads of different sizes with and without feedback during
the optimization phase. We compare the processing times using the MaxSynergy strategy
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Approach Type of synergy

Resource-based Data-based Query-based

Scan sharing X XXX X

Request window XX XXX X

Caching XXX XX X

Intermediate results X X XXX

Plan caching XXX X

Common subexpression XXX X XX

Table 2.3: Approaches to exploit sources of synergies (adapted from Wylezich (2011))

with a preceding training phase of 10, 50, and 100 queries. A longer training phase results
in more useful synergy values, however, the synergy matrix seems to be sufficiently filled
after a training phase of 50 queries. Without feedback in the optimization phase, the
performance decrease for a workload of 150 queries is 20% for a short training phase of 10
queries compared to a longer one with 50 queries. If, by contrast, the information gathered
during the optimization phase is fed back to the synergy computation, the performance of
the workloads with short and long training phase do not differ significantly. The feedback
thus has a considerable effect on the total execution time.

2.6 Synergies in State-of-the-Art Database Systems

Sources of synergy are on one hand naturally given by the underlying hardware of a
database system, e.g., the available number of cores and their clock rate or the maximum
throughput of the disks, and the resulting contention. On the other hand, database
systems implement a multitude of features ranging from simple caching to complex multi-
query optimization, which create new sources of synergy.

Table 2.3 gives an overview of approaches to exploit sources of synergies. Typically, the
approaches do not fall exactly into one of the identified categories (resource-based, data-
based, or query-based), rather there are overlaps between the categories. We therefore
indicate how far the respective approach belongs to the sources of synergies by assigning
0 to 3 points to each category.

Scan sharing lets a second query on the same base table participate in an already
started table scan. After the shared scan is finished, the second query scans the rest of the
data. The approach has been described by Lang et al. (2007) and Zukowski et al. (2007)
and is implemented in IBM DB2 V9.7 and in the Microsoft SQL Server 2000 Enterprise
Edition. Request windows are similar but they queue requests for a certain time window
in order to combine them to a single query. The result is then partitioned again into the
result sets of the original queries. For this approach it is crucial to determine the maximal
time window as shown by Lee et al. (2007). Caching reduces the number of expensive disk
accesses and enables data sharing. It is exploited by most database systems. Intermediate
results can be cached for a certain time, so they don’t have to be re-computed for repeated
occurrences of the same queries. The MonetDB Recycler implements this approach. Plan
caching refers to storing parameterized execution plans, thus saving costly optimizations
for subsequent queries of the same type. The Microsoft SQLServer supports plan caching.
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DBMS-X

Common subexpressions are redundant parts of execution plans on both inter- and intra-
query level. They can be exploited to optimize globally over a multitude of queries, not
locally for a single query. Dalvi et al. (2003) and Roy et al. (2000) investigate algorithms
for determining and making use of common subexpressions.

We focus on the scan sharing feature of a commercial database system, called DBMS-X
in the following, in order to verify our findings based on the simulation framework for real
database systems and real workloads. The benchmark results we employ in our analysis
are taken from the Master’s Thesis of Wylezich (2011), which was supervised by the
author of this thesis. The tested database system is running on a Linux server with 8GB
of RAM. The database is created using the publicly available TPC-H data generator with
a scale factor of 50 resulting in about 50GB of data. The database size is chosen such
that caching effects cannot be exploited. The complete benchmark settings can be taken
from Wylezich (2011). The workload consists of five instances of each of the TPC-H queries
Q1, Q2, Q3, Q4, Q9, and Q13, which execute table and index scans on the largest TPC-H
tables Lineitem and Orders. They exhibit different CPU and I/O usage characteristics
and scan speeds, and allow for an effective analysis of the scan sharing effects depending
on the queries’ properties. The benchmarks are conducted using a MPL of 5.

Figure 2.11 shows the execution times of seven different schedules of the workload,
called runs. The execution time difference between the fastest (Run1) and the slowest
(Run7) schedule is about 44%. It becomes evident that scheduling has a high impact on
the execution time of the workload.

We fed the execution times measured by Wylezich (2011) for the different combinations
of the runs2 into the synergy computation and computed the values given in Figure 2.12.
The synergies between different pairs of query types differ significantly. For instance, Q13
and Q9 have a high negative synergy. This is because they operate on different tables

2We used the monitored values with a standard deviation for one combination smaller than 20% as
the total size of the workload was too small for the synergy computation to react to outliers.
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Q1

Q2

Q9

Q3

Q4

Q13

Q1 Q2 Q9 Q3 Q4 Q13
q1

q2

-111 -107 309 91 84 42

5 0 -45 102 -285 219

514 48 402 318 -288 -481

-12 -113 10 71 206 41

172 -309 -405 397 366 172

62 127 -666 164 104 208

Figure 2.12: Synergy values for the TPC-H queries Q1, Q2, Q9, Q3, Q4, and Q13 on
DBMS-X

and thus cannot profit from scan sharing. On the other hand, Q9 has a high positive
synergy with Q1 as they both scan the Lineitem table. Some of the synergy values are
hard to explain as besides scan sharing, also the contention of queries for resources has
a high impact on the overall execution times of query sets. Wylezich (2011) analyzed
the workload runs by different measures like number of disk accesses, CPU utilization,
throttling time, etc., but could not find considerable correlations between one of these
measures and the execution times of the runs. However, the comparison of the ranking of
execution times and synergy values in Table 2.4 confirms that there is a high correlation
between these two.

Ranking Execution time [s] Synergy

1. Run1 16592 Run1 18720
2. Run3 17486 Run3 18208
3. Run6 18699 Run6 16800
4. Run5 20124 Run5 8432
5. Run2 20664 Run7 6960
6. Run4 23627 Run2 5734
7. Run7 23813 Run4 3152

Table 2.4: Correlation between synergy values and execution times of different TPC-H
workload schedules

The synergy values allow to clearly separate the efficient (fast) schedules of the workload
from the inefficient (slow). Although the synergy values cannot be directly mapped to
execution times, from the comparison above we are confident that they are expressive
enough to enable scheduling the workload such that the synergies created by DBMS-X
are exploited.
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2.7 Summary and Conclusions

The efficient scheduling of database workloads is a intensely researched field in the context
of workload management. However, most of the developed approaches focus on only
one source of synergy, thereby ignoring the potential influences of other synergy factors.
Others are not applicable at runtime as they require a preceding offline phase in order to
gather information.

We developed a monitoring-based approach for the optimization of database work-
loads, which collects synergy information and flexibly integrates new query types at run-
time. By using the execution time of query combinations as an indicator for synergies,
we concentrate on optimizing the ultimate goal of scheduling and at the same time do
not run the risk of ignoring any sources of synergy with an effect on workload perfor-
mance. Our approach is completely independent of the underlying system’s hardware or
the database system used. Furthermore, it is transparent to the client and the database
system. This is achieved by designing the optimization component as a middleware layer
between these two. By dividing the monitored execution times of query sets into pair-
wise shares and solving the resulting linear equation system, we derive synergies between
queries. In a training phase, we execute different combinations of queries in order to gain
broad knowledge of existing synergies and to avoid optimizing for local maxima. Subse-
quently, we exploit the detected synergies in an optimization phase to efficiently process
database queries. The monitored execution times are fed back to synergy computation.
Training and optimization phases can be switched as required. This allows for completing
and enhancing synergy information in training mode in times of low load on the database
system. When system load is high, system performance is improved by scheduling based
on synergies in optimization mode.

Using a simulation framework, we compared different scheduling algorithms for the
training phase with respect to their ability to fill the synergy matrix quickly and with pre-
cise values. For this purpose, we defined a quality measure called prediction error, which
represents the deviation of estimated execution times based on the computed shares from
real execution times over all combinations. We found that a strategy aiming at quickly
filling all synergy matrix fields achieves the best results (Figure 2.8). We further verified
the effectivity of synergy-based scheduling in the optimization phase. For a workload
consisting of 150 queries, the optimized scheduling according to the detected synergies
improves the total execution time by almost a factor of two compared to an unoptimized
scheduling according to query arrival (Figure 2.10a). We also examined the benefit of feed-
ing back monitoring information into the synergy computation during the optimization
phase and found that enabling this feedback loop is even preferable over a long training
phase (Figure 2.10b).

Today’s database systems offer a multitude of features ranging from simple caching to
complex multi-query optimization. These features create sources of synergy which can be
exploited using our approach. We showed this for the scan sharing feature of a commercial
database system. For a workload consisting of 30 TPC-H queries, we examined seven
exemplary schedules, of which the total execution times vary up to 44%. A comparison
of workload execution times and synergy values confirms that there is a high correlation
between these two measurements (Table 2.4).
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Chapter 3

Robust Query Execution – The Generalized Join

Algorithm

Scalable analytical query processing presumes a certain predictability of query execution
behavior in order to effectively allocate resources to different transactional and analytical
workloads submitted to the database. For query execution to be predictable, each of
the query’s execution plan operators needs to perform in a calculable way. We focus on
the relational join, the probably most important database operator. There exist a lot
of physical implementations of the logical join operator, which differ in execution time,
memory consumption, and preferred inputs. Traditional database query processing relies
on three types of algorithms for join operations, which are based on hashing, sorting, and
indexes. Physical data independence and the declarative nature of SQL require query
optimization to choose the appropriate algorithm based on the estimated query execution
costs. Unfortunately, mistaken algorithm choices during compile-time query optimization
are common yet expensive to investigate and to resolve.

Generalized join (g-join) has been proposed by Graefe (2012) as a new join algorithm
replacing the traditional algorithms and thus eliminating the need for (possibly wrong)
optimizer decisions. Specifically, it addresses the problem of algorithm choices. In this
chapter, we present the g-join algorithm and explain it by means of an extensive example.
We then address design alternatives and our implementation of g-join within the query
processing system HyPer/dbcore in detail. Furthermore, we give an overview of the im-
plementations of hash join, sort-merge join, and index nested loops join in HyPer/dbcore
before we provide the results of a detailed comparative evaluation of the presented algo-
rithms. These substantiate earlier claims by Graefe (2012) about robust query execution
time and memory consumption. We finally go beyond join computation and depict the
adaptation of the g-join concept to aggregation and duplicate removal operations.
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Figure 3.1: Query processing in a relational database management system: a user sub-
mits a request to the database management system, the optimizer generates
an efficient execution plan for it by calculating the costs for a multitude of
alternative plans and by choosing the cheapest, which is then executed on
the database tables and indexes

3.1 Introduction

Query processing in relational database management systems is basically structured as
sketched in Figure 3.1: Users submit requests to the database management system, the
query optimizer determines efficient execution plans for the requests, and the plans are
then run against the database. A request is typically expressed using a declarative query
language like SQL. Within the database management system, it is initially translated to
a normalized execution plan consisting of cross products followed by a selection and a
projection operator. The query optimizer then transforms this correct but inefficient plan
to an equivalent and efficient execution plan consisting of table and index scans, selections,
joins, and other operations. Finally, the plan is executed on the base tables and indexes
as indicated. A cost-based query optimizer enumerates a multitude of equivalent query
execution plans by varying data access paths, join orders, selection placements, operator
implementations, and many more, computes the estimated costs for each plan on the
basis of known or estimated factors either given by the request itself or stored in the data
dictionary and returns the least cost plan. Of course, the quality of the resulting execution
plan heavily depends on the correctness and accuracy of the information that the query
optimizer uses to compute the plan costs. In Table 3.1, we list the most common query
optimizer inputs and classify them by their type (quantitative or qualitative) and accuracy
(knowledge or estimate). Quantitative information, e.g., cardinalities of tables or indexes
and selectivities of operators, is almost always taken from statistics, which may not be up
to date or heavily compressed. Only when an intermediate result is computed by executing
an exact match selection on a primary key or in the case of a primary key – foreign key join
(assuming referential integrity), quantitative information is definitely precise. However,
in general, this kind of information is not reliable. By contrast, qualitative information,
e.g., whether or not inputs to an operator are sorted, usually stems from given facts, e.g.,
a previous sort operator or a sorted data structure such as a B-tree3, and are thus reliable.

3We assume sorted persistent indexes throughout the chapter.
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Input Type Accuracy

Quantitative Qualitative Knowledge Estimate

Table cardinalities X X

Index cardinalities X X

Intermediate result cardinalities X X X

Value distributions X X

Input sort orders X X

Join selectivities X X X

Existing indexes X X

Table 3.1: Classification of inputs to a query optimizer

One of the decisions the optimizer has to make based on the given information is
which physical join implementation is the best to realize a logical join in the execution
plan. Traditional physical join implementations are hash-based, sort-based, or index-
based. Sort-based joins take advantage of sorted inputs, e.g., in case they can either be
read sorted from an index or are sorted by a prior operator. Hash-based join algorithms are
favorable if one of the inputs is very small or even fits in main memory. The preprocessing
before the actual join phase depends mainly on the smaller of the two inputs. Index-based
join algorithms make use of available persistent indexes for one input (called the inner
input) to efficiently find join partners and are best if the outer input is fairly small
or sorted. Depending on the qualitative and quantitative information the optimizer is
provided, it heuristically calculates costs for alternative execution plans including either
hash-based, sort-based, or index-based joins. However, it is not uncommon that heuristics
are poor and statistics are not up to date and this results in mistaken algorithm choices
and bad query execution performance.

Graefe (2012) proposed a new join algorithm called generalized join (g-join) to replace
the traditional algorithms and thus eliminate the need for (possibly wrong) optimizer
decisions. G-join combines the advantages of sort-merge join (exploits and roughly pre-
serves interesting orders), hash join (exploits different input sizes and fast probing for
join partners), and index nested loops join (exploits existent indexes). As opposed to
traditional join algorithms, the performance of g-join does not depend on the accuracy of
statistics. However, qualitative information like whether an input is sorted, is applied. Ta-
ble 3.2 summarizes the input characteristics exploited by index nested loops join (INLJ),
sort-merge join (SMJ), hash join (HJ), and the new g-join (GJ).

INLJ SMJ HJ GJ

Indexed input(s) X X

Sorted input(s) X X

Size difference X X

Table 3.2: Join algorithms and the input properties they exploit (adapted from Graefe
(2012))
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G-join for unsorted, unindexed inputs starts by sorting the join arguments to form
initial runs but it omits the merge step that generates the total order. Rather, it moves
synchronously through all runs of both inputs. The active runs of the (smaller) left input
are combined in an in-memory index, which is probed page by page of the runs from the
(larger) right input. Unlike hash join, there is no (clear) separation between build and
probe phase. Instead, the probe mechanism continuously (at page boundaries) triggers
eviction of a page from and loading of a new page into the in-memory index. G-join is
a hybrid of sort-merge and hash join and in some cases also inherits advantages of index
nested loops join:

• Like hash join, g-join exploits two inputs of different size by building the hash table
for the smaller of the two join inputs.

• Like sort-merge join, g-join takes advantage of prior sort orders and generates nearly
sorted output, which can be exploited in complex query plans as shown by Selinger
et al. (1979).

• Like index nested loops join, g-join makes use of available persistent indexes on
relevant attributes for the build input instead of maintaining a temporary in-memory
index.

We integrated g-join into the modern main memory centric database system HyPer
by Kemper and Neumann (2011). Even though HyPer is a main memory database sys-
tem that retains the entire transactional database in RAM, the query processor spools
intermediate results to disk to preserve the precious RAM capacity for the transactional
working set. Therefore, the entire spectrum of g-join is exploited in HyPer, ranging from
a pure main memory algorithm to a hybrid g-join spilling some of its inputs from memory,
and to an entirely disk-based processing mode with a very small RAM footprint. This is
the first complete implementation of g-join extending preliminary insights gained by an
initial prototype of Li (2010).

3.2 Basic Algorithm

Before going into detail with respect to implementation alternatives and different kinds
of inputs, we will first address the general case of unsorted, unindexed, large inputs and
adhere to the implementation suggestions given by Graefe (2012).

G-join basically works in two phases as sketched in Algorithm 3.1: (1) a run generation
phase and (2) a join phase. The phases share characteristics of the partitioning and join
phases of hash join and of the sort and join phases of sort-merge join. In the first phase,
g-join generates sorted runs from its inputs like sort-merge join, but avoids to merge
them if memory requirements allow for it. The concrete conditions under which a merge
phase can be omitted are explained in detail in Graefe (2012). In the second phase, g-join
traverses the left and right input runs synchronously and brings together matching tuples
by use of an in-memory index structure. Thereby, at any time, g-join requires on average
two pages of each left input run and one page of the right input to be in memory. G-join
further maintains priority queues to guide the loading of left input pages into and the
removing of the pages from the buffer pool and to determine the next page of the right
input to be processed.
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Algorithm 3.1: g-join for unsorted and unindexed inputs larger than memory
Data: input relations R and S

/* first phase: run generation */

1 generate NR sorted runs Ri, 1 ≤ i ≤ NR;
2 generate NS sorted runs Si, 1 ≤ i ≤ NS ;
/* initialize data structures for join phase */

3 create in-memory index;
4 foreach Ri, 1 ≤ i ≤ NR do
5 load first page pi1 of Ri into buffer pool;
6 iterate through all entries of pi1 and insert them into in-memory index;
7 maxi ← maximum value on pi1;

8 end
/* each entry in priority queues A, B, and C is a pair of sort (join) key sk and

run identifier rid */

9 initialize priority queues A and B with NR entries sk=maxi, rid=i, 1 ≤ i ≤ NR;
10 foreach Si, 1 ≤ i ≤ NS do
11 mini ← minimum value on first page of Si;
12 end
13 initialize priority queue C with NS entries sk=mini, rid=i, 1 ≤ i ≤ NS ;

/* second phase: join */

14 while C is not empty do
/* determine page to be processed next */

15 id ← C.top().rid ;
16 p← next page of run Sid;
17 if p is NULL then

/* run Sid finished */

18 remove entry for Sid from priority queue C;

19 else
20 processPage(p); /* Algorithm 3.2 */

21 end

22 end

3.2.1 Overview

Figure 3.2 illustrates the core algorithm of g-join during the join phase.4 Various pages
(double-ended lines) from various runs cover some sub-ranges of the domain of join key
values (dotted horizontal arrow). The minimum and maximum values for most of the
pages are specified on the lines, some were left out for ease of presentation but can be
seen in the extended example in Figure 3.4a. Some pages of runs from input R are
resident in the buffer pool (solid lines), whereas some pages have already been expelled
or not yet been loaded (dotted lines). The left input pages in the buffer pool determine
the immediate join key range (shaded box), which is defined as the intersection of
the buffer pool resident key ranges of all runs from input R. The box is delimited by a
zigzag line at the left side, which stands for the left open interval starting at −∞ at the
beginning of the join phase.5 As indicated by the shaded arrow, the immediate join key
range moves synchronously across the runs so that join processing follows roughly the
sort order of the join key values. Pages with higher key values successively replace pages

4Large parts of the following description are taken from Graefe (2012).
5The intersection of join key intervals on left input pages cannot contain values smaller than any key

on those pages. However, right input tuples having smaller join keys can be processed (and won’t find
a join partner). Thus, the immediate join key range formally starts at −∞ before any left input pages
have been evicted from the buffer pool.
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Figure 3.2: Runs Ri and Sj with key ranges per page: buffer pool resident pages •—• of
Ri form the immediate join key range with which one page of Sj is joined;
the other pages •···• have already been processed and discarded or have not
been loaded yet (state snapshot of processing step 3 in Figure 3.4a)

with lower key values in the buffer pool. Some pages of runs from input S are covered by
the immediate join key range, whereas some have already been joined or cannot be joined
yet. At any time, memory holds multiple pages of each run from input R but only one
page of one of the runs from input S (solid line). Thus, even if there are many more runs
from input S than from input R, the memory requirements do not change. The snapshot
in Figure 3.2 corresponds to join processing step 3 of the example shown in Figure 3.4a
and discussed in Section 3.2.3: The buffer pool contains three pages of run R1 and two of
run R2 and the first page of run S2, which is currently being joined with the R pages in
the buffer pool.

3.2.2 Data Structures and Page Processing

The immediate join key range expands and contracts as it moves from left to right through
the domain. Multiple priority queues guide the schedule of page movements. In detail, our
g-join implementation maintains the following three priority queues (the original g-join
paper describes a fourth optional priority queue D, which we did not implement):

• Priority queue A guides loading left input pages into the buffer pool. There is one
entry for each left input run. The sort key is the highest key of the run loaded so
far. The top entry is the entry with the lowest sort key and indicates the run from
which the next page should be loaded. That way, the immediate join key range is
(most probably) effectively extended with each newly loaded page, thus minimizing
the risk of filling the buffer pool with data without making use of it.

• Priority queue B guides removing left input pages from the buffer pool. There is
one entry for each left input run. The sort key is the highest key on the oldest page
of the run in the buffer pool. The top entry is the entry with the lowest sort key and
indicates the run from which the oldest page should be removed. This makes sure
that the immediate join key range shrinks stepwise, thereby enabling to eliminate
pages from the buffer pool early, while still keeping the immediate join key range
large enough to process the probe input.

• Priority queue C guides processing right input pages. There is one entry for each
right input run. The sort key is the highest key of the run processed so far. The
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Algorithm 3.2: processPage
Data: page p of right input run Scur to be processed
/* each entry in priority queues A, B, and C is a pair of sort (join) key sk and

run identifier rid */

/* remove data from in-memory index and buffer pool */

1 while B.top().sk < C.top().sk do
2 id ← B.top().rid ;
3 r← oldest page of Rid in buffer pool;
4 iterate through all entries of r and remove from in-memory index;
5 remove r from buffer pool;
6 r′ ← (new) oldest page of Rid in buffer pool;
7 maxr′ ← maximum entry on r′;
8 update priority queue B with sk=maxr′ , rid=id ;

9 end
/* load data into in-memory index and buffer pool if key range on p is not

covered by the immediate join key range */

10 max ← maximum entry on p;
11 while A.top().sk ≤ max do
12 id ← A.top().rid ;
13 i← next page to read of Rid;
14 iterate through all entries of i and insert into in-memory index;
15 maxi ← maximum entry on i;
16 update priority queue A with sk=maxi, rid=cur ;

17 end
/* process current page of the right input */

18 foreach entry e on p do
19 probe into in-memory index using e;
20 if match found then
21 produce join result;
22 end

23 end
24 update priority queue C with sk=max, rid=i ;

top entry is the entry with the lowest sort key and indicates the run from which the
next page should be processed. That way, the probe input is processed page-wise
in join key order which produces a roughly sorted output.

When the priority queues are initialized, the entries in A and B are the same as
initially the first page of each left input run is loaded into the buffer pool. The entries
in priority queue C are initialized with the minimum value on the first page of each run
from the right input.

During the join phase, pages from the right input are processed one by one as described
in Algorithm 3.2. Thereby, priority queue C determines the order in which pages are
processed. For each page of the right input the in-memory index is updated as needed,
i.e., old entries are removed if they are no longer needed and new entries are inserted.
Priority queues B and A guide removing and inserting and are updated accordingly. Then,
the index is probed with each value in the page and result tuples are generated. After each
entry on the page has been processed, priority queue C is updated with the maximum
(last) value processed.
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Figure 3.3: Example: join phase of g-join

3.2.3 Example

Figures 3.3 and 3.4 illustrate how g-join loads pages into and removes pages from the
buffer pool and how the data structures are updated. As proposed by Graefe (2012), we
use a hash table as in-memory index structure in the example. Let R1, R2, S1, S2, and S3

denote the runs of R and S, respectively, after run generation. For ease of presentation,
each page (rectangles in the figure) contains only two records. Each record consists of the
join key (= sort key) and payload data, of which the values are preceded by “r” or “s”,
respectively. For the left input we provide six buffer pool frames, for the right input only
one buffer pool frame is required during the join phase. Throughout the example, the
currently processed (and buffer pool resident) pages are framed thickly and marked by a
clock in the upper right corner. Pages that have been processed completely and will not
be read again are shaded and labeled with a check mark in the upper right corner. The
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Figure 3.4: Example: join phase of g-join (cont’d)

priority queues hold one entry per run of the respective input, i.e., priority queues A and
B have two entries referring to R1 and R2 each, priority queue C has three referring to
S1, S2, and S3. One priority queue entry consists of a sort key and a run identifier, e.g.,
11:R1.

Figure 3.3a shows the state of the buffer pool and the hash table when the first page
of input S is processed: The first two pages of R1 and the first page of R2 are resident in
the buffer pool. While the first page of each R run is initially loaded into the hash table
at the beginning of the join phase, loading of the second page of R1 was triggered by the
join key range on the first S page to be processed. For each tuple on the loaded R pages,
an entry consisting of the tuple’s join key and a reference to its memory location (dashed
arrow) is inserted into the hash table. For ease of presentation, only one reference from
an entry in the hash table to an actual page in the buffer pool is shown. The immediate
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join key range is ]−∞,11[. Note that the interval is open to the right. This is because
there might be duplicates of 11 on future pages of R1 and thus this join key cannot be
processed at the moment. The entries of priority queue A denote the highest keys loaded
so far (11 for run R1 and 14 for run R2) and the entries of priority queue B hold the
highest keys on the oldest pages of each run in the buffer pool (4 for run R1 and again
14 for run R2 as there is only one page from this run currently in the buffer pool). The
entries of priority queue C are initialized with the minimum entries on the first pages of
S1 (0), S2 (3), and S3 (2). These values were recorded during the prior sorting phase. As
the top of priority queue C is 0:S1, the first page of S1 is processed first. The immediate
join key range allows processing it, thus the hash table is probed for the keys 0 and 6.
Subsequently, priority queue C’s entry for S1 is updated with the value 6 as shown in
Figure 3.3b. In the next step, the first page of S3 is processed. There is no need to
update the hash table, we can look up the values 2 and 5 on the page and update priority
queue C. The third step, i.e., the join of the first page of S2 shown in Figure 3.4a requires
a hash table update. According to priority queue A, the third page of R1 is loaded into
the buffer pool. At first glance, this appears to be sufficient. However, the immediate join
key range at this moment is ]−∞,14[ and thus does not contain 14. Therefore, the second
page of R2 is also loaded into the buffer pool and the respective entries are inserted into
the hash table. As illustrated, collisions in the hash table are handled using chaining.
After processing the current page, priority queue C is updated. In step four, the second
page of S3 is joined. No data from R needs to be loaded into the buffer pool but the first
page of R1 (to which the top entry of priority queue B points) containing the key value
range [1, 4] can be removed as future join keys will be equal to or greater than the top
entry sort key of priority queue C which has the value 5.

3.3 G-Join in Detail

After having sketched the basic g-join components and data processing, we will now
discuss the complete g-join algorithm in detail, including hybrid g-join, which builds the
glue between pure in-memory processing and disk-based join computation. Furthermore,
we present design alternatives and discuss their performance impact. We finally cover
g-join for outer, semi, and anti semi joins.

3.3.1 Detailed Algorithm

In Section 3.2, we described g-join for unsorted and unindexed inputs larger than main
memory. Now, we will address the strength of g-join to naturally exploit qualitative
information like sort order of inputs and data structures like available indexes, which
renders it competitive to the traditional join algorithms based on hashing, sorting, or
indexes. Algorithm 3.3 provides the complete g-join algorithm, which we describe in the
following.

In-Memory Execution. If one of the inputs is small enough to fit in main memory,
the in-memory variant of g-join shown in Algorithm 3.4, in-memory-join, is called (lines
1 to 6 in Algorithm 3.3). Thereby, the main memory resident data is transformed to an
in-memory index and probed using the second (possibly much greater) input without any
preprocessing. G-join thus shares the advantage of hash join in case input sizes differ
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Algorithm 3.3: g-join complete algorithm
Data: inputs R and S, tags sortedR and sortedS specifying an existing (relevant) sort order for R

and S, pointers to persistent indexes indexR and indexS
/* in-memory cases */

1 if R fits in main memory then
2 in-memory-join(R, S); /* Algorithm 3.4 */

3 end
4 if S fits in main memory then
5 in-memory-join(S, R); /* Algorithm 3.4 */

6 end
/* on-disk cases */

7 buildInput← 0;
8 probeInput← 0;
/* run generation */

9 if ¬sortedR ∧ ¬indexR then
/* generate NR sorted runs Ri, 1 ≤ i ≤ NR */

10 NR ← run-generation(R);

11 end
12 if ¬sortedS ∧ ¬indexS then

/* generate NS sorted runs Si, 1 ≤ i ≤ NS */

13 NS ← run-generation(S);

14 end
/* assign build and probe input roles */

15 assign-roles(sortedR, sortedS , indexR, indexS , NR, Ns); ; /* Algorithm 3.5 */

/* join phase */

16 join(buildInput, probeInput); /* Algorithm 3.6 */

Algorithm 3.4: in-memory-join for buildInput ≤ available main memory
Data: two pointers to buildInput and probeInput

1 build in-memory index I from buildInput ;
2 foreach t ∈ probeInput do
3 probe into I using t;
4 if join partner found then
5 produce output tuple;
6 end

7 end

greatly as the efficient in-memory execution of the join depends only on the size of the
smaller input. Please note that without any knowledge about input sizes sorted runs may
be generated in vain for the larger of the two inputs if it is processed first. However,
statistical information is usually reliable in determining the smaller of two inputs and
thus can be employed to decide on the order in which inputs are processed during run
generation.

On-Disk Execution. If both inputs are larger than main memory and are neither
sorted nor indexed, sorted runs are generated (lines 9 to 14 in Algorithm 3.3). We will
cover the implementation of run-generation in detail shortly. For sorted inputs, this step
is omitted. An index on the relevant columns of an input can both serve as index structure
or as sorted data source and thus obviates the need for run generation. Then, the build and
probe input roles are assigned to the inputs depending on their characteristics (line 15 in
Algorithm 3.3) as detailed in Algorithm 3.5, assign-roles. Here, qualitative information
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Algorithm 3.5: assign-roles assigns build and probe input roles to inputs
Data: inputs R and S, tags sortedR and sortedS specifying an existing (relevant) sort order for R

and S, pointers to persistent indexes indexR and indexS , integers NR and NS specifying
the number of runs generated for R and S, respectively

/* consider characteristics of input R */

1 if indexR then
/* R is indexed, consider characteristics of input S */

2 if indexS then /* role reversal if required */

3 buildInput← input with larger index;
4 probeInput← input with smaller index;

5 end
6 else if sortedS then
7 buildInput← R;
8 probeInput← S;

9 end
10 else
11 buildInput← R;
12 probeInput← S;

13 end

14 end
15 else if sortedR then

/* R is sorted, consider characteristics of input S */

16 if indexS then
17 buildInput← S;
18 probeInput← R;

19 end
20 else if sortedS then
21 mergeJoin(R,S);
22 end
23 else
24 buildInput← S;
25 probeInput← R;

26 end

27 end
28 else

/* R is neither indexed nor sorted, consider characteristics of input S */

29 if indexS then
30 buildInput← S;
31 probeInput← R;

32 end
33 else if sortedS then
34 buildInput← R;
35 probeInput← S;

36 end
37 else /* role reversal if required */

38 Nb ← minimum of NR and NS ;
39 Np ← maximum of NR and NS ;
40 buildInput← input for which fewer runs Nb were generated;
41 probeInput← input for which more runs Np were generated;

42 end

43 end
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Algorithm 3.6: join phase of g-join
Data: pointers to buildInput and probeInput

1 initialize index I using buildInput ;
2 while probeInput 6= ∅ do
3 n← probeInput.next();
4 I.update(n);
5 probe into I using n;
6 if join partner found then
7 produce output tuple;
8 end

9 end

like knowledge of given sort orders or indexes is exploited. Furthermore, knowledge about
the (approximate) sizes of indexes or the number of previously generated runs is available
and contributes in role reversal decisions. In particular, the algorithm proceeds as follows:
The inputs are subsequently checked for given indexes or sort orders. If an index exists
on the relevant attributes, it is preferred over building and maintaining a temporary
in-memory index and thus assigned the build input role (lines 3, 7, 11, 17, and 30 in
Algorithm 3.5). We experimentally evaluated that, if both inputs are indexed, it is more
efficient to assign the build input role to the larger index as this incurs less index lookups.
Further, sorted inputs, i.e., inputs read from a sorted index or outputs of a previous
sort operator, are used as probe input because this minimizes the required immediate
join key range and thus the memory consumption of g-join (lines 4, 8, 18, 25, and 35
in Algorithm 3.5). For the same reason, role reversal is considered where appropriate,
i.e., the build input role is assigned to the input with smaller main memory requirements
(line 37 in Algorithm 3.5). If both inputs are sorted, g-join basically resorts to merge
join (line 21 in Algorithm 3.5). After build and probe input roles have been assigned,
the join phase given in Algorithm 3.6 is entered. First, an index is initialized using the
provided buildInput (line 1 in Algorithm 3.6). In case of a given permanent index, there
is nothing to do, otherwise an in-memory index is instantiated. Then, the probeInput is
processed, i.e., the index is updated as required (line 4 in Algorithm 3.66) and probed,
thereby producing output tuples if matches are found (lines 5 to 8 in Algorithm 3.6).

Hybrid G-join. When run generation is appropriate and the data size slightly exceeds
the in-memory limit, there is an immense performance decrease compared to in-memory
execution due to the disk I/O incurred by run generation and join phase. This significant
overhead motivates “hybrid” join algorithms (like hybrid hash join) smoothing the execu-
tion time degradation by allowing most of the join to be computed in-memory, while a
small part of the data is processed by generating intermediate data on disk. The process-
ing resembles that of hybrid hash join as originally described by DeWitt et al. (1984).

We devise the “hybrid” g-join implementation sketched in Figure 3.5. During run
generation for the left input, the low end of the join key domain is kept in a maximum
heap Hmax. When overflow occurs, the top entry7 is spilled to the (regular) minimum heap
Hmin used for generating sorted runs. When the left input terminates, the maximum heap
is reorganized as a hash table. During run generation for the right input, tuples falling

6The in-memory index update is given in more detail in Algorithm 3.2 for unindexed and unsorted
inputs, for which runs have been generated.

7more precisely, the top entry and all its duplicates
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Figure 3.5: Hybrid g-join

into the key value interval ]−∞,kmax] of the hash table are joined immediately. All other
tuples are inserted into the minimum heap and participate in run generation.

Hybrid g-join initially partitions memory in favor of the maximum heap expecting the
input to be only a little larger than memory if at all. As the input is processed, the size of
the maximum heap is adaptively decreased to allow for a larger minimum heap resulting
in longer runs. Pragmatically, we start for the first few (e.g., three) runs with 10% of the
main memory for the sorting heap, increase it by 10% to 20% for the next few (three) runs,
to 30% for the next few (three) runs, to 40% and 50% in the same manner. Thereafter,
we give up on the hybrid variant of g-join and resort to “regular” g-join by dedicating all
the RAM to run generation. The variable size of the heaps is indicated by the dashed
heaps in the background in Figure 3.5a. The adaptive partitioning of memory between
max and min heaps results in an effective elasticity of in-memory g-join turning over to
hybrid g-join. Hybrid g-join produces first results early during run generation from the
right input like the progressive sort-merge join published by Dittrich et al. (2002) and it
omits writing the lowest key values to disk and re-reading them again later.

3.3.2 Design Alternatives

Although the g-join algorithm has been covered in-depth by Graefe (2011), there are still
many options open for the concrete design of various components of g-join including the
run generation, the in-memory index structure, and the priority queues. In the following,
we shed light on the design alternatives and discuss their impact on the behavior of g-join.
We further present and explain the design decisions we made in our implementation of
g-join in HyPer/dbcore.

Figure 3.6 gives an overview: As described in Algorithm 3.3, g-join assigns its two
inputs the roles buildInput and probeInput, which are of type GJoinIdx and ProbeInput.
GJoinIdx represents the build input index and provides the functionality for updating
(insert, remove) and querying (lookupFirst, lookupNext) the index structure. ProbeInput
provides the next data to be processed. Depending on the input data characteristics, the
build input is instantiated of either type BTree if a persistent index exists or else GJoin-



3.3 G-Join in Detail 45

priority queue

probe inputbuild input

run generation

+insert()

+remove()

+lookupFirst()

+lookupNext()

GJoinIdx

+innerInsert()

+finishInsert()

+innerRemove()

-a : GPriorityQueue

-b : GPriorityQueue

GJoinInMemIdxBTree

HashTable ISAM* ...
+top()

+popReplace()

GPriorityQueue

+produce()

-buildInput : GJoinIdx

-probeInput : ProbeInput

-runGen : RunGeneration

GJoin

LoserTree WeakHeap

+next()

ProbeInput

-c : GPriorityQueue

RunsProbeInputBTree SortedProbeInput
...

+produce()

RunGeneration

HeapSort ReplacementSelectionHeapSortNK ...

RedBlackTree

...

SplayTree

Heap

Figure 3.6: Overview of design alternatives for run generation, priority queues, build
input, and probe input

InMemIdx if a temporary in-memory index is built. In the latter case, the priority queues
A and B also have to be maintained by the index structure. In the current implementa-
tion, the in-memory index structure can be of type HashTable, ISAM* 8, RedBlackTree,
or SplayTree. The probe input is instantiated from either type BTree, RunsProbeInput,
or SortedProbeInput according to the input characteristics. If runs were generated for
the probe input, i.e., in the case of RunsProbeInput, priority queue C is needed to guide
processing. For generating sorted runs, i.e., run-generation in Algorithm 3.3, we imple-
mented HeapSort, HeapSortNK 9, and ReplacementSelection. The priority queues guiding
the updates of the main memory index structure and the processing of the probe input
are implemented as either LoserTree, WeakHeap, or Heap. Additional instantiations can
be added by extending the parent types.

8ISAM* is a sort-based index structure similar to Index Sequential Access Method (ISAM).
9HeapSortNK corresponds to HeapSort extended by poor man’s normalized keys (see Figure 3.7) for

efficient key comparisons.
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Figure 3.7: Computation of “poor man’s normalized key” for a composite join key
〈k1, k2, k3〉 where bi bits are assigned to each join key column ki

Run Generation Phase

G-join for unsorted (and unindexed) inputs initially generates sorted runs by employing
external merge sort and omitting (most of) the merge phase(s). When using a load-sort-
store algorithm, the input data is partitioned into chunks small enough to fit in main
memory. Each of these chunks is subsequently read into main memory and sorted by an
internal sorting algorithm. Obviously, the size of the resulting runs is constrained by the
main memory size. An alternative to load-sort-store variants for producing sorted runs
is replacement selection. Using this method, the input data is fed through an in-memory
priority queue. Each time the top element is extracted, it is replaced by the next input
tuple. If the new tuple cannot contribute to the current run, i.e., its key is greater than
the last output tuple’s key, it is marked as belonging to the next run. As soon as a
marked tuple reaches the top of the priority queue, a new run is started. For uniformly
distributed key values, replacement selection produces runs of length twice the priority
queue (and thus main memory) size. The advantages of replacement selection over load-
sort-store algorithms are of particular interest for g-join: First, replacement selection
generates sorted runs of length approximately two times memory size whereas load-sort-
store algorithms produce runs of length equal to memory size. This implies that only
about half as many runs are generated for each input compared to load-sort-store. The
memory requirements of g-join during the join phase are proportional to the number of
left runs and thus halving the number of runs halves the memory utilized by the operator.
Second, when inputs are (partly) presorted, replacement selection generates even longer
runs than twice the memory size, in the extreme only a single run. In contrast, load-sort-
store variants do not take advantage of this. Knuth (1973) covers replacement selection
in detail and illuminates optimization potential. Further, work by Larson and Graefe
(1998) and Larson (2003) extended classical replacement selection to work for variable-
length tuples and Martinez-Palau et al. (2010) published a replacement selection version
creating long runs in a stable way, i.e., independent of the input data characteristics like
inversely sorted keys.

The most expensive operation in sorting is the comparison of sort keys, in particular
when they consist of multiple (possibly non-integer) values. In such cases, it is advisable
to base sorting on a hash code of the join keys. Thereby, however, one is giving up
on the fuzzy ordering of the output. Alternatively, the use of “poor man’s normalized
keys” as introduced by Graefe and Larson (2001) and Lomet (2001) enables more efficient
comparisons. Figure 3.7 illustrates how poor man’s normalized keys are generated from
the given join key values during the run generation phase. For a composite join key
〈k1, k2, k3〉, the normalized key is partitioned into bit ranges of sizes b1, b2, b3 where the
size bi of each range is chosen according to the join key column domain. In the example,
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the domain of join key column k1 is significantly smaller than the other key column
domains so that fewer bits are allocated to the first part b1 of the normalized key. The bi
most significant bits of each key column ki are included in the normalized key.

We employ ReplacementSelection using weak-heaps in the run generation phase. Sort-
ing based on weak-heaps has been shown to be the fastest heapsort variant by Edelkamp
and Wegener (2000) among those considered. Furthermore, we make use of poor man’s
normalized keys for efficient compare operations. We further consider HeapSort and
heap sort using normalized keys, denoted HeapSortNK, as load-sort-store alternatives to
replacement selection and evaluate their performance. Heap sort provides average and
worst case complexity of O(nlogn) and is thus conform with the robustness claims of
g-join.

During run generation, we keep track of some additional information: (1) The highest
value per page is stored in the page header so that it can quickly be compared to the
upper bound of the immediate join key range to determine if the index structure has to
be updated. Otherwise, the index structure would be updated as soon as the first probe
value exceeding the immediate join key range is found. (2) The lowest value per run is
logged for the initialization of priority queue C. Otherwise, an arbitrary minimum value
for all runs would have to be used and the result would be less sorted for the first pages.

Keeping track of the data does not incur much overhead (little time to write minimum
values per run and little space to store a pointer to the high value per page). Besides, the
algorithm does also work without this information.

Join Phase

Probe Index. If no persistent index on the relevant join columns exists, g-join maintains
an in-memory index structure for the build input, which it probes with tuples of the probe
input. A lookup operation is processed for each single tuple of the (larger) probe input
and the probe index is frequently updated to contain the current immediate join key range
at any point in time during join processing. This requires an efficient implementation of
the operations for looking up, inserting, and deleting a tuple.

Hash tables are a common choice as they provide an average complexity of O(1) for all
operations. In particular with respect to g-join, there are no “hidden costs” for dynamic
resizing as (1) the available main memory is known in advance and completely allocated
to the index structure and (2) the size of the immediate join key range can be anticipated
well. We choose HashTable as default probe index structure and implement the eviction
of left input tuples from the hash table in an eager way. Each time a page is unfixed
and discarded from the buffer pool, we first iterate through the page and remove the
respective entry in the hash table for every tuple. We propose two alternative update
methods that obviate the need for iterating through a page in order to remove entries.
These methods can also be applied in combination. (1) The “lazy” hash table update
defers the work to be done when a left input page in the buffer pool is unfixed to future
insert operations. When removing the page, no work at all has to be done. We expect
future inserts to create collisions and detect outdated hash table entries during collision
handling. In order to recognize an outdated tuple, however, we need to store the join
keys in the hash table (as the referenced tuple is no longer buffer pool resident and thus
cannot be read anymore). (2) The use of multiple hash tables allows for deleting a whole
hash table and unfixing buffer pool pages in bulks as soon as its key range moves out
of the immediate join key range. Of course, we need to probe in all hash tables. For
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particular join cases, optimizations are possible. In case there exists a 1:N relationship
between the input relations and 1 being the functionality of the smaller input, a zigzag
search as described in Helmer et al. (1998) is appropriate.

We further implement and evaluate three alternative ordered indexes which, unlike
hash tables, are unsusceptible to duplication skew and thus comply with the robustness
claims of g-join. Moreover, they exhibit a certain locality of reference, which is exploited
by g-join as tuples are joined (roughly) in ascending order. The ISAM* index is similar
to ISAM indexes10 and maintains a list of chunks C1, . . . , Cn. The entries within the
index are totally ordered by key value. That is, the entries within each chunk Ci are
sorted and the key ranges of the chunks are disjoint. Further, it holds that keys within
preceding chunks Cj, j < i, are smaller than keys in Ci and that keys within following
chunks Ck, k > i, are larger than keys in Ci. ISAM* uses binary search to both determine
the correct chunk and to find the searched entry within the chunk. It therefore requires
logarithmic time with respect to the index size for the lookup operation. Insert operations
merge entries on pages to be loaded from different left input runs within a new chunk
and append it to the index. As merging requires generating the total order for the new
items, the insert operation is in time O(nlogn) with respect to the new chunk’s size n.
The delete operations simply prune the low end chunks of the index and can be done in
constant time. Besides the ISAM* index, we examine a RedBlackTree and a SplayTree as
representatives for tree-based index structures. They provide logarithmic lookup, insert,
and delete complexity. In particular, the splay tree property, i.e., recently accessed entries
are accessed again more quickly than others, is interesting to g-join.

Priority Queues. G-join for an unindexed build input maintains the priority queues
A and B to decide upon loading data into and discarding it from the buffer pool and
the in-memory probe index structure. Further, if runs are generated for the probe input,
priority queue C guides the processing order of the runs’ pages. Priority queues are
typically implemented as a heap structure providing an average complexity of O(logn),
where n is the number of elements in the queue, for inserting an element and extracting the
element with the highest priority. By relaxing the requirements for a heap, Dutton (1992)
defined a data structure called weak-heap, which reduces the number of comparisons
needed. Dutton (1993) applies weak-heaps to sorting and shows that they exhibit the
least number of comparisons among the considered algorithms weak-heapsort, bottom-up
heapsort, and quicksort. Knuth (1973) presents loser trees, a tournament tree variant,
as an alternative for an efficient merge phase in external sort algorithms. Compared
to traditional heaps, loser trees require fewer comparisons for re-establishing their heap
property, because loser trees implement each update operation with a single leaf-to-root
pass. Loser trees have been widely adopted and even implemented into IBM mainframes
using vector registers by Garcia et al. (1994).

Despite the optimizations within weak-heaps and loser trees, the priority queue struc-
tures we consider all exhibit logarithmic time for updates. We implement LoserTree,
WeakHeap, and Heap structures and compare their performance.

Run Sizes and Key Value Distribution Skew. G-join usually requires only little
main memory during the join phase. In particular, the build input tuples within the

10A description of the index-sequential access method (ISAM) can be found in Ramakrishnan and
Gehrke (2003).
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of the last run Sn are much larger than the key ranges on pages of the other
runs while the number of tuples • per page is the same for all runs

current immediate join key range are main memory resident while the join is computed.
For sorted probe inputs, either output by a previous sort operator or read from a sorted
index, the immediate join key range consists only of one key value at any point in time
so that two pages of each build input run suffice to perform the probe. However, when
runs are generated from the probe input and these runs are processed page-wise, the key
value distribution on each of the run pages determines how large the immediate join key
range has to be expanded to join one page.

Join key ranges on a single page may vary due to skewed data or different run lengths,
e.g., a short last run11. Figure 3.8 illustrates this effect for n runs of input S denoted S1 to
Sn. Each page holds three tuples (represented by the bullet points). However, the pages
of the last run Sn span a much larger key range than the pages of the other runs. Thus,
a page of run Sn requires more pages to be loaded from the left input than a page of runs
S1, S2, . . . , Sn−1. When the next page of Sn is processed, the key range is extended to at
least the key range of this page. However, the join key range will shrink again slowly, as
pages can only be removed from the in-memory index structure as soon as the next pages
of each of the runs S1 to Sn−1 have been processed.

There are different approaches to solve this issue. First, additional merge steps after
run generation have effects on both inputs. There will be less runs from the left input and
thus more than two pages per run will fit into the buffer pool. The runs from the right
input will be longer and have a smaller key range per page, thus requiring fewer pages
from the left input in the buffer pool during join processing. The second approach to
varying key ranges is to handle them during join processing. One possibility is to provide
an extra buffer pool frame for pages of the last S run and keep one page of this run
loaded permanently. While the immediate join key range moves on guided by the other
runs’ pages, the entries of the page currently covered by the immediate join key range are
processed. A more general solution to skew is to load only an affordable amount of data
from the left input into memory and process as much of the right input as possible. Page
processing is preempted if the page key range exceeds the immediate join key range. In
this case, priority queue C is updated with the last processed entry as sort key and the
currently processed page is unfixed. It will be processed further when its priority queue
entry reaches the top position of the queue.

11The last run may be very short but it may nevertheless cover almost the complete key range, i.e.,
the key ranges on its pages are very large compared to the other runs.
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We implemented the preemption of page processing for cases in which the immediate
join key range is not large enough to completely join the current right input page. This
solution not only prevents the hash table from overload but also enables handling of
skewed data in general. As a first straight forward approach we let the buffer pool grow
as required until the number of pages in the buffer pool reaches the threshold of two times
the number of left input runs. After that, we load at most one more page from the left
input for each currently processed right input page. We then process the tuples on the
current page that are in the immediate join key range. When we read a join key that
exceeds the immediate join key range we stop processing the page, update priority queue
C with the largest processed join key, and unload the page from the buffer pool. It will
be loaded again as soon as the immediate join key range allows further processing.

3.3.3 Outer, Semi, Anti Semi Joins

We integrated a full g-join implementation in HyPer/dbcore including semi joins and
anti semi joins as well as left outer, right outer, and full outer joins. The join variants,
which are described in more detail in Graefe (2012), require only few extensions like an
additional bit in order to keep track of which tuples have already found a join partner.
We only sketch the required changes to standard inner join R ⋊⋉ S with R being the build
input and S the probe input in the following.

Outer Joins

Outer joins bring together matching tuples like inner joins and, in addition, they produce
output tuples for input data that didn’t find a join partner. The left (build input) outer
join R�S requires a flag bit in the in-memory index entries indicating whether the entry
already took part in the join or not. Each time a regular join output tuple is generated,
the index entry flag is set. When the index is updated according to priority queue B,
i.e., entries are evicted, this flag is checked and an output tuple is produced if the flag
is not set. After all right input tuples have been processed, the index is traversed a last
time to find unmatched build input tuples. The right (probe input) outer join R� S is
straightforward as it can be decided at the time a tuple is processed whether it found a
join partner or an extra output tuple has to be returned.

Semi Joins

Semi joins produce output for tuples of one of the inputs which find a join partner in the
other input. In contrast to inner joins, one input tuple may produce at most one output
tuple. For this purpose, the left semi join R�S requires a flag bit in the in-memory index
entries indicating whether the entry already took part in the join or not. If so, the entry
will not produce any output again. If the flag is not set and a probe input tuple matches,
an output tuple is produced and the flag is set. For the right semi join R � S, the build
input is probed until one match is found and an output tuple is generated. As the tuple
may not produce any further output, probing is aborted at this point.

Anti Semi Joins

Anti semi joins are the opposite of semi joins. Output is produced for input tuples that do
not find a join partner in the other input. The left anti semi join R⊲ S requires a flag bit
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Figure 3.9: Hash join in HyPer/dbcore: left and right input sizes are three and
four times main memory size, respectively; the initial as well as the re-
partitioning fan-out (FO) is 3

in the in-memory index entries indicating whether the entry already took part in the join
or not. Each time a probe input tuple matches, the flag for the corresponding index entry
is set. When the index is updated according to priority queue B, i.e., entries are evicted,
this flag is checked and an output tuple is produced if the flag is not set. After all right
input tuples have been processed, the index is traversed a last time to find unmatched
build input tuples. The right (probe input) anti semi join R ⊳ S is straightforward as it
can be decided at the time a tuple is processed whether it found a join partner or – in
case no join partner at all was found – an output tuple has to be returned.

3.4 Traditional Join Algorithms

We briefly present the HyPer/dbcore implementations of hash join, sort-merge join, and
index nested loops join, and summarize the main characteristics of g-join in comparison
to the traditional algorithms.

3.4.1 Hash Join

Figure 3.9 illustrates the functioning of the hash join implementation in HyPer/dbcore.
It is basically a GRACE hash join as presented in Kitsuregawa et al. (1983) and Fushimi
et al. (1986) generating partitions from the build and probe inputs and then joining
the corresponding partitions. However, there are some specifics making the hash join
implementation more robust and efficient. The build input is loaded into memory until
either no more tuples are left or the input exceeds the memory size. If the build input fits
into memory, it is converted into a hash table in-place and the probe input is pipelined,
probing into the hash table with each tuple. If the build input exceeds memory, the build
input tuples are range partitioned by hash value, similar to radix sort, into a predefined
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number of partitions. In the example in Figure 3.9, a fan-out of 3 is used, denoted by
“FO 3”. Using this partitioning scheme ensures robustness with respect to (distribution)
skew. Further, it enables the sequential write of partition chunks. Thereby, the random
and sequential I/O phases of standard hash join are switched as partition chunks are
written out sequentially but re-collecting the partition chunks during the join phase results
in (partly) random I/O. The rest of the build input is processed in the same way: tuples
are loaded into memory until no space is left, the data is sorted and partitioned by hash
value, and partition chunks are written to disk sequentially. If the resulting partitions still
do not fit into memory (this is the case for partition 2 in Figure 3.9), another partition
phase is initiated. Each build input partition is read in chunk after chunk and processed
in the same way as during the first partition phase (resulting in the three sub-partitions
2.1 to 2.3 for partition 2). Here again, the partitioning fan-out is predefined and constant.
In Figure 3.9, we used “FO 3” as for the initial partitioning. After partitioning of the build
input results in partitions small enough to fit into memory, the final partition ranges are
used to partition the probe input in one partition phase. We do not consider the case
that a build input partition cannot be further partitioned and does not fit into memory
as it is the case when the whole partition consists of values with the same key. Probe
input tuples are loaded into memory until there is no space left. Then, they are range
partitioned using the known partition ranges. This results in only one partitioning phase
for the probe input, no matter how large it is. In Figure 3.9, the probe input is directly
split up into five final partitions. Note that these partitions do not have to fit into memory.
During the join phase each build input partition is loaded into the hash table, i.e., all of
the partition’s chunks are read and each tuple is placed into a hash table bucket according
to its hash value. Then, the corresponding partition from the probe input is read and each
tuple is used to probe in the hash table for join partners. For the evaluation of hash join,
it is important to keep in mind that sequential and random I/O phases are inverted as
compared to standard hash join implementations as in Graefe (1993), partitioning occurs
on the hash values of the keys, and the right input is not partitioned recursively as the
(possibly recursive) partitioning scheme of the build input is applied in one step.

3.4.2 (Sort-)Merge Join

The sort-merge join implementation in HyPer/dbcore is sketched in Figure 3.10. Sorted
runs are generated from the left and right input using replacement selection. Then, the
merge phase and the join phase are executed in an integrated manner if memory suffices,
i.e., if one page of each run can be kept in memory. If not, some of the runs are combined
in an intermediate merge phase. The merge fan-in (FI) is determined by the available
memory and the number of runs to be merged. If the number of runs to be merged exceeds
the maximum possible fan-in, multiple merge steps are conducted. In the illustration in
Figure 3.10, three runs have been generated from the left input and five from the right
input. Two of the five right input runs are merged in one step (“FI 2”), so that in the
final integrated merge-and-join phase, three left and four right runs are piped through the
respective heaps (labeled “FI 3” and “FI 4”), and their merged outputs are joined. If run
generation results in one run for both, the left and right input, we simply iterate through
the runs during the join phase and output matching tuples.
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Figure 3.11: Index nested loops join in HyPer/dbcore: depending on whether the probe
input is sorted or not, index accesses are supposed to be served from cache
or to cause costly page faults

3.4.3 Index Nested Loops Join

Figure 3.11 illustrates the index nested loops join implementation in HyPer/dbcore. For
each tuple in the outer input, index nested loops join probes in the existing index and
produces result tuples if matches are found. The index is a B+-tree containing all relevant
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Figure 3.12: Sort-index nested loops join in HyPer/dbcore: the unsorted probe input
is first sorted in order to avoid costly page faults caused by random index
accesses

data, not only pointers (TIDs) to the data. The performance of index nested loops join
heavily depends on the amount of cache locality that can be exploited. As sketched in
Figure 3.11a, if the outer input is sorted there is a high probability that index pages
containing the searched keys are in the cache as neighboring keys have already been
searched. In particular, each index leaf page is read once during index nested loops
join processing. If the outer input is unsorted as shown in Figure 3.11b, the index is
probed randomly and therefore there is no cache locality. Further, the index leaf pages
are likely to be read from disk several times, thereby incurring I/O overhead and affecting
the performance negatively. Depending on the size of the outer input, it may thus be
advisable to sort it before probing the index as described by DeWitt et al. (1993). The
sort-index nested loops join algorithm is sketched in Figure 3.12. For sorting the outer
input we employ run generation using replacement selection and then merge the runs.
The output of the merge phase is directly used as input to index nested loops, i.e., no
intermediate result is written to disk. However, the merge phase itself may require writing
intermediate results to disk. This is the case if the number of runs exceeds the maximum
number of runs that can be merged in one pass, i.e., the number of main memory pages
available minus one page required for the output.

3.4.4 Summary and Comparison

We summarize the characteristics of g-join, hash join, and sort-merge join discussed in the
previous sections in Table 3.3. An extensive discussion of the duality between (traditional)
hash join and sort-merge join can be found in Graefe (1993). For index nested loops join,
only the probe input properties are of relevance: The probe input cardinality determines
the number of index accesses but only little memory is required during join processing for
holding the currently processed tuples. Duplication and distribution skew have practically
no impact on the performance, however, as sketched in Figure 3.11, the probe input sort
order might highly influence the overall join performance. Further, the output sort order
depends on the input sort order.
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Property Hash join Sort-merge join G-join

Input sizes Left input only de-
termines the recursive
partitioning depth

Each input determines
its number of merge
levels needed

Smaller input only
determines the buffer
pool requirements
(and the potentially
required merge steps)

Input sort
order

Cannot be exploited Is exploited Is exploited

Duplication
skew

Impact on recursion
depth and partition
file sizes and thus
memory utilization
during join phase if
left input contains
many duplicate key
values

Practically no impact Impact on buffer pool
size and hash table fill
factor if smaller input
contains many dupli-
cate key values

Distribution
skew

Practically no impact
in HyPer/dbcore as
partitioning employs
hash values and is
adaptive w.r.t. their
ranges

Practically no impact Impact on buffer pool
size and hash table fill
factor if key values of
the smaller input are
very dense

Buffer pool
size

Uses all available
memory during par-
titioning and join
phase

Uses all available
memory during run
generation; during the
integrated merge-and-
join phase memory
requirements depend
on the number of runs

Uses all available
memory during run
generation; during
join on average only
two pages per left
input run need to be
memory resident at
any time

Output Unsorted Sorted Nearly sorted

Table 3.3: Characteristics of hash join, sort-merge join, and g-join in HyPer/dbcore

If the optimizer choices are based on reliable statistics about input sizes and data skew,
it will favor hash join in case one of the inputs is small and the other is large. As only the
left input size affects the partitioning depth and thus performance, hash join outperforms
sort-merge join. Our HyPer/dbcore implementation of hash join even increases the gains
as the right input is never partitioned recursively. However, hash join fails to exploit
(roughly) sorted inputs as does sort-merge join. Thus, if the data is already sorted or if
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the output must be sorted on a join key and sorting the result is more expensive than
sorting the inputs, sort-merge join will be the optimizer’s choice. If there are persistent
indexes that can be exploited during join processing, the optimizer chooses index nested
loops join in general.

G-join benefits from sorted inputs or persistent indexes, i.e., qualitative information,
and produces nearly sorted output. It exploits different input sizes in terms of memory
footprint and processing time. However, knowledge of input sizes, i.e., quantitative in-
formation, is not required in advance but gained during run generation and applied for
efficient role reversal. The I/O volume of g-join is equal to the I/O volume of hash join.

3.5 Evaluation

We have integrated g-join into the HyPer/dbcore database system and compare it to the
existing hash join and sort-merge join implementations. Our experiments are designed to
verify the claims in Graefe (2012). We present the results of in-memory join computation
and thoroughly investigate the execution time, memory consumption, and robustness of
the join algorithms in a disk-based scenario. We assume that qualitative information is
correct and reliable during query optimization, e.g., whether or not a table is indexed and
whether an intermediate query result is sorted, but that quantitative information is often
unreliable and even misleading, e.g., sizes of intermediate results and thus of join inputs.
The inputs in our benchmarks are unsorted if not stated otherwise.

3.5.1 Settings

The benchmarks are run on a commodity server with the following specifications: Dual
Intel X5570 Quad-Core-CPU, 8MB Cache, 64GB RAM, 16 300GB SAS-HD, Linux oper-
ating system RHEL 5.4. To amplify the interesting effects with data volumes practical in
our experimental environment, we restrict the physical RAM to 4GB by allocating 60GB
of physical RAM to another process, which mlocks its assigned memory and thereby
makes sure that it is not swapped during the benchmarks.

For the evaluation of the join algorithms, we execute a foreign key primary key join of
the TPC-C benchmark tables Order and OrderLine (see Figure 3.13) that corresponds
to the SQL query

SELECT *

FROM Order, OrderLine

WHERE O_W_ID=OL_W_ID

AND O_D_ID=OL_D_ID

AND O_ID=OL_O_ID

Each of the join algorithms is executed stand-alone. The Order and OrderLine data
is generated such that the column types and the values of the join key columns correspond
to the specification. Join attributes are equally distributed. Tuples have a fixed length of
36 bytes for an Order tuple, and 65 bytes for an OrderLine tuple (due to byte alignment
for 64-bit systems, an Order tuple allocates 40 bytes and an OrderLine tuple allocates
72 bytes on disk). For each Order tuple, on average ten matching OrderLine tuples are
created. In total, there are ten times as many OrderLine tuples as Order tuples. Those
tuples are generated in a random order and thus are not clustered by key value. The
input tuples are fed into the join operator without being written to disk first.
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column data type

O_ID uint32_t
O_D_ID uint32_t
O_W_ID uint32_t
O_C_ID uint32_t
O_ENTRY_ID uint64_t
O_CARRIER_ID uint32_t
O_OL_CNT uint32_t
O_ALL_LOCAL uint32_t

(a) Order

column data type

OL_O_ID uint32_t
OL_D_ID uint32_t
OL_W_ID uint32_t
OL_NUMBER uint32_t
OL_I_ID uint32_t
OL_SUPPLY_W_ID uint32_t
OL_DELIVERY_D uint64_t
OL_QUANTITY char
OL_AMOUNT double
OL_DIST_INFO char[24]

(b) OrderLine

Figure 3.13: Extract of the TPC-C schema

We carried out the experiments providing the operator with 10MB of memory, which
are not exceeded during the execution. For the data we chose the scale factors 250, 500,
750, and 1000 warehouses resulting in the relation cardinalities and the data sizes given
in Table 3.4 (these sizes include metadata like run or chunk headers and tuple length).
We conduct each experiment five times and report the average execution time of the five
repetitions and the average absolute deviation of the single execution times from this
value.

scale Order OrderLine

cardinality size [MB] cardinality size [MB]

250 7.5·106 316 75·106 5453
500 15·106 632 150·106 10906
750 22.5·106 948 225·106 16359

1000 30·106 1264 300·106 21812

Table 3.4: Data scales and sizes for the experiments

3.5.2 G-Join vs. Traditional Join Algorithms

We first investigate the performance of g-join compared to the traditional join algorithms.
In this context, we consider well and poorly optimized cases. We further examine the cases
in which one of the inputs fits in memory or exceeds memory only slightly. Last, we study
the performance of the algorithms when persistent indexes can be exploited.

Performance in “Well-Optimized” Cases

We investigate the most interesting question first: Do we lose performance when choosing
g-join instead of a traditional algorithm when the traditional algorithm would have been
appropriate? The results are illustrated in Figures 3.14 and 3.15.
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Figure 3.14: Execution time comparison of g-join (GJ), hash join (HJ), and sort-merge
join (MJ) for unsorted inputs: g-join and hash join show a comparable per-
formance, the performance of sort-merge join decreases rapidly for larger
data scales as intermediate merge steps incur additional I/O

Unsorted inputs (Figure 3.14): Hash join is the algorithm of choice for unsorted
inputs, especially in case of very different data sizes. We therefore compare the join
performance when both inputs are unsorted. Order is the smaller of the two relations
and thus represents the left input. We configured the partitioning fan-out of hash join so
that no recursive partitioning is needed for any data size scale. Sort-merge join employs
the largest possible merge fan-in for the integrated merge-and-join as well as intermediate
merge steps. For the 250 and 500 warehouses scales no intermediate merge steps are
required, for scale 750 one and for scale 1000 two intermediate merge steps are conducted.

In total, g-join performs slightly worse than hash join, but the execution times do
not differ by more than 9%. Depending on the hash join configuration (e.g., the fan-out,
which we manually set but which is usually chosen by the optimizer based on possibly
wrong statistics), hash join might have an even longer execution time than g-join. Sort-
merge join is competitive to g-join and hash join if no intermediate merge steps (including
expensive I/O) are required.

Roughly sorted inputs (Figure 3.15): When inputs are completely sorted, g-join
effectively becomes merge join. The more interesting case occurs when inputs are roughly
sorted, e.g., when the output of one g-join is the input of another join. In this case, run
generation produces one run for the left and one run for the right input. As can be seen
in Figure 3.15, the total execution times of g-join are on average 15% longer than those
of sort-merge join. This is due to the overhead incurred by hash table updates during
the join phase. However, g-join can easily be adapted to omit maintaining the in-memory
index and switch to merge join-like execution in this case. As expected, hash join does
not take advantage of sorted inputs and thus is not competitive to g-join and sort-merge
join in this case.
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Figure 3.15: Execution time comparison of g-join (GJ), hash join (HJ), and sort-merge
join (MJ) on roughly sorted inputs: g-join and sort-merge join take advan-
tage of the (partial) sorting, whereas it has no effect on hash join

Performance in “Poorly Optimized” Cases

The performance of the traditional join algorithms might degrade when the estimates em-
ployed by the query optimizer during plan generation are wrong. Two common scenarios
for hash join are an unfavorably chosen partitioning fan-out and wrongly estimated input
sizes.

If the (initial) partitioning fan-out is chosen too small, re-partitioning is required,
which leads to additional reads and writes of the inputs. This additional I/O has a
significant impact on performance. If the partitioning fan-out is chosen too large, too
many small partitions consisting of too many small (sequential) parts are created. They
result in more overhead for building the hash table and don’t make efficient use of the
memory assigned to the operator. Traditional (GRACE) hash join implementations are
susceptive to these kinds of estimation errors. The HyPer/dbcore implementation of hash
join, however, does not suffer from this estimation error. It assumes the optimizer to be
good at estimating the size ratio of left and right input. By completely partitioning the
left (smaller) input before the right input is processed, it avoids re-partitioning the right
input because the number of final partitions is known before partitioning starts. The
overhead incurred by wrong fan-out estimations is therefore quite small (as long as the
smaller input was correctly chosen as the build input) because it only affects the (smaller)
left input. Moreover, the join phase benefits from re-partitioning by more sequential and
less random I/O.

However, if the optimizer fails in correctly determining build and probe inputs, i.e.,
the input sizes are not estimated correctly, the larger input is recursively partitioned as
shown in our experiments in Figure 3.16. The optimistic assumption of correct size ratio
estimation impedes efficient role reversal in case of optimizer faults, i.e., role reversal
before most of the work has been done. Efficient role reversal requires knowing the left
and right input sizes before completely processing one of the inputs, which can be provided
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Figure 3.16: Execution time comparison of g-join (GJ), hash join (HJ), and sort-merge
join (MJ) when the optimizer wrongly assumes OrderLine to be the smaller
relation and assigns it the build role in hash join; g-join and sort-merge
join do not suffer from this optimizer mistake due to role reversal

only when interleaving left and right (possibly recursive) partitioning steps.
Sort-merge join always generates runs for both inputs, merges some of the runs if

necessary and finally conducts an integrated merge-and-join phase. Thus, there is no
unfavorable case. G-join as well has no “bad” case. If relative input sizes were mistaken,
role reversal is possible after run generation. Therefore, the performance numbers for
g-join and sort-merge join in Figure 3.16 are the same as in Figure 3.14. The comparison
reveals that hash join takes up to 54% longer than g-join (scale 250) if query optimization
is poor. Sort-merge join takes up to 27% longer than g-join if inputs are large (scale 1000).

From the results we conclude that for large unsorted inputs, g-join is more robust than
both hash join and sort-merge join: hash join suffers from mistaken optimizer choices
(switched build and probe inputs), while the buffer pool requirements of sort-merge join
exceed the available memory so that intermediate merge steps have to be conducted. If
inputs are roughly sorted, g-join shares the advantages of sort-merge join whereas hash
join cannot profit.

In-memory Execution

Join algorithms are executed “in-memory” when no (intermediate) data is written to disk
during the join. So far we considered the cases when g-join, hash join, and sort-merge join
are not executed in-memory, but generate intermediate data like sorted runs or partitions
on disk. In the case of g-join and hash join, when the smaller of the two inputs fits in
main memory, this is not necessary and execution is considerably sped up. An index
structure is built out of the smaller input, the larger input is scanned once and the index
structure is probed for every tuple of the larger input to find join partners. No runs are
generated in the case of g-join and no partitions in the case of hash join. In our g-join
implementation we use a hash table as probe index structure so that hash join and g-
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Figure 3.17: G-join and hash join execution times in-memory

join are quite similar for the in-memory case. For sort-merge join, we do not consider
in-memory execution because it would require not only one (the smaller) input to fit in
memory but both inputs at once. When joining the relations Order and OrderLine, this
means that sort-merge join requires 20 times more data than g-join and hash join to fit
in memory in order to execute the computation without intermediate disk writes.

We present the results for the in-memory join in Figure 3.17 up to scale 6, which is
the largest scale for which the Order data fits in memory. G-join and hash join show
practically equal performance. The slight difference is due to more branches in our g-join
implementation.

Hybrid G-join

When data size slightly exceeds the in-memory limit, there is an immense performance
decrease as shown in Figure 3.18 (left- and right-most bars). A growth of the Order

relation by only 17% (from 6 to 7 warehouses) causes the execution time to increase by a
factor of 5 (from ca. 700ms to ca. 3300ms). Using hybrid g-join as sketched in Section 3.3.1
with 90% of memory allocated to the maximum heap and 10% to the minimum heap,
we can smooth the execution time degradation significantly. Figure 3.18 (middle bar)
reports the execution time of hybrid g-join (ca. 1300ms) in comparison to non-hybrid
g-join (ca. 3300ms) when the left input size slightly exceeds memory (7 warehouses).

As HyPer/dbcore does not include a hybrid hash join implementation, we do not
provide a performance comparison of hybrid g-join and hybrid hash join. However, we are
confident that the performance evaluation presented proves the effectiveness of our hybrid
g-join implementation and the performance impact is comparable to standard hybrid hash
join.
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Figure 3.18: Hybrid g-join (HGJ) smooths the execution time increase of g-join (GJ)
when the data size slightly exceeds the memory size

Using Persistent Indexes

If the tables to be joined have indexes on the join key, index nested loops join is one of
the choices of the optimizer. We conducted experiments exploiting an existing index on
all relevant columns of the right OrderLine input. The results are shown in Figure 3.19.
We chose to present the execution times using the same scale on the y-axis as in the other
experiments for ease of comparison. For an unsorted non-indexed probe input, g-join takes
advantage of the rough sorting achieved by run generation. Probing the index completely
randomly – as index nested loops join – has a huge negative impact on the execution
time, which is caused by cache thrashing (see also DeWitt et al. (1993)). We aborted the
experiments after two hours. However, when sorting the probe input before starting the
join phase, index nested loops join shows a much better performance, in particular as the
probe input is comparatively small and sorting does not incur much overhead. In total,
g-join performs much better than naïve index nested loops join and is comparable to a
specialized sort-index nested loops join. Obviously, hash join would not gain any benefits.
Sort-merge join behaves as sort-index nested loops. Thus, g-join again exhibits its stable
behavior of being close to the best specialized solution.

We conclude that g-join takes advantage of existing indexes like index nested loops
join but in addition benefits from run generation. Probing the index in a (roughly) sorted
way guarantees high cache locality during the join phase.

3.5.3 Design Alternatives

In Section 3.3.2 we discussed several design alternatives regarding run generation, probe
index, and priority queues. We now examine the impact of the alternative implemen-
tations on the performance of g-join. The default configuration is to use replacement
selection with normalized keys for run generation, a hash table as probe index, and loser
trees as priority queues. We differ from this default only in one dimension in each exper-
iment.
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Figure 3.19: Execution time comparison of g-join (GJ), index nested loops join (NL),
sort-index nested loops join (SN), which sorts the probe input before join-
ing, and hash join (HJ): for unsorted probe input, GJ takes advantage of
the rough sort order achieved by run generation; SN achieves even better
performance by completely sorting the probe input; HJ does not benefit
from the index

Run Generation

We analyze the run generation phase using heap sort (HS), heap sort with poor man’s
normalized keys (HK), and replacement selection (RS) with poor man’s normalized keys.
In Figure 3.20, we compare the execution times of g-join for the different run genera-
tion implementations. We find that the performance difference is measurable but not
practically significant.

In order to gain a better insight, we list relevant statistical numbers collected during
the execution in Table 3.5. For HS, 39% of the CPU time is spent on the comparison of
keys. For HK and RS, the comparisons only account for 0.1%, respectively 0.2% of the
CPU time.12 Although the reduction of CPU time is remarkable, the effect on the overall
execution time is not significant. This is due to g-join being I/O-bound in this experiment
and making use of asynchronous I/O (write back) during run generation. However, in
multi-user scenarios the free processing resources can effectively be exploited by parallel
processes. During run generation, the use of normalized keys reduces the number of full
key comparisons as shown in Table 3.5. Most of the heapify operations can be conducted
on behalf of normalized keys (NK) comparisons. To compare a composite key consisting
of three unsigned values, at most six unsigned comparisons are required. However, we
observed that on average only 2.7 comparisons were conducted using HS so that the gain
using normalized keys (conducting only one comparison) is moderate. For HK and RS, a
full comparison is only done when the normalized keys comparison does not suffice, i.e.,
when the keys are equal in our experiment.

12These values have been determined using gprof.
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Figure 3.20: Execution time comparison of g-join using heap sort (HS), heap sort with
poor man’s normalized keys (HK), and replacement selection (RS) dur-
ing run generation: the use of normalized keys and replacement selection
shows only slight positive effects on the execution times despite large CPU
savings; this is due to g-join being I/O-bound and because of asynchronous
write-back

HS HK RS

# key comparisons (run generation) 4 110 690 239 969 753 1 883 273
# NK comparisons (run generation) 0 4 094 114 682 4 582 574 509
avg # unsigned comparisons
per key comparison (run generation) 2.7 6.0 6.0
gprof: % of CPU time
attributed to comparisons (run generation) 39 0.1 0.2

# R runs 103 112 57
# S runs 1 717 1 803 902
# key comparisons (priority queues) 12 643 693 12 711 098 11 373 366

Table 3.5: Analysis of run generation alternatives heap sort (HS), heap sort with poor
man’s normalized keys (HK), and replacement selection (RS) with respect to
key comparisons (scale 750)

During the join phase, the number of build and probe input runs is crucial for the
memory requirements of g-join. The less runs have to be managed, the less data needs to
be maintained in the in-memory index at any time to enable join processing. Furthermore,
as a side effect, the number of runs determines the number of entries in the priority queues.
The smaller the priority queues, the less key comparisons are required for priority queue
updates which has a (slight) positive effect on execution time. In our experiment, HK
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Figure 3.21: Join phase execution time comparison of g-join using a hash table (HT),
the ISAM* data structure (I*), a red-black tree (RB), and a splay tree
(S) as in-memory index structure during the join phase: for uniformly
distributed data, the performance using the different index structures does
not differ significantly

results in a few more runs than HS because the tuples including the meta-data (i.e., the
normalized key) are larger and thus less tuples fit in the in-memory heap structure for run
generation. RS results in approximately half as many runs for both inputs. We further
measured the savings in priority queue key comparisons to be approximately 10% when
employing replacement selection. The join phase relevant numbers are listed in the second
part of Table 3.5.

We conclude that due to g-join being I/O-bound in this experiment, the gains in
terms of execution time that can be achieved by implementing run generation efficiently
are of no practical significance. However, in more CPU bound or multi-user scenarios, we
expect g-join and parallel processes to profit from employing replacement selection using
normalized keys. Further, when considering non-integer keys, comparisons on integer
normalized keys are advisable. In terms of memory consumption, the use of replacement
selection pays off in our experiment. The number of (left) input runs and thus the main
memory required during the join phase halves compared to heap sort run generation.

Probe Index

We implemented a hash table (HT) and three sort-based index structures as in-memory
probe index alternatives: ISAM* (I*), red-black tree (RB), and splay tree (S). We first
analyze the performance of g-join using the different index structures on uniformly dis-
tributed input data. The results are given in Figure 3.21. In order to abstract from
execution time deviations in the run generation phases, we report only the join phase
execution time. We find that the execution times do not differ significantly. This again
is mainly due to the I/O-bound execution scenario in our experiment. Depending on the
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Figure 3.22: Execution time comparison of g-join on uniform data, on skewed Order

data, and on skewed OrderLine data (scale 750): when using a hash table
(HT), skewed Order data causes large collision chains and thus decreased
performance, with an ISAM* (I*) index the performance does not suffer;
skewed OrderLine data has no effect on the performance

hash function, hash tables may be superior to sort-based index structures in terms of
CPU time as they perform less key comparisons.

However, hash tables are sensitive to skew, in particular duplicate skew. Figure 3.22
compares the execution times of g-join on uniform data (left), on skewed Order data
(middle), and on skewed OrderLine data (right) for scale 750. Skew has been introduced
to both, Order and OrderLine data using a Zipf distribution with z = 1.15 on the three
key columns, i.e., 78% of the OrderLine tuples have keys within the lower 12% of the
key domain. Introducing skew in the Order data left some dangling references in the
OrderLine table. When running the experiments with skewed Order data, we had to
increase the memory assigned to the in-memory join index. Doubling it was sufficient for
executing the join for the scales 250, 500, 750, and 1000. The total memory consumption
still didn’t exceed the memory assigned to the operator. As expected, skewed OrderLine

data (right input) does not affect the performance. Skewed Order data shows to be very
disadvantageous in the join phase if a hash table is employed as in-memory index. This
is due to large collision chains. The sort-based ISAM* in-memory index does not suffer
from skewed input data.

Priority Queues

During the join phase, g-join employs priority queues to guide the updates of the in-
memory index structure and the processing of right input pages. We compare the effect
of the priority queue alternatives loser tree (LT), heap (H), and weak-heap (WH) on the
performance of g-join in Figure 3.23 and Table 3.6. In order to abstract from execution
time deviations in the run generation phases, we report only the join phase execution time.
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Figure 3.23: Join phase execution time comparison of g-join using loser trees (LT),
weak-heaps (WH), and heaps (H) as priority queues during the join phase:
due to g-join being I/O-bound the effect on execution time is negligible

LT H WH

# key comparisons (priority queues) 11 373 366 20 119 483 11 372 562

Table 3.6: Analysis of priority queue alternatives loser trees (LT), heaps (H), and weak-
heaps (WH) with respect to key comparisons (scale 750)

Again, the execution times do not differ significantly, however, the number of priority
queue key comparisons using loser trees or weak-heaps almost halves compared to the
use of heaps. We conclude from our experiments that using loser trees or weak-heaps is
advantageous in terms of CPU time.

Conclusions

From the experiments in this section, we conclude that the effect of design alternatives
regarding run generation, in-memory probe index, and priority queues on the execution
time of g-join is negligible in I/O-bound scenarios. However, as main memory capacities
are growing fast and thus data access latency is decreasing, the alternatives will be inter-
esting for future architectures. In particular, we found the following: (1) The use of poor
man’s normalized keys reduces the CPU time of the run generation phase remarkably.
Further, replacement selection produces only half as many runs compared to heap sort,
which halves the memory requirements of g-join during the join phase. (2) Sort-based
in-memory probe indexes perform comparable to hash tables when input data is uniformly
distributed. In the presence of duplication skew, however, hash tables suffer from large
collision chains. By contrast, sort-based structures are not sensitive to skew. (3) Loser
trees and weak-heaps require only half as many key comparisons as heaps and are thus
preferable in CPU bound scenarios.
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Figure 3.24: Average number of buffer pool frames per left input run during the join
phase of g-join (scale 750)

3.5.4 Memory Requirements

In this section, we analyze the memory requirements of g-join compared to the traditional
join algorithms. Further, we examine the effectiveness of page processing preemption in
limiting the memory requirements of g-join in the presence of skew, in particular with
respect to the last run problem.

Memory Consumption

Our investigation of the memory consumption of g-join, hash join, and sort-merge join
considers the situation that the operator is assigned memory of size M . Hash join typically
uses all available memory during the whole execution time. During partitioning the left
and right input, data is loaded into the available memory and partitioning only starts
if an overflow occurs. The partitioning fan-out is chosen such that each created (left)
partition has a size approximately equal to the available memory and thus exploits it at
its best.

Sort-merge join employs all available memory during run generation. If only one run
is generated for the left and for the right input, only one page per input is required during
the join phase as the sorted runs are scanned sequentially to find matching tuples. If
intermediate merge steps are needed, the required memory depends on how many runs
need to be merged. The same applies to the final integrated merge-and-join phase.

G-join also uses all memory during run generation. During the join phase, we expect
on average only two pages per left input run to be resident in memory. Remember that
the currently processed page from the right input triggers the update of the in-memory
index structure as required by the join key range on the page. There are several ways to
adjust memory consumption during the join phase. As described in Section 3.3.2, merge
steps after run generation reduce the number of runs and thus the average buffer pool
requirements. Alternatively, we can provide a dedicated buffer pool frame for pages of
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Figure 3.25: G-join memory footprint (scale 750)

scale memory footprint [MB-seconds]

g-join hash join sort-merge join

250 2110 6120 3685
500 2406 13500 13970
750 3764 20630 20880

1000 15102 30210 42190

Table 3.7: MB-seconds of g-join, hash join, and sort-merge join for unsorted inputs with
different scales

the last right input run. Further, page processing may be preempted if the required key
range would incur a heavy increase in the number of buffer pool resident pages from the
left input. In this case, the page will be re-read and processing will be resumed later, i.e.,
we trade the buffer pool size for execution preemption and resumption.

We implemented page processing preemption as a universal solution to both buffer
pool size limitation and skew handling. The reported experiments were conducted using
page processing preemption as follows: Right input pages trigger growth of the buffer pool
until it contains twice as many pages as there are left input runs. Then, only at most
one additional left input page is loaded into the buffer pool per processPage call. This
avoids fast increase of the buffer pool size for right input pages with exceptionally large
key ranges like the pages of the last run (see Section 3.3.2), but it does not generally limit
the buffer pool size. Figure 3.24 shows that the average number of buffer pool resident
pages per left input run during the join phase is about 2.

In analogy to energy consumption measurement in kWh, we introduce a new measure-
ment unit to rate the memory consumption of the different join algorithms called MB-
seconds. Figure 3.25 illustrates it based on the experiments presented in Section 3.5.2
running g-join with 10MB of memory and a scale of 750 warehouses. During run gen-
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eration, g-join uses the whole available memory, i.e., 10MB. The join phase however,
requires only 1.8MB (two frames per left input run). We denote the integral of the mem-
ory footprint over time as the MB-seconds. We compare the MB-seconds of g-join, hash
join, and sort-merge join in Table 3.7 based on the execution times given in Figure 3.14.
The algorithms reserve all memory during the first phase (run generation or partitioning),
but g-join requires the least memory during the join phase and therefore has the smallest
memory footprint over time.

The Last Run Problem

We examine the effectiveness of page processing preemption with respect to the “last run
problem” described in Section 3.3.2. Table 3.8 gives an overview of the run lengths and the
minimum and maximum join key values per right input run for the data scale 750.13 The
domains of the join key columns are [1,scale] for O_W_ID, [1,10] for O_D_ID, and [1,3000]
for O_ID.

run id load ops length min key max key
per page [pages]

0 9.31 999 [1,1,72] [750,10,2972]
1 0.16 1133 [1,1,515] [750,10,2899]

2-899 0.02 1162 [1,1,1] [750,10,3000]
900 0.01 1153 [1,1,120] [750,10,2770]
901 50.86 450 [1,1,82] [659,4,1269]

Table 3.8: Statistics about right input runs (scale 750)

Pages of the first and in particular the last run let the buffer pool increase extremely
because of their larger key value ranges and thus, the larger immediate join key range
they require. As given in Table 3.8, for each page of the first run on average 9.31 left
input pages are loaded and for each page of the last run, even 50.86 left input pages are
loaded. This extreme increase (compared to the average increase of less than one induced
by pages of the other runs) is problematic because the buffer pool shrinks again only
slowly after the pages with smaller keys from all runs have been processed. Figure 3.26
illustrates the buffer pool growth in case no limit is enforced on its size. The join execution
is aborted due to hash table overflow. If page processing preemption is enabled, the buffer
pool size is as shown in Figure 3.24. Skipping the first and last right input run in the
join computation has the same effect on the buffer pool as shown in Figure 3.27, i.e., the
average number of resident left input pages is about 2 at any time during the join phase.
The results show the effect of different run lengths on the buffer pool size and prove page
processing preemption to be effective in handling key value skew.

13Replacement selection is known to produce runs of almost equal length except for the first and the
last runs. In steady state, replacement selection generates runs of length approximately twice the memory
size. Before a steady state is reached (initial ca. 2 runs) and when it gives out (after end of input, last
ca. 2 runs) this does not hold.
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Figure 3.26: Average number of buffer pool frames per left input run during the join
phase of g-join when omitting buffer pool growth limitation (scale 750)
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Figure 3.27: Average number of buffer pool frames per left input run during the join
phase of g-join when skipping processing of the first and last right input
run and omitting buffer pool growth limitation (scale 750)
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3.6 G-Join Relatives: G-Distinct and G-Aggregation

Besides joins, grouping operations are of great importance in database systems. Tra-
ditional grouping algorithms are based on hashing, sorting, or on nested loops compu-
tations. As with joins, the optimizer chooses the least cost grouping implementation
based on probably incorrect or incomplete (statistical) data and this bears the risk of
mistakes, which result in poor performance. We propose g-aggregation and g-distinct,
the application of the g-join concept to “group by” operations, i.e., aggregation and dupli-
cate removal, to replace traditional grouping algorithms. They combine the advantages of
sort-based grouping (exploiting sorted input and early aggregation potential) and of hash-
based grouping (memory requirements only depending on output size). Furthermore, they
exploit available persistent indexes as source of sorted input.

Like g-join, g-aggregation14 for an unsorted input generates sorted runs from its input.
After that, an in-memory index structure is built and maintained to hold intermediate
results, e.g., sums or counts. The tuples that are present in memory form the immediate
aggregation key range. As soon as tuples move out of the immediate aggregation key range,
the final aggregated result is computed and output. A priority queue guides processing
of the input pages.

G-aggregation for sorted and indexed inputs is straightforward as in both cases the
input is processed in ascending sort (i.e., grouping) key order and the immediate aggre-
gation key range thus consists of only one key at any point in time. The intermediate
aggregation result is updated according to every tuple with a matching grouping key.
When a tuple with a greater key appears, the aggregation result is output and a new
aggregation group is created. We omit a detailed discussion of these special cases.

We present the g-aggregation algorithm and run through a detailed example. Where
applicable, we briefly discuss implementation alternatives. Further, we provide a qualita-
tive comparison of g-aggregation to hash-based and sort-based grouping algorithms.

3.6.1 Basic Algorithm

G-aggregation is based on a (partial) ordering of the data by the grouping key. If the
input is already sorted (or can be read from a sorted source like a B-tree), it omits
sorting and processes the input quite similar to sort-based grouping. For an unsorted
input producing an output small enough to fit in main memory, g-aggregation effectively
executes an in-memory hash-based grouping.

For an unsorted input resulting in an output larger than main memory, g-aggregation
produces sorted runs and then traverses these runs synchronously, while maintaining
intermediate aggregation results for keys within the immediate aggregation key range in
an in-memory index structure. As soon as a key leaves this range, the aggregation result is
computed and an output tuple is generated. Algorithm 3.7 sketches the basic processing
of g-aggregation. First, sorted runs are generated from input R, at the same time already
aggregating values as much as possible and creating intermediate results. Then, the runs
are organized in a minimum priority queue P sorted by the highest key read so far per
run. For the runs from which no page has been processed yet, the sort key is the key

14We subsume g-distinct under the term g-aggregation as it constitutes a special case: while g-
aggregation combines tuples having the same key column value(s), g-distinct combines tuples of which
all column values comply.
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Algorithm 3.7: g-aggregation for unsorted input and output larger than memory
Data: input relation R

/* first phase: run generation */

1 NR ← run-generation-early-aggregation(R);
/* initialize data structures for aggregation phase */

2 create in-memory index;
3 foreach Ri, 1 ≤ i ≤ NR do
4 mini ← minimum value on first page of Ri;
5 end
/* each entry in priority queue P is a pair of sort (join) key sk and run

identifier rid */

6 initialize priority queue P with sk=mini, rid=i, 1 ≤ i ≤ NR;
/* second phase: aggregation */

7 while C is not empty do
/* determine page to be processed next */

8 id ← P.top().rid ;
9 p← next page of run Rid;

10 if p is NULL then
/* run Rid finished */

11 remove entry for Rid from priority queue P ;

12 else
13 foreach entry e on p do
14 probe into in-memory index using e;
15 if match m found then
16 aggregate(m,e);
17 else
18 create new intermediate result entry from e;
19 end

20 end
21 max ← maximum entry on p;
22 update priority queue P with sk=max, rid=id ;

23 end

24 end

of the first tuple. The priority queue corresponds to priority queue C of g-join. During
the aggregation phase, pages of the runs are processed in the order given by the priority
queue. Each tuple e is used to probe into the in-memory index. If a match is found, the
intermediate tuple in the index and the current tuple are aggregated. The aggregate

method depends on the concrete grouping function. E.g., for count, the group’s counter
is incremented, for min, the minimum value in the intermediate tuple is compared to the
current tuple and updated if needed. We present a few examples in Section 3.6.2. After
having processed all tuples on the input page, the priority queue is updated with the last
processed key value for the current run.

3.6.2 Algorithm Details

The g-aggregation algorithms adopts the concept of g-join of generating sorted runs and
traversing them synchronously to find matching tuples. Different grouping functions like
count, sum, avg, min, max, and also distinct are basically computed in the same way.
Tuples are brought together based on their grouping key and only one value per group
is returned. Compared to g-join, g-aggregation allows for a more efficient run generation
and requires an explicit output generation
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Run Generation with Early Aggregation

In the run generation phase, we employ replacement selection using weak-heaps and poor
man’s normalized keys. We refer to Section 3.3.2 for a detailed discussion of the run gener-
ation alternatives load-sort-store and replacement selection and the benefits of normalized
keys.

By generating runs sorted by the grouping key in the first phase, tuples having the
same key are naturally grouped within each run so that early aggregation applies. We
implement early aggregation as described by Yan and Larson (1994) and before by Bitton
and DeWitt (1983) for duplicate removal. Thereby, intermediate records containing the
grouping key as well as an intermediate result are stored in the in-memory heap. New
tuples are either combined with already existing groups according to the grouping function
or – if no group with the same key is found – initiate the creation of a new group. By
early aggregation, the intermediate result may be significantly reduced, i.e., run generation
results in less and shorter runs. This leads to less I/O for writing and reading the sorted
runs and also reduces the number of in-memory index updates during the aggregation
phase.

Different Grouping Functions

In the second phase, the partial aggregation results in each run are further aggregated
using the in-memory index structure. This means, intermediate tuples are used to build
and probe the index structure. Depending on the concrete grouping function, intermediate
tuples have different formats and must allow for (1) storing multiple computed values per
group (e.g., sum and count of column values when computing avg, or multiple aggregated
values for the same key as in

SELECT O_C_ID, count(O_ID), sum(O_OL_CNT)

FROM Order

GROUP BY O_C_ID

counting the number of orders per customer and summing up the counts of order-lines,
e.g., to compute the average number of items per order) and (2) handling changing sizes
of aggregates (e.g., when computing min on string values).

We implement the in-memory index structure as a hash table using the memory format
shown in Figure 3.28. The hash table slots contain 32-bit pointers (in form of offsets)
to intermediate tuples stored in the data area. Whenever a new intermediate tuple is
created, memory is allocated in the data area, the tuple is copied to the newly allocated
memory slot, and a pointer is stored in the hash table slot. Collisions are handled using
chaining: When a tuple t2 collides with an already stored tuple t1, the pointer to t1 is
copied from the hash table slot to the next field of t2 and the pointer to t2 is stored in
the hash table slot. When an output tuple is generated and removed from the hash table,
the memory slot in the data area is released again. As frequent insertions and deletions
might lead to a high fragmentation, we propose to compactify the data area at regular
intervals or depending on the fragmentation level.

Our implementation naturally supports intermediate tuple formats containing more
than one aggregated value as well as aggregates of varying size. The examples in Fig-
ure 3.28 show that the intermediate tuple format can be chosen arbitrarily. For grouping
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intermediate tuple format 

depends on grouping function:
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max:

ptrptrptrptrptr
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next intermediate tuple
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next intermediate tuple

next intermediate tuple
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next intermediate tuple

data area

hash table

key sum countsize

key maxsize

Figure 3.28: Representation of the hash table index structure: by separating the hash
table from the actual data, even variable size intermediate tuple formats
(as needed for grouping functions like max ) are supported

functions with changing intermediate tuple sizes like min and max on strings, a new mem-
ory slot is allocated and the old one is released when the size of an intermediate tuple
changes.

Probe Index

For g-aggregation, the same considerations regarding the in-memory index structures as
discussed for g-join in Section 3.3.2 hold. However, as opposed to join processing, only one
input is used to build and probe the index structure, one page at a time. In particular,
each input page is read into the buffer pool only once during the aggregation phase. Thus,
output generation is not triggered by the eviction of pages from the buffer pool but must
be invoked explicitly.

We sketch how this can be done for two alternatives for the in-memory probe index
(and aggregation) structure: (1) a hash table as used for g-join and (2) a B-tree as
representative for a sort-based index structure.

Hash table. When using a hash table there are two possibilities to produce output
tuples: One possibility is to scan the hash table at regular intervals and produce output
tuples for keys which have already left the “immediate aggregation key range”. This
enables a nearly sorted output but incurs the overhead of checking every hash table slot
for outdated keys. Another possibility is to produce the output tuples in a “lazy” way, i.e.,
whenever an insert collision occurs, one can check if the already stored key is outdated.
If yes, an output tuple is produced and its space is freed for the new key. When there
are no more input tuples, the hash table is scanned once to output the remaining tuples.
This, of course, produces unsorted output, however, the overhead for producing output
tuples is small. Note that the hash table can overflow because outdated tuples are not
removed (if they do not cause collisions). In this case, we need to free some space in the
hash table by an intermediate scan.

B-tree. The advantage of using a B-tree as index structure is that the output is natu-
rally produced (completely) sorted and the cost for producing the output depends only
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idxmin key < P.top().sk P.top().sk  kmin key  idxmax idxmax < key  kmax

Figure 3.29: B-tree index structure: when processing a page with key values between
kmin and kmax, the left part of the B-tree containing key values smaller
than P.top().sk can be discarded, for all key values between kmin and the
current maximum key value in the index idxmax, the existing intermediate
tuples are extended, and for all new key values between idxmax and kmax,
new intermediate tuples are created.

on the output size and not on the index structure size. By scanning the leaf level from
left to right until the “immediate aggregation key range” is reached, only already com-
pletely aggregated tuples are considered. In contrast to that, all intermediate and final
aggregation tuples are considered when scanning the hash table. Figure 3.29 illustrates
the relationship between key value range on the currently processed page and the B-tree
index structure updates.

3.6.3 Example

Figures 3.30 and 3.31 illustrate the two phases of g-aggregation computing count : For run
generation in Figure 3.30, a priority queue of size six is used. Note that the tuples within
the priority queue and the generated runs are already intermediate tuples consisting of a
key and an aggregate value (or more values, depending on the grouping function). In our
example, the input consists of pages (rectangles) holding five unordered tuples each. The
input tuples consist of the aggregation (= sort) key and payload data of which the values
are preceded by “t”. Intermediate tuples consist of the aggregation key and a (partially
computed) count value which is preceded by “c:” and marked in italics.
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Figure 3.30: G-aggregation count : run generation using replacement selection with early
aggregation in a heap of size two pages, i.e., six intermediate tuples
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Figure 3.31: G-aggregation count : aggregation phase

During the aggregation phase, only one buffer frame is needed to process pages of
the runs, the rest of the available memory is dedicated to the in-memory index structure,
which we illustrate as a hash table in the example. The currently processed page is framed
thickly, already processed pages are shaded. For each value on the currently processed
page, the hash table is probed. When processing the first page of R1 in Figure 3.31a, no
match is found and for each tuple an intermediate record is created in the hash table.
Subsequently, the priority queue P is updated and the first page of R3 is loaded into the
buffer pool. In the second step shown in Figure 3.31b, for the keys 0 and 1 an intermediate
record is found in the hash table and the count values are summed up. For the key 2,
a new intermediate record is created. Then, the priority queue is updated and the third
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Figure 3.32: G-aggregation count : aggregation phase (cont’d)

step in Figure 3.31c proceeds in the same way. In Figure 3.32a, the first output tuples for
the keys 0 and 1 are produced. As future keys will be greater or equal to the top entry
of the priority queue, the counts for keys less than 2 are completely computed and their
records can be removed from the hash table. Note that the aggregate for the key value
0 could have been output also before processing step 3. We will see later that there are
several strategies for generating output, which do not necessarily produce the output as
early as possible. In step four in Figure 3.32b, the first two hash table slots are freed
again and new intermediate records are created for the keys 4 and 5.

3.6.4 Traditional Grouping Algorithms

We briefly present the traditional hash-based and sort-based grouping algorithms and
summarize the main characteristics of g-aggregation in comparison to them.

Hash-based Grouping

Hash-based grouping maintains a hash table in memory, in which the output is maintained.
The input is read tuple by tuple (page by page), probing with each one into the hash table.
If a matching group is found, the tuple is added to the group (which may involve, e.g.,
incrementing a counter for count or comparing the group result with the current tuple
and possibly resetting the group result for max ). If no matching tuple is found, a new
hash table entry is created. If the output exceeds the memory size, the current hash table
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content as well as all future input tuples are partitioned. Hash-based grouping cannot
exploit presorted input and produces output only after the last input tuple has been
processed.

Sort-based Grouping

Sort-based grouping first sorts its input by producing sorted runs (using, e.g., quicksort
or replacement selection) and then merging the runs until only one run remains. During
run generation, optimizations like early aggregation are applicable and result in smaller
intermediate results and thus less I/O operations during run generation and merge phase.
Replacement selection is preferable to load-sort-store alternatives because it produces
longer and thus fewer runs, which may be critical for the number of merge steps.15 If
the input is already sorted, the (expensive) sort phase can be omitted. The sorted input
is then iterated and tuples are aggregated in a group as long as the key value does
not change. Every time the key value changes, an output tuple is produced. Sort-based
grouping requires only little memory (the current tuple/page as well as the current group)
and processing. Further, it produces result tuples right from the start.

3.6.5 Summary and Comparison

Hash-based grouping profits from a small number of distinct values as the output size de-
termines the efficiency of the algorithm. The larger the reduction factor, the less memory
is required and caching can be exploited. However, hash-based algorithms cannot profit
from sorted inputs. Further, output can only be produced after the last input tuple is
processed.

Sort-based grouping profits from presorted inputs. It can exploit early aggregation
during the sort phase, but if the number of distinct values is large, then the benefit is
small and the costs of sorting are very high (reading and writing the input twice or possibly
even more often depending on the number of merge levels). During the aggregation phase,
output is processed immediately and in sorted order.

G-aggregation generates sorted runs and then traverses the runs in sort order and
computes the grouping result for the distinct values in an in-memory index. For input
with a large reduction factor, g-aggregation profits from small memory requirements and
caching like hash-based grouping. If the input is sorted, run generation can be omitted. If
the input is roughly presorted, run generation is assumed to result in only one run which
can be processed as in sort-based grouping. During run generation early aggregation is
applicable. Further, first output results can be produced early when the respective values
leave the “immediate aggregation key range”. Thus, g-aggregation shares the advantages
of sort-based aggregation.

Table 3.9 briefly summarizes the characteristics of g-aggregation as well as those of
the traditional sort-based and hash-based grouping algorithms.

We conclude that g-aggregation is competitive in the common cases (e.g., if the re-
duction factor is significant: sort-based grouping profits from early aggregation and hash-
based grouping profits from a relatively small output) and is superior to the traditional
algorithms in unfavorable cases (e.g., when the reduction factor is close to 1: sort-based

15Let M be the memory size and F the merge fan-in (which is approximately M). If the number of
runs exceeds F , at least one intermediate merge step is required.
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Property Hash-based grouping Sort-based grouping G-aggregation

Input and
output
sizes

Output size deter-
mines the memory
requirements and the
number of required
partitioning steps

Input size determines
the number of re-
quired merge steps,
output size determines
the effectiveness of
early aggregation and
thus the I/O costs of
(intermediate) merge
steps

Both, input and out-
put size, determine
the effectiveness of
early aggregation, the
number of resulting
runs and thus the
memory requirements

Input sort
order

Cannot be exploited Is exploited Is exploited

Duplication
skew

Practically no impact Is exploited by early
aggregation during
run generation

Is exploited by early
aggregation during
run generation

Distribution
skew

Practically no impact
in HyPer/dbcore as
partitioning employs
hash values and is
adaptive w.r.t. their
ranges

Practically no impact Impact on buffer pool
size and hash table
fill factor if key values
of few runs are very
dense

Memory
require-
ments

Uses all available
memory during
grouping

Uses all available
memory during run
generation; during the
integrated merge-and-
join phase memory
requirements depend
on the number of runs

Uses all available
memory during run
generation; during
join on average only
two pages per input
run need to be mem-
ory resident at any
time

Output Unsorted Sorted Nearly sorted

Table 3.9: Characteristics of traditional hash-based grouping, traditional sort-based
grouping, and g-aggregation

grouping performance is influenced mainly by the I/O costs for run generation and merge
steps while hash-based grouping suffers from overflow and partitioning).
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3.7 Summary and Conclusions

Query optimization in relational database systems relies on estimated query execution
costs to determine a good execution plan. However, the estimates may be orders of
magnitude off the real values due to outdated statistics or a poor optimization level. This
results in wrong optimizer choices, e.g., regarding join algorithms, and thus in poor query
execution performance.

In order to eliminate the need for possibly wrong optimizer decisions, a new robust join
algorithm has been proposed by Graefe (2012) to replace the traditional algorithms based
on hashing, sorting, and indexes. G-join combines elements of hash join and sort-merge
join and inherits the advantages of both – it exploits different input sizes like hash join
and exploits sorted inputs like sort-merge join. Further, it exploits persistent indexes like
index nested loops join. If both inputs are sorted, g-join effectively executes a merge join.
If one of the inputs fits in memory, g-join effectively executes an in-memory hash join and
thus does not incur intermediate I/O. G-join permits role reversal after run generation
and thus is not prone to wrong estimates of relation sizes by the query optimizer.

This work is the first to completely implement and integrate g-join into a database
system. Our experimental evaluation on the modern database system HyPer/dbcore
shows that g-join is competitive to hash join on unsorted data (Figure 3.14) and to sort-
merge join on roughly sorted data (Figure 3.15). If there exist persistent indexes, g-join
uses them like index nested loops join but additionally profits from the rough sort order of
the probe input produced by run generation (Figure 3.19). For large unsorted inputs, g-
join is more robust than hash join as it does not suffer from mistaken optimizer estimates
(Figure 3.16) and it executes the join faster than sort-merge join as it avoids the costly
complete merge of sorted runs. Our hybrid g-join implementation is effective in producing
first join results early and in saving I/O. It smooths the performance decrease when the
smaller input’s size slightly exceeds memory (Figure 3.18). Duplication and distribution
skew (Figure 3.22) in the large input do not affect the performance of g-join. However,
skew in the small input was harmful in our experiments if a hash table was chosen as in-
memory index structure. Alternative sort-based in-memory index structures performed
better. G-join reserves memory proportional to the number of left input runs during the
join phase so that a small left input resulting in few runs leads to a small memory footprint.
Further, g-join allows for an adaptive memory partitioning for immediate join processing
and run generation. This hybrid variant smooths the I/O volume induced if one of the
inputs is only slightly larger than memory. In total, g-join performs comparable to hash
join and sort-merge join for “good” cases, i.e., when optimizer decisions are appropriate,
and proves its superiority for the “bad” cases, i.e., when the optimizer fails. It exploits
persistent indexes like index nested loops. Thus, g-join improves the robustness of query
processing performance without reducing query execution performance.

The concept of g-join is applicable to grouping and duplicate elimination. The g-
aggregation and g-distinct algorithms profit from a (roughly) sorted input like sort-based
grouping and from a large reduction factor like hash-based grouping. By generating sorted
runs, the aggregation key range is kept small compared to hash-based algorithms. First
results are produced early as by sort-based algorithms. Thus, g-aggregation promises to
be competitive to sort-based and hash-based grouping.
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Chapter 4

Massively Parallel Sort-Merge Joins

Scalability in analytical query processing can be achieved by scaling the available infra-
structure either horizontally (scale out) or vertically (scale up). For scale out, additional
nodes are included in the infrastructure. By aggregating the computing power of hundreds
of low cost commodity systems, high performance comparable to that of supercomput-
ers can be achieved. The widely used MapReduce framework introduced by Dean and
Ghemawat (2004) builds on this mode of scaling. Scale up, by contrast, relates to the
upgrade of a single node by adding or replacing resources. We focus on the latter as we
believe that two emerging hardware trends will dominate the database system technology
in the near future: increasing main memory capacities of several TB per server and mas-
sively parallel multi-core processing. This development demands for the revision of the
algorithmic and control techniques in current database technology, which were devised
specifically for disk-based systems where I/O dominates the performance.

In this chapter, we take a new look at the well-known sort-merge join, which, so far,
has not been in the focus of research in scalable massively parallel multi-core data process-
ing as it was deemed inferior to hash joins. We devise a suite of new massively parallel
sort-merge (MPSM) join algorithms that are based on partial partition-based sorting.
We cover a disk-based highly parallel join algorithm (D-MPSM) and a range-partitioned
NUMA-affine main memory join algorithm (P-MPSM). Furthermore, we detail the skew
resilience of MPSM, which offers predictable performance irrespective of the input data
distribution. An extensive experimental evaluation on a modern 32-core machine with
1TB of main memory proves the competitive performance of MPSM on large main mem-
ory databases with billions of objects. It scales almost linearly in the number of employed
cores and clearly outperforms competing hash join proposals. Finally, we investigate the
applicability of MPSM for non inner join computations and in complex query plans.

Parts of the work presented in this chapter appeared in Albutiu et al. (2012a) and Al-
butiu et al. (2012b).
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> SELECT Table1.c1,

avg(Table2.c2)

FROM Table1,Table2

WHERE … 

GROUP BY … 

---

_

database management system

buffer pool across NUMA partitions

database

tables

c1 c2 c3 c4

Table1
c1 c2 c3

Table2

indexes

Idx2.c3c1

Idx1.c1c4c3

Figure 4.1: Execution of an analytical query on a multi-core NUMA system: multiple
cores are working concurrently on (partly overlapping) parts of the database
across the NUMA partitions

4.1 Introduction

Increasing main memory capacities of up to several TB per server and highly parallel
processing exploiting multi-core architectures dominate today’s hardware environments
and will shape database system technology in the near future. New database software has
to be carefully targeted against the upcoming hardware developments. This is particu-
larly true for main memory database systems that try to exploit the two main hardware
trends – increasing RAM capacity and core numbers. Simply porting existing algorithms
to parallel environments and main memory databases may result in totally unbalanced
load, in particular when the underlying architecture exhibits non-uniform memory ac-
cess (NUMA). This leads to suboptimal and unpredictable execution times. Figure 4.1
illustrates the parallel processing of an analytical query on a multi-core NUMA system.
Multiple threads are working concurrently on parts of the query. Each of the threads is
assigned to a processing core and, thereby, to a NUMA partition. However, the threads
may access data across the complete buffer pool, i.e., within all NUMA partitions. Fur-
thermore, they may access overlapping parts of the data, which requires synchronization.
In this scenario, in order to take advantage of the large buffer pool and the high paral-
lelism, database algorithms must be designed with care. The processing work needs to
be divided equally between the workers, varying data access delays need to be taken into
consideration, and the requirements for synchronization between the workers should be
minimized.

So far, main memory database systems were either designed for transaction processing
applications, e.g., VoltDB LLC (2010), or for pure OLAP query processing like MonetDB
by Boncz et al. (2009). However, the upcoming requirements for so-called real-time or
operational business intelligence demand complex query processing in “real time” on main
memory resident data. SAP’s Hana by Färber et al. (2011) and the hybrid OLTP&OLAP
database system HyPer by Kemper and Neumann (2011), for which the presented mas-
sively parallel join algorithms were developed, are two such databases. The query process-
ing of in-memory database systems is no longer I/O-bound and, therefore, it makes sense
to investigate massive intra-operator parallelism in order to exploit the multi-core hard-
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ware effectively. Only query engines relying on intra-query and intra-operator parallelism
will be able to meet the instantaneous response time expectations of operational business
intelligence users if large main memory databases are to be explored. Single-threaded
query execution is not promising to meet the high expectations of these database users as
the hardware developers are no longer concerned with speeding up individual CPUs but
rather concentrate on multi-core parallelization.

Consequently, we develop a new sort-based parallel join method that scales (almost)
linearly with the number of cores. Thereby, on modern multi-core servers, our sort-based
join outperforms hash-based parallel join algorithms, which formed the basis for multi-core
optimization in recent proposals. The well-known radix join algorithm of MonetDB intro-
duced in Manegold et al. (2002) pioneered the new focus on cache locality by repeatedly
partitioning the arguments into ever smaller partitions. The recursive sub-partitioning,
rather than directly partitioning into small fragments, preserves TLB cache locality by
restricting the random write of the partitioning phase to a small number of pages whose
addresses fit into the TLB cache. The join is carried out on small cache-sized fragments
of the build input in order to avoid cache misses during the probe phase. Because of this
cache-affine behavior, the radix join became the basis for most of the work on multi-core
parallel join implementations, e.g., by Kim et al. (2009) and He et al. (2008). In ad-
dition to the cache locality, He et al. (2008) and Kim et al. (2009) also focused on low
synchronization overhead and avoidance of dynamic memory allocation. Both aspects
were achieved by computing histograms of the data to be partitioned and then deriv-
ing the prefix sums to determine the exact array positions into which parallel threads
write their partitioned data. Unfortunately, merely relying on straightforward partition-
ing techniques to maintain cache locality and to keep all cores busy will not suffice for
the modern hardware that scales main memory via non-uniform memory access. Besides
the multi-core parallelization, the RAM and cache hierarchies also have to be taken into
account. In particular, the NUMA division of the RAM has to be considered carefully.
The whole NUMA system logically divides into multiple nodes, which can access both
local and remote memory resources. However, a node can access its own local memory
faster than remote memory, i.e., memory which is local to another node. The key to scal-
able high performance is data placement and data movement such that threads/cores
work mostly on local data – called NUMA-friendly data processing.

To back up this claim, Figure 4.2 shows the results of a few micro-benchmarks we ran
on a 1TB main memory machine with 32 cores16. We therefore instantiated 32 threads
to work on one relation with a total of 1600M (M = 220) tuples, each consisting of a
64-bit sort key and a 64-bit payload, in parallel. (1) We first chunked the relation and
sorted the chunks of 50M tuples each as runs in parallel. In the “green” NUMA-affine
benchmark, the sorting of each core was performed in the local NUMA RAM partition,
whereas in the unfavorable “red” case the sort was performed on a globally allocated array.
We observe a severe performance penalty of a factor of three if NUMA boundaries are
ignored. (2) We then analyzed the performance penalty of fine-grained synchronization.
For this, the 32 threads partitioned the global relation into 32 chunks each being stored
as an array. In the “red” experiment the next write position was individually read from
a (test-and-set) synchronized index variable of the corresponding partition array. In the
“green” experiment all threads were allocated precomputed sub-partitions that could be
written sequentially without synchronization. This experiment proves that fine-grained

16The system configuration is given in Section 4.6.
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Figure 4.2: Impact of NUMA-affine versus NUMA-agnostic data processing

synchronization (even with wait-free test-and-set variables) is a “no-go” for scalable data
processing. (3) Finally, in the last micro-benchmark, we analyzed the tolerable perfor-
mance penalty of sequentially scanning remote memory in comparison to local memory.
Each of the 32 parallel threads merge-joins two chunks of 50M tuples each. One of the
runs is local, the second run is either in remote (“yellow”) or local (“green”) NUMA par-
titions. The negative impact of the second chunk being accessed remotely compared to
the second chunk being local, too, is mitigated by the hardware prefetcher as the accesses
are sequential. We thus conclude that sequential scans of remote memory are acceptable
from a performance perspective.

These observations and further micro-benchmarks led us to state the following three
rather simple and obvious rules (called “commandments”) for NUMA-affine scalable multi-
core parallelization:

C1 Thou shalt not write thy neighbor’s memory randomly – chunk the data, redistribute,
and then sort/work on your data locally.

C2 Thou shalt read thy neighbor’s memory only sequentially – let the prefetcher hide
the remote access latency.

C3 Thou shalt not wait for thy neighbors – don’t use fine-grained latching or locking
and avoid synchronization points of parallel threads.

By design, the massively parallel sort-merge join algorithms (called MPSM) obey all
three commandments, whereas the previously proposed hash join variants violate at least
one of the commandments and, therefore, exhibit scalability problems of various forms.

We will show that the carefully engineered NUMA-friendly MPSM exhibits an out-
standing performance when compared to the Wisconsin hash join by Blanas et al. (2011)
and Vectorwise by Inkster et al. (2011). Our performance evaluation proves the scalability
of MPSM for very large main memory databases with hundreds of GB data volume. For
large numbers of cores (up to 32), MPSM outperforms the recently proposed hash-based
Wisconsin join by up to an order of magnitude. MPSM scales (almost) linearly in the
number of cores and compared to the TPC-H endorsed “world champion” query processor
Vectorwise even achieves a factor of four.
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Figure 4.3: Comparison of basic join processing of Wisconsin hash join, radix join, and
MPSM

4.2 A Family of MPSM Algorithms

We will first present the very basic idea of the NUMA-affine MPSM in comparison to
the Wisconsin hash join and the radix join. Then we sketch the abstract algorithm and
present two derived implementations for disk-based and in-memory scenarios.

The recently proposed Wisconsin hash join by Blanas et al. (2011) is based on a
global shared hash table, which has to be built across the NUMA partitions by a large
number of threads as sketched in Figure 4.3a. The concurrent accesses to a single hash
table need synchronization via latches. Therefore, during the parallel build phase, “com-
mandments” C2 and C3 are violated. During the probe phase, random reads to the hash
table are performed across the NUMA memory partitions, which again violates C2 as
the hardware prefetcher cannot hide the access latency. We illustrate the random writes
and reads within the NUMA partitions using different-colored arrows and the required
synchronization with locks.
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The radix join of MonetDB as described in Manegold et al. (2002) and employed
by Kim et al. (2009) writes across NUMA partitions during the initial partitioning phase
as illustrated in Figure 4.3b. The radix join repeatedly partitions the arguments in order to
achieve cache locality of the hash table probes despite their random nature. Unfortunately,
the price for this locality is the partitioning of both join arguments across the NUMA
memory during the first partitioning step, which violates C2.

Our massively parallel sort-merge (MPSM) join is designed to take NUMA architec-
tures into account, which were not yet in the focus of prior work on parallel join processing
for main memory systems. As illustrated in Figure 4.3c, each data chunk is processed,
i.e., sorted, locally, which conforms to C1. Unlike traditional sort-merge joins, we re-
frain from merging the sorted runs to obtain a global sort order and rather join them
all in a brute-force but highly parallel manner. We opt to invest more into scanning in
order to avoid the hard to parallelize merge phase. Obviously, this decision does not
result in a globally sorted join output but exhibits a partial sort order that allows for sort
order based subsequent operations, e.g, early aggregation. During the join phase, data
accesses across NUMA partitions are sequential as required by C2, so that the prefetcher
mostly hides the access overhead. We do not employ shared data structures so that no
expensive synchronization is required and C3 is met. Therefore, MPSM obeys all three
NUMA-commandments by design.

4.2.1 The Basic MPSM (B-MPSM) Algorithm

The basic MPSM (B-MPSM) algorithm is sketched in Figure 4.4 for a scenario with four
worker threads. The input data is chunked into equally sized chunks among the workers,
so that for instance worker W1 is assigned a chunk R1 of input R and another chunk S1

of input S. In the following, we call R the private input and S the public input. Each
worker sorts its data chunks, thereby generating sorted runs of the input data in parallel.
These runs are not merged as doing so would heavily reduce the “parallelization power”
of modern multi-core machines. After the sorting phase is finished, each worker processes
only its own chunk of the private input but sequentially scans the complete public input.
We will later devise the range partitioned variant where this complete scanning is avoided
to speed up the join phase even more beyond parallelization. During run generation
(phase 1 and phase 2), each worker thread handles an equal share of both the public and
the private input. These phases do not require any synchronization between the workers

R1 R2 R3 R4

S1 S2 S3 S4

sort

sort

… … 

smaller

larger

smaller

larger

W1 MJ
W4 MJ

W1 W2 W3 W4

Phase 2

Phase 3

Phase 1 S data

R data

Figure 4.4: B-MPSM join with four workers Wi
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and are performed in local memory, which we have shown to be advantageous for the
sort operator in the micro-benchmarks in Figure 4.2. Even if data has to be copied from
remote to local chunks, this can be amortized by carrying out the first partitioning step
of sorting while copying. In phase 3, each worker joins its sorted private input run with
the sorted public input runs using merge join. The join phase requires reading non-local
memory, however, only sequentially. As we have shown before, sequential scans heavily
profit from (implicit processor) prefetching and cache locality and therefore do not affect
performance significantly.

The B-MPSM algorithm is absolutely skew resistant and obeys the three “command-
ments” for NUMA-affine design we stated above: During the run generation phases for
public and private input, only local memory is written. In the join phase, all runs (local
and remote) are scanned sequentially. Furthermore, B-MPSM requires only one synchro-
nization point as we need to make sure that the public input runs Si are ready before we
start the join phase. Note that the sort phase of the private data R need not be finished
before other threads start their join phase. Thus, the synchronization is limited to ensure
that all other workers have finished their sorting of the public input chunk before phase 3
(join) is entered. The fact that the output of each worker is a sorted run may be lever-
aged by subsequent operators like sort-based aggregation. Also, presorted relations can
obviously be exploited to omit one or both sorting phases.

B-MPSM basically executes w sort-merge joins in parallel, where w is the number of
worker threads. In each of these sort-merge joins, 1/wth of the input relations is processed.
A crude complexity approximation per worker Wi results in:

|S|/w · log(|S|/w) sort chunk Si of size |S|/w
+ |R|/w · log(|R|/w) sort chunk Ri of size |R|/w
+ w · |R|/w process run Ri for all S runs
+ w · |S|/w process all S runs

= |S|/w · log(|S|/w) + |R|/w · log(|R|/w) + |R|+ |S|

On the bottom line, each thread sorts “its” chunks of R and S and processes all sorted
S runs. Thereby, the own R run is read w times as each of the S runs possibly joins with
the local run.

The formula above reveals that the sort phases of B-MPSM scale well with the number
of worker threads w. The join phase, however, requires each worker to process the complete
public input regardless of the processing parallelism given. For I/O-bound disk-based
processing, this is hidden by the I/O latency. However, for pure in-memory processing,
we address this issue by preprocessing the private input data so that much of the work
during the join phase can be saved.

So far, we presented the basic concept of MPSM, which (in object-oriented termi-
nology) is only an abstract class for several algorithmic specializations. We present two
derived implementations:

B-MPSM
D-MPSMP-MPSM

P-MPSM is a pure main memory version that range partitions the input data, thereby
providing scalability with respect to processing cores. D-MPSM is a RAM-constrained
version that spools runs to disk. Both scenarios are common in main memory database
systems and require attention when database operators are designed. We carefully con-
sider both variants detailed enough to allow for an implementation and considerations
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Figure 4.5: Disk-enabled MPSM join: the four workers Wi progress synchronously
through their Ri run and all S runs, thereby only active parts of the runs
are in RAM

about performance. For the rest of the chapter, we then focus on the range-partitioned
main memory version and use the terms P-MPSM and MPSM interchangeably.

4.2.2 The Memory Constrained Disk-enabled MPSM (D-MPSM)
Algorithm

The presented MPSM can effectively be adapted to scenarios, in which the intermediate
result data is too large to be kept in main memory. Even in main memory database
systems like HyPer that retain the entire transactional database in RAM, the query
processor spools intermediate results to disk to preserve the precious RAM capacity for
the transactional working set. Therefore, it is important to support both pure main
memory algorithms and a disk-based processing mode with a very small RAM footprint.

The disk-enabled MPSM (D-MPSM) processes the left and right input runs by syn-
chronously moving through the key domain, which is sorted. The resulting data locality
allows to spill already processed data to disk and to prefetch data that is to be processed
soon. Figure 4.5 illustrates the approach: Both R and S runs are stored on disk, only
the currently processed pages (white) need to be main memory resident. Already pro-
cessed data is not touched again and thus can be released from RAM (green). Soon to be
processed S data is prefetched from disk asynchronously (yellow).

For this purpose, we maintain a page index, which is ordered page-wise by key value.
The index is built during run generation and contains pairs 〈vij, Si〉 where vij is the first
(minimal) join key value on the jth page of run Si. Figure 4.5 depicts a simplified page
index (only run identifiers) on the left. It actually contains the following information:

sorted by vij
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
v11 v41 v21 v12 v31 v41 v32 v42 . . .
S1 S4 S2 S1 S3 S4 S3 S4 . . .



4.2 A Family of MPSM Algorithms 91

where v11 ≤ v41 ≤ . . .≤ v42. Both, the prefetcher and the workers, process the S input
data in the order specified by the index, thereby synchronously moving through the key
domain and allowing to keep only a small part of the data in memory during join pro-
cessing. All page index entries already processed by the “slowest” worker, e.g., W1 in the
illustration, point to run pages that may be released from RAM (green). The prefetcher
is supposed to pre-load run pages according to the index before they are accessed by
any worker (yellow). Implicitly, the workers’ private input runs Ri are read from disk,
processed, and released from RAM in ascending order of join keys. Please note that
the common page index structure does not require any synchronization as it is accessed
read-only.

Obviously, the performance of D-MPSM is determined by the time to write (run
generation) and read (join phase) both inputs. Therefore, in order to exploit the power
of multiple cores, a sufficiently large I/O bandwidth (i.e., a very large number of disks)
is required.

4.2.3 The Range Partitioned MPSM (P-MPSM) Algorithm

The range partitioned MPSM (P-MPSM) extends the B-MPSM algorithm by a prologue
phase to range partition and assign the private input data to the workers in a way that
allows saving much of the work during the join phase. The different phases of the algorithm
are sketched in Figure 4.6 for a scenario with four workers, choosing R as private input
and S as public input. In phase 1, the public input is chunked and sorted locally, resulting
in runs S1 to S4. Subsequently, in phase 2, the private input is chunked into C1 to C4 and
those chunks are range partitioned. We employ a histogram-based technique to ensure
that the range partitions are balanced even for skewed data distributions. This will be
explained in detail in Section 4.4. Thereby, the private input data is partitioned into
disjoint key ranges as indicated by the different shades in Figure 4.6 ranging from white

R1 R2 R3 R4

S1 S2 S3 S4

range partition

MJ
…    …

MJ

sort

sort

smaller

larger

smaller

larger

S data

R data

Phase 1

Phase 2

Phase 3

Phase 4

W1 W2 W3 W4

C1 C2 C3 C4

Figure 4.6: P-MPSM join with four workers Wi
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over light and dark gray to black. In phase 3, each worker then sorts its private input
chunk and, in phase 4, each worker merge-joins its own private run Ri with all public
input runs Sj.

By refining the MPSM to use range partitioning, each thread conducts only the join
between 1/wth of the join key domain of R and S. This reduces the complexity per worker
Wi to:

|S|/w · log(|S|/w) sort chunk Si of size |S|/w
+ |R|/w range-partition chunk Ri of size |R|/w
+ |R|/w · log(|R|/w) sort chunk Ri of size |R|/w
+ w · |R|/w process run Ri for all S runs

+ w · |S|/w2 process 1/wth of each S run

= |S|/w · log(|S|/w) + |R|/w + |R|/w · log(|R|/w) + |R|+ |S|/w

Compared to the complexity approximation of B-MPSM, range partitioning pays off if
the cost of range-partitioning R is smaller than the savings in join processing, i.e., if

|R|/w ≤ |S| − |S|/w.

For a parallelism greater than or equal two and |R| ≤ |S|, it pays off. The performance
of P-MPSM thus scales almost linearly with the number of parallel threads w, which is
decisive for the effective multi-core scalability of P-MPSM, as our experimental evaluation
will also prove.

In general, the two input relations to a join operation are not equally sized but usually
consist of a larger (fact) table and smaller (dimension) tables. Assigning the private input
role R to the smaller of the input relations and thus the public input role S to the larger
yields the best performance. Thereby, only a small fraction (depending on the number
of worker threads w) of the remote public input needs to be processed while the smaller
private input is scanned several times with almost no performance penalties. We will
present evaluation results quantifying the performance impact of reversed public/private
input roles in Section 4.6.2.

4.3 The MPSM Phases in Detail

In this section, we present the algorithmic details of the individual P-MPSM phases. First,
we cover the efficient partitioning of the private input (phase 2). Then, we present our
two-phase sorting routine, which is 30% faster than the STL sort and further allows for
the integration of chunking and sorting (phase 1 and phase 3). Last, we address the join
phase (phase 4) of P-MPSM. In particular, we sketch an efficient search method, which
allows to quickly determine the starting point of merge join within the sorted runs with
a small number of compare operations.

4.3.1 Partitioning the Private Input (Phase 2)

We design the re-distribution of the private input chunks Ci to be very efficient, i.e.,
branch-free, comparison-free, and synchronization-free.
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(1) branch-freeness and comparison-freeness are achieved by using radix-clustering as
introduced by Manegold et al. (2002) on the highest B bits of the join key where
log(w) ≤ B. For log(w) = B, radix-clustering results in exactly w clusters. By
increasing B, we can account for skew in both R and S as we will discuss in Section 4.4.

(2) We then range partition the private input chunks, guaranteeing synchronization-
freeness by letting each worker write sequentially to precomputed sub-partitions
within all runs. For this purpose, each thread builds a histogram on its chunk of
the global relation R representing the key value distribution within the chunk. The
local histograms are combined to obtain a set of prefix sums where each prefix sum
represents the start positions of each worker’s partitions within the target runs. Each
worker then scatters its input chunk to the partitions using the prefix sums and up-
dating them accordingly. This approach was adapted from the radix join of He et al.
(2008) and is also described by Cieslewicz and Ross (2008).

We demonstrate the partitioning of R in Figure 4.7 for two workers, B = 1, and a join
key range of [0, 32). Each worker thread Wi scans its own chunk Ci and probes for each
tuple into a histogram array depending on its highest key bit (which we show underlined),
i.e., join key values < 16 are assigned to the first position and join key values ≥ 16 are
assigned to the second. After all tuples have been processed, the histograms specify the
number of key values, which fall into the different target partitions. According to h1,
chunk C1 contains four entries for the first and three for the second target partition. As
given by h2, chunk C2 contains three entries for the first and four for the second target
partition. For illustration purposes, the tuples are colored white and black according to
their target partition. From the combined histograms, prefix sums are computed that
point to the target subpartition into which the workers scatter their chunk’s tuples. For
example, the prefix sum ps1 denotes that W1 scatters its entries for the first and second
target partition starting at position 0. According to ps2, W2 scatters tuples belonging to
the first target partition beginning at position 4 (as W1 writes to positions 0 to 3), and
those belonging to the second target partition beginning at position 3. In general, the
ps-entries of worker Wi for target partitions j are computed as

psi[j] =

{

0, if i = 1
∑i−1

k=1 hk[j], else.

Actually, the psi contain pointers to the positions, no index values, as indicated by
the dotted arrows in Figure 4.7, i.e., psi[j] = &Rj [(

∑i−1
k=1 hk[j])]. The prefix sums psi

per worker Wi, which are computed from the combined local histograms, are essential for
the synchronization-free parallel scattering of the tuples into their range partition. Every
worker has a dedicated index range in each array Ri into which it can write sequentially.
This is orders of magnitude more efficient than synchronized writing into the array – as
shown in Figure 4.2 (2).

Note that depending on the actual join key value distribution, in particular the min-
imum and maximum join key values, it might be necessary to preprocess the join keys
before applying radix-clustering. This can usually be done efficiently using bitwise shift
operations. Although we use radix-clustering for partitioning the private input, the ap-
proach is not restricted to integer join keys. However, if long strings are used as join keys,
MPSM should work on the hash codes of those strings, thereby giving up the meaning-
ful sorting of the output. Furthermore, main memory database systems usually employ
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radix partition

swap

write pointers

to process
processed tuple
 tuple to be processed

Figure 4.8: Radix sort

dictionary encoding so that joins on strings are usually internally executed as joins on
integers anyway.

4.3.2 Sorting of the Private and Public Inputs (Phase 1 and
Phase 3)

Efficient sorting is decisive for the performance of MPSM. As we deal with (realistic) large
join keys and payloads that need to be sorted, we cannot utilize the specialized bitonic
sorting routines by Chhugani et al. (2008) that exploit the SIMD registers, as these are
limited to 32-bit data types. Instead we developed our own two-phase sorting algorithm
that operates as follows:

1. recursive in-place radix sort (see Knuth (1973)) that (in each recursion step) generates
28 = 256 partitions according to the 8 most significant bits (MSB). This works by
computing a 256 bucket histogram and determining the boundaries of each partition.
Then, the data elements are swapped into their partition. We illustrate one recursion
step for 22 = 4 partitions in Figure 4.8. The tuples are processed from left to right,
i.e., beginning with the left-most partition containing the smallest key values. Tuples
not yet processed are shown black, already processed tuples are shown green. When all
tuples of the first partition have been processed, some of the tuples in the subsequent
partitions are likely to be already at the correct position, i.e., they have already been
processed. Therefore, the algorithm can omit these tuples and proceed with the first
non-processed tuple. This is denoted by the arrows shown above the partitions. The
number of tuples to process in each partition decreases from left to right and usually
is 0 in the last partition.

2. one final insertion sort for partitions containing less than 100 elements results in the
total ordering.

We analyzed that this sorting routine is about 30% faster than the STL sort method,
even when up to 32 workers sort their local runs in parallel. Note that we do not employ
synchronization-heavy parallel sorting. Instead, each worker sorts a separate chunk of
data into a run.

The private input data is chunked and re-distributed among the workers in phase 2
so that each worker’s private input chunk is stored in local memory before it is sorted in
phase 3. For the public input data it might be necessary to copy the data from remote
to local memory when it is chunked. We efficiently integrate the chunking of the public
input with the subsequent sort phase. That way, we eliminate one complete pass through
the public input data chunk. As illustrated in Figure 4.9, for an example using a fan-out
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write pointers

to process

 tuple 
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Figure 4.9: Integrated chunking and sorting: chunking is conducted as the first step of
radix sort

of 4, i.e., 2 bits, the first step of radix sort is not conducted in-place, but is used to copy
the data into the private memory of each worker. In the example, worker W2 copies the
tuples belonging to chunk S2 into its local memory and, at the same time, conducts the
first radix partitioning phase of radix sort. The next write position within each partition
is maintained as a pointer and incremented accordingly. For this purpose, each worker
initially builds a histogram for its data chunk and computes the prefix sum as described
in detail in Section 4.3.1.

4.3.3 Join Phase (Phase 4)

Due to partitioning, the private input data chunks contain only a fraction of the key value
domain and thus probably join only with a fraction of each public input data chunk. As
indicated in Figure 4.6, the public input runs are therefore implicitly partitioned by the
sorting order. Sequentially searching for the starting point of merge join within each
public data chunk would incur numerous expensive comparisons. Thus, we determine
the first public input tuple of run Sj to be joined with the private input run Ri using
interpolation search as sketched in Figure 4.10.

Sj

Ri

key domain

sj1

ri1

sjnsjk

1.

2.sjp

3.

Figure 4.10: Interpolation search for ri1 in Sj

Depending on which of the first values of each run – sj1 and ri1 – is larger (in general
this will be ri1 because the key range of R runs is limited while the key range of S runs is
not), we search for it within the other run by iteratively narrowing the search space. The
most probable position in each iteration is computed by applying the rule of proportion
using the minimum and maximum index positions (1 and n for step 1. in Figure 4.10) and
the minimum and maximum key values of the current search space (sj1 and sjn), and the
difference of the searched key value (ri1) and the search space minimum key value (sj1).
The computed index per iteration is always relative to the search space starting index. In
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the illustration in Figure 4.10, three steps are required to find the starting point of merge
join:

1. the search space is [sj1, sjn], i.e., from indexes 1 to n, thus we compute the position
k = 1 + (n− 1) · (ri1 − sj1)/(sjn − sj1)

2. the search space is narrowed to [sj1, sjk], i.e., from indexes 1 to k, so we compute
the position p = 1 + (k − 1) · (ri1 − sj1)/(sjk − sj1)

3. the search space is further narrowed to [sjp, sjk], i.e., from indexes p to k, so we
compute the position p+ (k − p) · (ri1 − sjp)/(sjk − sjp)

and find the start index of the light gray partition.

4.4 Skew Resilience of P-MPSM

The basic B-MPSM as well as the disk variant D-MPSM are completely skew immune
as they do not range partition. By contrast, P-MPSM employs partitioning by key value
and thus needs to consider skewed data.

So far, we discussed P-MPSM using statically determined partition bounds. In case
of a uniform data distribution, the presented algorithm assigns balanced workloads (i.e.,
equally sized chunks) to the workers. It is important to note that the location of the data
within the relations R and S – e.g., if by time-of-creation clustering small values appear
mostly before large values – has no negative effect. The location skew among the R and
S runs is implicitly handled by range partitioning the R data and thereby limiting the S
data each worker has to process. Of course, location skew may cause slight NUMA effects
that cannot be controlled lastly. As our evaluation in Section 4.6.2 shows, these effects
usually have a positive impact on performance as the join partners of a partition Ri are
better clustered in S.

We now present a more elaborate version of P-MPSM that can handle distribution
skew while incurring only very little overhead to the overall performance. Skew resilience
is achieved by not determining the partition bounds statically but computing them based
on dynamically obtained information about the key value distributions in R and S. We
exploit the sort order of the public input S to compute arbitrarily precise histograms
representing the key value distribution of S en passant, i.e., in almost no time. Further,
we increase the number B of bits used for the histogram computation for radix-clustering
of the private input R and thereby also obtain very precise histograms representing the
private input join key value distribution. We then determine global load-balancing parti-
tion bounds based on the computed distributions. We show that the presented approach
adds only very little overhead to the overall join processing.

For a better illustration, we split the range partition phase 2 into the following sub-
phases: The histogram on S is determined in phase 2.1 using a cumulative distribution
function (CDF). The histogram on R is determined in phase 2.2 using probing as de-
scribed above but increasing the number of leading bits B used for fine-grained histogram
boundaries. In phase 2.3, we combine the information about the key value distributions
in R and S to find global partition bounds, called splitters, balancing the costs for sorting
R chunks and joining R and S runs. That way, we ensure that each worker thread is
assigned a balanced workload to make sure that they all finish at the same time which
is very important for subsequent query operators. Figure 4.11 summarizes the refined
phase 2 of P-MPSM.
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Figure 4.12: P-MPSM CDF computation: example with skewed input (mostly small
key values)

4.4.1 Global S Data Distribution (Phase 2.1)

In phase 2.1, we gain insight in the global S data distribution in two steps: In the first
step, each worker thread Wi computes an equi-height histogram for its local input run
Si. Building the equi-height histograms comes at almost no costs as the data is already
sorted. Then, the local histograms are merged to provide a global distribution view. The
procedure is exemplified in Figure 4.12 for four runs S1 to S4 with skewed data, i.e., small
join key values occur much more often than large join key values. The local equi-height
histogram bounds bij for each worker Wi computed during the first phase are marked as
red dotted lines within the input runs. In the example, each worker collects four local
bounds, i.e., the local histograms are of size four. In the second step, the local partition
bounds of all workers are collected as input to a global cumulative distribution function
(CDF). The CDF allows to efficiently determine the number of tuples in S having a key
value smaller than a certain threshold. That way, the number of joining S tuples for a
partition Ri can be computed by extracting the CDF values for the high and low key
values of Ri (resulting in 25 and 15 in the example in Figure 4.12) and computing the
difference.

Using the local equi-height histograms, we can only estimate the gradient of the step
function by approximating each step to be equally high. Of course, the real global distri-
bution deviates (slightly) from this as the different workers’ equi-height partitions have
overlapping key ranges. In the example in Figure 4.12, each worker thread determines
w = 4 local bounds. In general, we propose to compute f · w, f ∈ N, local bounds per
worker for a better precision. By increasing f and thus the number of local bounds deter-
mined by each worker, more fine grained information about the global data distribution
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can be collected at negligible costs.

Note that the CDF allows for configuration changes concerning the number of workers
at runtime. Appropriate partition limits are then found using interpolation as denoted in
Figure 4.12 by the diagonal connections between steps. This also allows to combine the
global S data distribution represented by the CDF with the R data distribution in order
to handle uncorrelated or even negatively correlated skew in R and S as we will show
below.

4.4.2 Global R Data Distribution Histogram (Phase 2.2)

In phase 2.2, each worker scans its private input chunk Ci and computes a local histogram
on it using radix-histogramming. The number of leading bits B used for probing deter-
mines the precision of the histogram, i.e., using B bits we obtain a histogram of size 2B.
Building a more fine-grained histogram does only incur little overhead but allows for a
much more precise computation of global R bounds. By merging some of the clusters to
form w partitions with a balanced workload of cost(sort(Ri))+cost(Ri⊲⊳S), we obtain the
global partition bounds. On the left hand side of Figure 4.13, we see that higher precision
of radix-histogramming comes at no additional cost. On the right hand side, we see the
inferior performance of comparison-based partitioning according to explicit bounds.

In Figure 4.11, the approach is exemplified for a scenario with two workers clustering
two initial chunks and redistributing them to two target partitions. They first build a
local histogram of size 4 (B = 2) each, dividing the skewed input data with key domain
[0, 32) into four partitions: < 8, [8, 16), [16, 24), ≥ 24. The histograms reveal that the
chunks contain many more small key values than large key values. In particular, there
are a total of seven values in the first partition, three values in the second, three values
in the third, and one value in the fourth partition.
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4.4.3 Partitioning the Private Input R (Phase 2.3)

In phase 2.3, we use the global CDF for S determined in phase 2.1 and the global R
distribution histogram from phase 2.2 to heuristically determine global partition bounds
(called splitters) using a complexity approximation that takes into account both the sort
costs of the R chunks and the join costs per worker Wi:

split-relevant-costi =
|Ri| · log(|Ri|) sort chunk Ri

+ w · |Ri| process run Ri

+ CDF(Ri.high)− CDF(Ri.low) process relevant S data

where Ri.low and Ri.high denote the radix boundaries for which we probe in the CDF.
Note that because of the sorting, S can be partitioned at any position. The boundaries
are determined at the radix granularity of R’s histograms.

As shown in Figure 4.12 and on the left of Figure 4.11 using blue dashed lines, the
tentative R histogram bounds are used to probe into the CDF to determine the anticipated
S costs for the currently considered R partition [low, high). If the key values in R and S
are uniformly distributed or skewed in a correlated way, the global R partition bounds will
be similar to the global S partition bounds and thus all Ri will be approximately equally
sized. If the key value distributions in R and S are uncorrelated, the Ri cardinalities may
be very different so that we need to weight their effect on the overall performance to find
the final global partition bounds.

We opt to partition R and S such that each worker is assigned the same amount of
work, i.e., we determine the partition bounds such that they minimize the biggest cost
split-relevant-costi over all 1 ≤ i ≤ w. We sketch the basic splitter computation adapted
from Ross and Cieslewicz (2009) in Algorithm 4.1. The splitter computation algorithm
takes as inputs the cardinalities and key value distributions of R and S as well as a
cost function and an upper bound for the processing cost of one partition. Further, an
upper bound for the number of computed splitters is specified. The algorithm returns
the computed splitters, which we use to create w partitions with equal workloads. In
contrast to Ross and Cieslewicz (2009), we consider only the bucket bounds of the global
R histogram as possible partition bounds and probe into the CDF to determine the
corresponding S partition cardinality.

To simplify matters in the example in Figure 4.11, we assume the key value distribution
of S to be correlated to that of R. Therefore, when probing into the CDF using 8 and
32 as [low,high) values for R2, those bounds divide S into equally sized partitions. Thus,
according to the histograms h1 and h2 and the CDF of S, the first cluster containing key
values < 8 becomes the first partition and the other three clusters with key values ≥ 8
form the second partition. This is denoted by the indexes 0 for the first partition and 1
for the second given in the splitters vector sp.

Having determined the global partition bounds, we then partition the private input
chunks accordingly. As detailed in Section 4.3.1, we avoid synchronization by letting
each worker write sequentially to precomputed partitions. For this purpose, the local
histograms are combined to a set of prefix sums where each prefix sum psi represents
the partitions of worker Wi within the target runs. Each worker scatters its input chunk
to the partitions using the prefix sums via the indirection of the splitters vector sp, i.e.,
worker Wi scatters its next tuple t as follows:

memcpy(psi[sp[t.key≫ (64−B)]]++, t, t.size)
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Algorithm 4.1: Splitter computation algorithm based on the global R and S data
distributions and the split-relevant-cost function (adapted from Ross and Cieslewicz
(2009))

Data: cardinality of private input |R|, cardinality of public input |S|, number of splitters k, cost
function split-relevant-cost, cost bound b, global R data distribution histogram H , global S
data distribution CDF

1 idxR ← 0;
2 i← 0;
3 while split-relevant-cost(R − idxR, S − idxS) > b do
4 if i ≥ k then
5 return error;
6 end

/* the function max-key(p) returns the upper bound of partition H [p] */

7 find largest q among idxR, . . . ,H.size− 1 such that split-relevant-cost(c1, c2) ≤ b where
c1 =

∑

idxR≤j≤q H [j] /* number of R tuples within examined key range */

c2 = CDF(max-key(q)) − CDF(max-key(idxR)) /* number of S tuples within examined

key range */

8 splitter[i] = max-key(q);
9 i← i+ 1;

10 idxR = q + 1;

11 end
12 return splitter[0], · · · , splitter[i− 1];

psi contains pointers, not indexes because each worker scatters to different arrays. Ac-
cording to the global R partition bounds b1 = 8 and b2 = 32, there are four entries of
chunk C1 falling into the first partition and three (1+2+0) falling into the second. From
chunk C2, three values belong to the first and four (2+1+1) to the second partition. The
local histograms (which are computed per chunk) are combined to global prefix sums.
The values in ps1, for instance, denote that worker W1 will scatter its data falling into the
first partition to run R1 beginning at position 0, whereas worker W2 will write its data for
the first partition to run R1 beginning at position 4. The prefix sum psi is incremented
for each tuple scattered. Please note that – depending on the key distribution in R – the
resulting runs might not be of equal size. It is more important that the cost is balanced
rather than the size. We will show the effect of equal-cost partitioning as opposed to
equal-size partitioning in Section 4.6.2. Unlike radix join, MPSM can partition the pri-
vate input R completely independent of S. The public input S is partitioned implicitly
via the sorting and thus does not incur any partitioning overhead.

4.5 Beyond Inner MPSM and Two-Way Joins

Besides inner join computations, the complex query execution plans evaluated within
database systems often contain join variants such as outer joins, semi joins, and anti semi
joins. Further, analytical queries often need to join multiple relations and aggregate data
in order to provide the information needed. Therefore, in this section, we investigate the
effectiveness of MPSM for non-inner join variants and complex query plans composed by
multiple operations like joins and aggregations.
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Figure 4.14: Outer and anti semi P-MPSM join with four workers Wi maintaining each
an additional joined-bitmap bi for their private input runs

4.5.1 Outer, Semi, Anti Semi Joins

We first depict the implementation of outer, semi, and anti semi MPSM joins. Depending
on whether the private or the public input (or both) produces outer, semi, or anti semi
result tuples, additional data structures are required. We will show in Section 4.6.3 that
the overhead incurred by these data structures is negligible.

As each thread traverses its private input several times, we need to maintain joined-
flags for private input tuples. We then only produce (additional) output tuples if

• no join partner has been found (outer and anti semi join), or if

• the respective tuple has not been joined yet (semi join).

On the contrary, each public input tuple is touched only once due to the implicit partition-
ing of the public input. Therefore, we can decide right away if outer, semi, or anti semi
output tuples have to be produced. Before the join phase 4, outer, semi, and anti semi
MPSM process their inputs the same way as inner join MPSM. If necessary, joined-flags
in the form of bitmaps tracking whether private input tuples have (already) been joined
are initialized when MPSM enters join phase 4.

While semi joins are very similar to inner joins (output tuples are produced if a join
partner has been found), outer and anti semi joins require some attention in order to
avoid missing or duplicating output tuples due to range partitioning and interpolation
search. In the following, we briefly describe the implementations of outer, semi, and anti
semi joins. R and S denote the private and the public input, respectively.
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due to interpolation search and early stop of merge join the red tuples are
skipped by inner MPSM

Outer Joins

Outer joins bring together matching tuples like inner joins, and, in addition, they produce
output tuples for input tuples that didn’t find a join partner. The left (private input)
outer join R� S requires joined-flags indicating whether the private input tuples already
took part in the join or not. Each time a regular join output tuple is generated, the
corresponding flag is set. In Figure 4.14 this is indicated by the “set” arrows toward the
bitmap which are shown only for worker W1 for the sake of readability. During its last,
i.e., wth, merge join, in addition to the regular merge join computation, each thread checks
the joined-flags and produces output tuples for private input tuples for which the flag is
not set. In the example in Figure 4.14, when worker W1 conducts the last merge join of
its private input run R1 with S4, it sets flags for joined tuples and gets flags to decide on
the generation of additional output tuples (“set and get” arrow from and to bitmap b1).

As opposed to the computation of inner joins, not only tuples finding a join partner
have to be considered but also those that do not find a match. This requires special care:
Due to interpolation search, the first private input tuples may be skipped. Further, the last
tuples may be skipped as merge join stops early as soon as one of the inputs terminates.
These two issues are illustrated in Figure 4.15a where the first and the last tuple of Ri

are not considered. In order to not miss outer output tuples, it is therefore crucial for
each thread to scan its whole private input (at least) once. Thus, when executing the last
(wth) merge join, the threads omit interpolation search on their private input runs and
start scanning at the first tuple in their run. This actually mainly affects R1 as for all
other R runs interpolation search is usually performed on S runs. Further, the threads
scan their private input run up to its last tuple irrespective of the occurrence of matching
tuples in S.

The right (public input) outer join R � S is straightforward as it can be decided at
the time a tuple is processed whether it found a join partner or an extra output tuple has
to be returned. However, here again due to interpolation search and early stop of merge
join, the first and last tuples of the considered key range may be skipped as illustrated
in Figure 4.15b. Therefore, interpolation search on public input runs Sj is not based on
tuple key values of Ri but on the splitters determined in phase 2. That way, all S tuples
within a worker’s key range (white to black shades in the figures) are considered in the
join processing.
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Semi Joins

Semi joins produce output for tuples of one of the inputs which find a join partner in the
other input. In contrast to inner joins, one input tuple may produce at most one output
tuple. For this purpose, the left (private input) semi join R � S requires joined-flags
indicating whether a private input tuple already took part in the join or not. If so, the
tuple will not produce any output again. If the flag is not set and a public input tuple
matches, an output tuple is produced and the corresponding flag is set. As opposed to left
outer joins, the joined-flags are not only checked at the end of the join phase 4 but need
to be consulted for each matching tuple during each single merge join. This is illustrated
in Figure 4.16 using “get and set” arrows for all merge joins.

For the right (public input) semi join R�S, the private input is scanned for a specific
public input tuple until one match is found or the key of the private input is greater
than the current public input key. If a match exists, an output tuple is generated and
the worker moves on to the next public input tuple as the current may not produce any
further output.

Anti Semi Joins

Anti semi joins are the opposite of semi joins. Output is produced for input tuples that
do not find a join partner in the other input. The left (private input) anti semi join R⊲S
requires joined-flags indicating whether the private input tuples already took part in the
join or not. Each time a public input tuple matches, the flag for the corresponding private
input tuple is set (without producing an output tuple). In Figure 4.14, this is indicated
by the “set” arrows toward the joined-bitmap b1 of worker W1. As for outer joins, during
the last (wth) merge join, in addition to setting flags for joined tuples, each thread checks



106 4. Massively Parallel Sort-Merge Joins

the bitmap and produces an output tuple for each private input tuple, for which the flag
is not set (“set and get” arrow from and to bitmap b1). Due to interpolation search and
early stop of merge join, some tuples may be skipped as illustrated in Figure 4.15a. As for
left outer joins, by omitting interpolation search on private input runs for the last merge
join and scanning the private input completely, we make sure that no anti output tuples
are missed.

When computing the right (public input) anti semi join R ⊳ S, it can be decided at
the time a tuple is processed whether it found a join partner or – in case no join partner
at all was found – an output tuple has to be returned. Again, we need to make sure that
no output tuples are missed due to interpolation search and early stop of merge join as
shown in Figure 4.15b. Therefore, as for right outer joins, interpolation search on public
input runs Sj is based on the splitters determined in phase 2, so that all S tuples within
a worker’s key range are considered in the join processing.

4.5.2 The Guy Lohman Test

After having covered MPSM for inner, outer, semi, and anti semi joins, we put MPSM
to what Graefe (1993) calls the Guy Lohman test, stating that a join operator must not
only be useful for joining two inputs but also in more complex query computations. In
particular, an operator is suitable in query processing if it does not require its input(s) to
be materialized by preceding operators but allows for pipelining them. MPSM is roughly
order preserving, which can be exploited in subsequent join operations of a complex query
plan. We depict different ways of how to make use of the output sort order in a sequence
of two MPSM joins. Here, we consider the intermediate result to be taken as private or
public input for further processing. Teams even go one step further and combine multiple
operations in a single one. Thereby, teams are usually more efficient than an equivalent
sequential execution of the operations by an effective preprocessing of the data.

We present approaches for the use of MPSM in multiple join operations on the same
column(s). They are typical, e.g., for column stores where tables have to be re-established
from binary relations. We further discuss their applicability for cases where the joins are
executed on different columns.

Initial Situation

Figure 4.17 illustrates the situation after one MPSM join has been executed. Each of the
workers produces several sorted output runs covering only a part of the key domain. The
intermediate result data is stored locally. A second MPSM join operator may take the
intermediate result data as private or as public input depending on its size compared to
the third relation to be joined. Assuming certain data distributions (in particular, similar
data distributions of the inputs to the first and the second join), we can benefit from the
given range partitioning of the intermediate result. When using it as private input, we
can omit re-partitioning the data. When using it as public input, this introduces location
skew, i.e., most or all join partners of a private input run will be found in one local
or remote public input run. As we will show in Section 4.6.2, this reduces the effective
number of merge joins and thus execution time.

Without any knowledge of the data distribution, however, the second MPSM join,
which processes the intermediate result and a third relation, is executed as usual. That
is, the public input is sorted, the private input is re-distributed among the workers and
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then sorted, and the private input runs are each merge-joined with all public input runs.
We therefore use this scenario as the baseline and compare our approaches presented
below to it.

Local Merge of Output Runs

Each worker’s output consists of sorted runs within the worker’s assigned key range. By
merging these output runs, one sorted run of the respective key range is produced. This
intermediate result run can then be fed into the second join as private or as public input.
Used as private input, we benefit from the given range partitioning. If there is key value
skew within the inputs to the second join, it is handled by computing new splitters and
passing consecutive parts of the private input runs to other workers. As the workers’ key
ranges are disjoint and the data is already sorted, this only requires copying or linking
run parts. When used as public input, this introduces location skew, i.e., basically only
one merge join pass is required to find all join partners of a private input run as described
above.

This variant requires each worker to store its complete intermediate result before it can
be merged as the runs are produced subsequently. Furthermore, the sort order within one
worker’s output runs cannot be exploited if the second join is computed using different
join column(s). It is possible, however, to sort the input chunks primarily by the first
join column(s) and secondarily by the second during the first join. This requires the
second join column(s) to be contained in the respective input relation, which is the case
for (at least) one of the inputs. However, this approach incurs high merging overhead
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(potentially w · |D| runs have to be merged, where D is the value dimension of the first
join key). Furthermore, in contrast to the scenario of merging in between joins on the
same column(s), the merged output run then contains the complete key range, i.e., it is
not range partitioned.

Concatenation of Output Runs

When concatenating the workers’ output runs instead of merging them, each worker
obtains one sorted run covering the complete key range. This is achieved by letting
each worker Wi collect the ith output run of all workers and append those runs. In
contrast to merging, concatenating theoretically does not require the intermediate result
to be materialized completely in case we know the size of the intermediate result runs.
However, practically this is only applicable in the case of a non-filtered primary key–
foreign key join. In other cases, additional buffer might be allocated for the result runs so
that they are not completely dense. As the resulting runs cover the complete key range,
feeding them into the second join as private input will not be beneficial as no work can
be saved. We might only exploit the given sort order to copy whole run parts during
scattering instead of considering each tuple on its own. When using the intermediate
result runs as public input, sorting can be omitted.

This approach cannot be adapted to work for multiple joins on different columns.

Pipelined Execution

The approaches above share the disadvantage that intermediate results have to be ma-
terialized before they can be postprocessed (merged or concatenated) and fed into the
second join. This contradicts the Guy Lohman requirements for join operators. We now
present a pipelined execution of two subsequent MPSM joins, which exploits the fact that
each worker produces sorted output runs and that these runs can immediately be joined
with the third relation. In total, each worker then executes quadratic as many merge
joins (of smaller inputs) as there are workers (and thus output runs), however, sorting of
the third relation and the merge joins between intermediate result runs and runs of the
third relation are executed in parallel with the first join processing.

The pipelined MPSM is applicable to joins on different columns. This requires the
pipelined intermediate result runs to be sorted by the new join key before they are joined
with the third input, thereby probably losing the range partitioning of the private input.
Thus, extra sorting and join overhead is incurred.

MPSM Teams

Teams prepare all inputs to be joined before starting the join phase such that both
joins can then be done in one pass. E.g., for hash based join algorithms, this means
partitioning all input relations, then loading the corresponding partitions of all relations
and producing output tuples as described in Graefe et al. (1998). We adapt this idea to
MPSM by pre-processing the relations in the following way: Two of the tables are treated
as private inputs, the third table is treated as public input. The private inputs are range
partitioned and sorted according to the join column(s), the public input is sorted by the
join column(s). Then, each worker executes multi-way merge joins, reading its private
input runs several times and the public input runs only once.
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MPSM teams are not directly applicable for joins on different columns. In case of joins
along primary key–foreign key chains with 1 : N functionalities, it is however possible to
map the join keys to new values and allow for team processing even for different join
columns. Of course, key-mapping incurs extra overhead. MPSM teams are further easily
extensible to compute an aggregation on the join result as part of the team processing. The
adaptation of MPSM teams to this scenario is called generalized MPSM teams and adopts
the idea of generalized hash teams by Kemper et al. (1999). For a better understanding,
we first present a simplified scenario including a join and an aggregation on different
columns. The relations are initially partitioned according to the aggregation column(s)
in a way that further range partitions the private and public input by join column(s).
In Figure 4.18, we illustrate this for the following query joining the TPC-C benchmark
tables Customer and Order on the customer ID and then grouping the join result by the
customer’s city:

SELECT C_City, sum(O_OL_CNT)

FROM Customer, Order

WHERE C_ID = O_C_ID

GROUP BY C_City

The Customer relation is first partitioned by C_City. Then, each worker maps the join
keys C_ID of its chunk to new C_ID’ values, which are assigned to the workers in ascending
order and are thus also implicitly range partitioned. Such a key-mapping is applicable in
case the join key is unique. In the example, this is true as the join key C_ID is the primary
key of the Customer relation. Thus, the Customer chunks are naturally ordered by C_ID’

values and sorting can be omitted. After that, each thread applies the key-mapping to
its Order relation chunk and then sorts the chunk by the new O_C_ID’ values. Finally,
the merge join is executed and (intermediate) aggregation results are computed on the
fly. The intermediate results of worker Wi are enhanced with each merge join Ri � Sj,
resulting in the final aggregation results after the last (wth) merge join pass.

In the example in Figure 4.18, the Customer relation is not only range partitioned
but also sorted by C_City. This can either be achieved by using histogramming on the
aggregation column(s) during partitioning or by explicitly sorting the chunk after range
partitioning. That way, the intermediate aggregation results of a worker Wi can easily
be stored and updated together with its private input run data. However, it is also
possible to keep the intermediate results in a separate data structure like a hash table,
thereby omitting additional histogramming or sort passes on the private input run. In
the following, we assume the latter in our cost approximations.

A traditional plan that executes the join and a sort-based aggregation subsequently,
has the following complexity per worker Wi (denoting Customer as R and Order as S):

|S|/w · log(|S|/w) sort chunk Si of size |S|/w
+ |R|/w range-partition chunk Ri of size |R|/w
+ |R|/w · log(|R|/w) sort chunk Ri of size |R|/w
+ w · |R|/w process run Ri for all S runs

+ w · |S|/w2 process 1/wth of each S run

+ |J |/w range-partition join result chunk Ji of size |J |/w
+ |J |/w · log(|J |/w) sort join result chunk Ji of size |J |/w
+ |J |/w compute aggregation of join result chunk Ji

= |R|/w + |R|/w · log(|R|/w) + |R|+ |S|/w + |S|/w · log(|S|/w) + 2 · |J |/w + |J |/w · log(|J |/w)
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In comparison, the generalized MPSM teams execution plan has the following complexity
per worker Wi:

|R|/w range-partition chunk Ri of size |R|/w
+ |R|/w create and apply key-mapping to chunk Ri

+ |S|/w apply key-mapping to chunk Si of size |S|/w
+ |S|/w · log(|S|/w) sort chunk Si of size |S|/w
+ w · |R|/w process run Ri for all S runs

+ w · |S|/w2 process 1/wth of each S run

= 2 · |R|/w + |R|+ 2 · |S|/w + |S|/w · log(|S|/w)

Compared to the traditional plan, MPSM teams are preferable with respect to memory
requirements and robustness. The traditional plan requires additional space of size |J |
to store the intermediate result and additional 2 · |J |/w + |J |/w · log(|J |/w) time for the
computation of the aggregation result, which depends on the unknown size of J . MPSM
teams require only linear additional time |R|/w + |S|/w, but can omit sorting the R input
chunks. Further, the additional space for the key-mapping can be approximated to be at
most |R|. The space needed for the intermediate aggregation results is bounded by |J |.
Thus, in total, MPSM teams eliminate the need for estimating the intermediate result
size |J |, thereby contributing to robust query processing, and further require less space
and computational time.

Due to the required key-mapping, MPSM teams processing is, however, limited to
the following scenarios: If the join attribute is a unique key (like C_ID in the example),
each worker is assigned a range of ascending and dense C_ID’ values for the mapping.
After the key-mapping has been applied, the private input chunks are trivially sorted.
If the join attribute is not a unique key but it determines the aggregation attribute,
i.e., the functional dependency join attribute→ aggregation attribute holds, a certain join
attribute value may occur more than once in the input chunks, so that disjoin C_ID’

ranges for the workers are determined in a first step based on the number of disjoint
key values. After applying the key-mapping to the private input chunks, they need to
be sorted. In other cases, in which no functional dependencies are given between join
attribute and aggregation attribute, the input cannot be partitioned in a way that creates
disjoint C_ID’ ranges. Therefore, synchronization is required during the key-mapping
computation. Further, this case results in inefficient join computations as the input
relation is not range partitioned by the join attribute.

The presented approach is adaptable to allow for multiple joins on different columns.
The three-way-join between the TPC-C tables Customer, Order, and OrderLine with an
aggregation on C_City

SELECT C_City, sum(OL_Amount)

FROM Customer, Order, OrderLine

WHERE C_ID = O_C_ID

AND O_ID = OL_O_ID

GROUP BY C_City

can be computed in a similar way as illustrated in Figure 4.19. The Customer relation
is partitioned according to the aggregation attribute C_City. Then, key-mapping 1 from
C_ID to C_ID’ is computed and applied to the Customer chunks and the Order chunks.
Next, the Order chunks are partitioned and sorted by the new O_C_ID’ values. After
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that, key-mapping 2 from O_ID to O_ID’ is computed and applied to the chunks of the
Order and OrderLine relations. Finally, the OrderLine chunks are sorted by OL_O_ID’

values and the joins are executed in one pass together with the aggregation. For an
efficient key-mapping, it is required that the functional dependencies join attribute 2 →
join attribute 1 and join attribute 1→ aggregation attribute apply.

A traditional plan that executes the two joins subsequently and then computes the ag-
gregation on the intermediate join result, has the following costs per worker Wi (denoting
Customer as R, Order as S, and OrderLine as T ):

|S|/w · log(|S|/w) sort chunk Si of size |S|/w
+ |R|/w range-partition chunk Ri of size |R|/w
+ |R|/w · log(|R|/w) sort chunk Ri of size |R|/w
+ w · |R|/w process run Ri for all S runs

+ w · |S|/w2 process 1/wth of each S run

+ |T |/w · log(|T |/w) sort chunk Ti of size |T |/w
+ |J |/w range-partition join result chunk Ji of size |J |/w
+ |J |/w · log(|J |/w) sort join result chunk Ji of size |J |/w
+ w · |J |/w process run Ji for all T runs

+ w · |T |/w2 process 1/wth of each T run

= |R|/w+|R|/w·log(|R|/w)+|R|+|S|/w+|S|/w·log(|S|/w)+|T |/w+|T |/w·log(|T |/w)+|J |/w+|J |/w·log(|J |/w)+|J |

The generalized MPSM teams plan costs per worker Wi are:

|R|/w range-partition chunk Ri of size |R|/w
+ |R|/w create and apply key-mapping 1 to chunk Ri

+ |S|/w apply key-mapping 1 to chunk Si of size |S|/w
+ |S|/w range-partition chunk Si of size |S|/w
+ |S|/w · log(|S|/w) sort chunk Si of size |S|/w
+ |S|/w create and apply key-mapping 2 to chunk Si

+ |T |/w apply key-mapping 2 to chunk Ti of size |T |/w
+ |T |/w · log(|T |/w) sort chunk Ti of size |T |/w
+ w · |R|/w process run Ri for each Si and all T runs
+ w · |S|/w process run Si for each Ri and all T runs

+ w · |T |/w2 process 1/wth of each T run for all pairs of runs (Ri, Si)

= 2 · |R|/w + |R|+ 3 · |S|/w + |S|/w · log(|S|/w) + |S|+ 2 · |T |/w + |T |/w · log(|T |/w)

Again, the total costs of the traditional execution plan depend heavily on the size of
the intermediate result. It may be misestimated by the optimizer, causing performance
degradations. On the other hand, all input sizes of the generalized MPSM teams plan
are known. Thus, generalized MPSM teams are preferable from a robustness perspective.
Further, the traditional plan incurs additional space requirements of |J | to materialize
the intermediate join result. MPSM teams only require little additional space for the
intermediate aggregation results.
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Figure 4.20: HyPer1: Linux server with 1TB main memory and four Intel CPUs with
8 physical cores (16 hardware contexts) each

4.6 Experimental Evaluation

We implemented the MPSM join variants in C++, and the join query plans are compiled
as employed in the HyPer query processor by Neumann (2011). All experiments are
such that the data is completely in main memory. In order to cover the most important
scenarios, we report benchmark results using datasets which represent join input relations
of different sizes, different multiplicities, and different data distributions. We consider the
common case that the input relations are scanned, a selection is applied, and then the
results are joined. So, no referential integrity (foreign keys) or indexes could be exploited.

4.6.1 Platform and Benchmark Scenarios

We conducted the experiments on a Linux server (kernel 3.0.0) with 1TB main memory
and four Intel(R) Xeon(R) X7560 CPUs clocked at 2.27GHz with 8 physical cores (16
hardware contexts) each, resulting in a total of 32 cores (and due to hyperthreading 64
hardware contexts). The architecture of the server, which is called HyPer1 in our lab, is
depicted in Figure 4.20. This machine currently has a list price of approximately e40000,
which makes it a good candidate for the real time business intelligence (BI) scenario on
transactional data, for which the HyPer main memory database system is intended.

We chose the datasets to be representative for a few realistic data warehouse scenarios.
Each dataset for the experiments on a single join operator consists of two relations R and
S. The cardinality of R is 1600M17, the cardinality of S is scaled to be 1 · |R|, 4 · |R|, 8 · |R|,
and 16 · |R|. Our datasets of cardinality 1600M · (1+multiplicity) have sizes ranging from

17M = 220
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multiplicity R S

cardinality size [GB] cardinality size [GB]

1 1600M 25 1600M 25
4 1600M 25 6400M 100
8 1600M 25 12800M 200

16 1600M 25 25600M 400

Table 4.1: Multiplicities and resulting data sizes for the experiments17

50GB to 425GB, which is representative for large main memory operational BI workloads.
The multiplicities between the relations R and S further cover a wide range, including
not only the common cases (4, as specified for instance in TPC-H and 8 to approximate
the TPC-C specification) but also extreme cases (1 and 16). These database sizes are
one order of magnitude larger than in prior related studies by Kim et al. (2009), Blanas
et al. (2011), and Blanas and Patel (2011) to account for recent hardware improvements
in RAM capacity and real-world requirements in operational business intelligence. For
example, Amazon has a yearly revenue of $40 billion, for which an estimated item price
of $10 results in 4 billion orderline tuples – a size which is covered by our experiments.
It is interesting to note that the transactional sales data of this largest merchandiser, if
properly normalized and possibly compressed, fits into the RAM of our 1TB machine.
This makes operational BI on main memory resident data a reality – if the parallelization
power of these machines can be effectively exploited.

The multiplicities and relation sizes of our datasets are summarized in Table 4.1. For
the experiments on multi-way joins, we extended the datasets by a third relation, which
is scaled in the same way.

Each tuple consists of a 64-bit key within the domain [0, 232) and a 64-bit payload:

{[joinkey : uint64_t, payload : uint64_t]}

We chose the data format both for scaling reasons (payload may represent a record ID
or a data pointer) as well as for ease of comparison to the experiments presented in Blanas
et al. (2011). If not stated otherwise, the experiments are conducted using a parallelism
of 32 (equal to the number of physical cores) and the key values are uniformly distributed
resulting in a join selectivity of approximately 0.02% for the tested multiplicities.

4.6.2 Evaluation of MPSM for Inner Joins

To evaluate the performance of MPSM for inner joins, we execute the following equi-join
on two tables R and S:

SELECT max(R.payload + S.payload)

FROM R, S

WHERE R.joinkey = S.joinkey

This query is designed to ensure that the payload data is fed through the join while only
one output tuple is generated in order to concentrate on join processing cost only. Further,
we made sure that early aggregation was not used by any system.
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Figure 4.21: Performance comparison of MPSM, Vectorwise (VW), and Wisconsin hash
join on uniform data

As “contenders” we chose the most recent research system, published by the Wisconsin
database group in Blanas et al. (2011) and the “cutting-edge” Vectorwise query engine
which holds the world record in single-server TPC-H power test. According to our tests,
it currently has the best-performing parallel join processing engine which is based on the
pioneering MonetDB work on cache-friendly radix joins by Manegold et al. (2002). This
is also testified by Vectorwise’s record TPC-H powertest performance on “small” main
memory fitting databases up to 1TB on a single machine. (Actually, the TPC-H record
numbers were obtained on a similar machine as HyPer1.) For the Wisconsin hash join
benchmarks we use the original code of Blanas et al. (2011). The Vectorwise benchmarks
are conducted on Vectorwise Enterprise Edition 2.0. In order to obtain benchmark results
on main memory resident data for the disk-enabled Vectorwise, we execute the query
several times and report only the execution times of runs after the data is fully resident
in RAM.

Comparison of MPSM, Vectorwise, and Wisconsin join on uniform data

We first compare the performance of MPSM, Vectorwise, and Wisconsin join on uniform
data for different multiplicities ranging from 1 to 16, i.e., in the extreme case S is 16 times
as large as R. The results are shown in Figure 4.21. MPSM outperforms Vectorwise by
a factor of four for all tested multiplicities. Further, MPSM outperforms the Wisconsin
hash join by a factor of up to 17. The poor performance of the Wisconsin hash join in our
experiment is due to the fact that it is not adapted to efficiently work for NUMA archi-
tectures as it builds and probes a global hash table across NUMA partitions. Therefore,
we don’t consider it in further experiments.

Scalability in number of cores

Next, we investigate the ability of MPSM and Vectorwise to exploit highly parallel multi-
core architectures. Therefore, we compare their scalability with respect to the number
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Figure 4.22: Scalability of MPSM and Vectorwise

of cores and report the results in Figure 4.22. The multiplicity if fixed to 4 in this
experiment. MPSM scales almost linearly in the number of parallel executing worker
threads, i.e., the execution time halves when we double the parallelism level. As depicted
in Figure 4.20, our server has 32 physical cores and a total of 64 hardware contexts. When
exceeding the number of physical cores and using hyperthreading (parallelism level 64),
the performance of MPSM improves only slightly as all cores are already almost fully
utilized at parallelism 32. Vectorwise achieves (almost) linear scalability in the number of
cores only up to parallelism level 16. When using hyperthreading, the performance even
degrades. From these results, we are confident, that – contrary to Vectorwise – MPSM
will scale well on future hardware with even hundreds of cores.

Role reversal

We mentioned in Section 4.2.3 that it is advisable for P-MPSM to consider role reversal
for performance improvements. In Figure 4.23, we compare the execution time for two
relations R and S where we vary the size of S to be multiplicity times the size of R. As
we switch the roles of R and S, phase 1 (sorting the public input) and phase 3 (sorting
the private input) are interchanged and have the same execution time when summed
up. However the effect of role reversal is clearly visible for the range partition phase 2
and the join phase 4. For multiplicity 1, role reversal obviously has no effect on the
join execution time (as both inputs have the same size). However, the larger S grows,
the more considerable is the effect that directly follows from the complexity estimate in
Section 4.2.3:

|R|/w + |R|/w · log(|R|/w) + |R|+ |S|/w + |S|/w · log(|S|/w)
︸ ︷︷ ︸

R is private input

vs.

|S|/w + |S|/w · log(|S|/w) + |S|+ |R|/w + |R|/w · log(|R|/w)
︸ ︷︷ ︸

S is private input
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Figure 4.23: Effect of role reversal on join execution time

When ignoring the equal sort costs, this results in:

|R|/w + |R|+ |S|/w
︸ ︷︷ ︸

R is private input

vs. |S|/w + |S|+ |R|/w
︸ ︷︷ ︸

S is private input

.

As it holds that |R| < |S|, taking R as private input results in the better performance.

Location skew

In order to investigate the effect of location skew on the performance of MPSM, we
introduced extreme location skew by arranging S in small to large join key order in a way
that all join partners of one private input run Ri are found in only one public input run Sj .
It is important to note that this did not introduce a total order of S keys, so sorting the
clusters was still necessary. Location skew on R has no effect at all as R is redistributed
anyway. The extreme location skew in S results in each worker Wi effectively producing
join results only with one local Si, respectively one remote Sj where i 6= j. That is,
either only local S data or no local S data at all contributes to the join result and only
one remote memory area has to be accessed. Of course, all runs are still accessed using
interpolation search, however, no relevant data is found in (w − 1) of the S runs. This
effectively reduces the complexity from

|S|/w · log(|S|/w) + |R|/w + |R|/w · log(|R|/w) + |R|+ |S|/w

to
|S|/w · log(|S|/w) + |R|/w + |R|/w · log(|R|/w) + |R|/w + |S|/w

as the private input run Ri is only scanned once to produce all join results. If there is
less pronounced location skew in S, the algorithm performance lies between those two
extremes shown in Figure 4.24. Note that, in all other experiments, location skew was
not present, i.e., the effects of location skew showed in this experiment were not exploited.
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Figure 4.24: Effect of location skew on MPSM performance (multiplicity 4)

Skewed data with negative correlation

In this experiment, we analyze the quality of the splitter computation discussed in Sec-
tion 4.4 to balance the load evenly across all workers. For this purpose we generated a
dataset with the worst possible skew for our join algorithm: negatively correlated skew
in R and S. (Positively correlated skew does not affect MPSM either due to the dynamic
splitter computation.) Our data set again contained 1600M tuples in R with an 80:20
distribution of the join keys: 80% of the join keys were generated at the 20% high end of
the domain. The S data of cardinality 4 · 1600M was generated with opposite skew: 80%
of the join keys were within the 20% low end of the domain.

Let us refer to Figure 4.25a to intuitively explain the necessity of balancing the load
according to the data distribution of R and S. On the left-hand side we show the
effects of partitioning R into equal-cardinality partitions, thereby having wider key ranges
on the left and narrower ranges on the right. Because of the negative correlation, the
corresponding S partitions are very unbalanced. So, the combined cardinality of the two
partitions |Ri| + |SRi

| is much higher at the low end than at the high end. SRi
denotes

the relevant join range of S for the key range of Ri. Note that SRi
is composed of sub-

partitions across all S1, · · · , Sw, but its size can effectively be estimated from the CDF.
For 32 workers operating on this equi-height R partitioning, we obtain the response times
shown in Figure 4.25b. We see that the “blue” sort costs are balanced but the “green”
join processing takes much longer for the workers on the left that process the low join
keys. The correct splitter-based partitioning balances the load across all servers as shown
in Figure 4.25c. This is achieved by considering the cardinality of each Ri in combination
with its corresponding SRi

partition, which is obtained from the CDF. The balanced
R-and-S partitioning is visualized in Figure 4.25a on the right-hand side. The figure is
idealized in balancing the cardinality of the two corresponding partitions. In reality, the
sort+join costs are balanced. For this experiment, we computed the R histograms at a
granularity of 1024 (B = 10) to give the splitter computation sufficient opportunity to
find best possible balanced splitters.
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(b) Equi-height R partitioning (multiplicity 4)
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(c) Equi-cost R-and-S splitter partitioning (multi-
plicity 4)

Figure 4.25: Effect of balancing splitters on MPSM performance

4.6.3 Performance Comparison of Inner, Outer, Semi, and Anti
Semi MPSM Joins

To evaluate the performance of MPSM for non-inner joins, we execute the following equi-
join on two tables R and S:

SELECT count(*)

FROM R <join variant> S

WHERE R.joinkey = S.joinkey

The term <join variant> stands for left outer join, right outer join, left semi join,
right semi join, left anti semi join, and right anti semi join, respectively.

In Figure 4.26, we compare the execution times of the inner MPSM join as evaluated
in Section 4.6.2 and the non-inner join variants for multiplicities between 1 and 16. The
numbers of inner, semi, and outer result tuples for the tested datasets are listed in Ta-
ble 4.2. The larger the S relation, the larger is the number of inner, left semi, and right
semi result tuples as the key values are uniformly distributed within the domain. The
number of left outer and left anti result tuples decreases with increasing multiplicity, as
more tuples find a join partner. On the contrary, the number of right outer and right anti
result tuples increases with increasing multiplicity, as the potential join partners in the
left relation remain the same.
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Multiplicity Approximate number of result tuples

I LO RO LS RS LA RA

1 625M 1083M 1083M 517M 517M 1083M 1083M
4 2500M 335M 4330M 1265M 2070M 335M 4330M
8 5000M 70M 8661M 1530M 4139M 70M 8661M
16 10000M 3M 17322M 1597M 8278M 3M 17322M

Table 4.2: Number of inner (I), left outer (LO), right outer (RO), left semi (LS), right
semi (RS), left anti semi (LA), and right anti semi (RA) result tuples for the
tested datasets
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Figure 4.26: Performance comparison of inner (I), left outer (LO), right outer (RO), left
semi (LS), right semi (RS), left anti semi (LA), and right anti semi (RA)
join

The non-inner join variants described in Section 4.5 incur no (in case of right outer,
semi, and anti semi joins) or only little overhead for tracking whether one tuple of the
left input already found a join partner in the right input (in case of left outer, semi, and
anti semi joins). The modification of interpolation search required for outer and anti semi
joins does not incur additional overhead. In total, we find that the performance decrease
caused by the additional data structures is negligible.

4.6.4 Exploiting MPSM Characteristics in Complex Query Plans

We examine the suitability of MPSM for complex query plans on the example of a three
way equi-join between the tables R, S, and T on the same join key:

SELECT max(R.payload + S.payload + T.payload)

FROM R, S, T

WHERE R.joinkey = S.joinkey

AND S.joinkey = T.joinkey
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Figure 4.27: Performance comparison of two subsequent MPSM join executions and two
independent MPSM joins

We compare the alternatives of exploiting the rough sort order of the MPSM output
presented in Section 4.5.2 to the baseline case where two MPSM joins are executed sub-
sequently without post-processing the intermediate result. We report experiments using
the multiplicities 1 : 1 : 1, 1 : 1 : 4, 1 : 4 : 1, and 1 : 8 : 1. In a perfect scenario, an optimizer
would always join smaller relations first, i.e., the third and fourth case would not occur.
However, we included those experiments to cover cases in which the intermediate result
is smaller than the third table and cases in which it is larger, without modifying the key
ranges or uniformity of the data distribution. In our experiments, for multiplicity 1 : 1 : 1,
the intermediate result is a little smaller than the third relation, for 1 : 1 : 4 it is much
smaller, for 1 : 4 : 1 it is a little larger, and for 1 : 8 : 1 it is much larger.

Implicit Benefits of Subsequent MPSM Joins

We first want to point out that two subsequent MPSM joins in one query plan implicitly
benefit from locality of the data and range partitioning. As illustrated in Figure 4.17, each
worker’s output runs are stored locally and cover only part of the key domain. A second
operator (not changing the affinity of threads to cores) can therefore initially work on local
data and, in case of a second MPSM, it profits from the location skew introduced by the
first operator. In Figure 4.27, we compare the execution times of two independent MPSM
joins and two subsequent MPSM joins. The positive effect shows in different phases,
depending on whether the intermediate result is taken as private input (cases 1 : 1 : 1 and
1 : 1 : 4) or as public input (cases 1 : 4 : 1 and 1 : 8 : 1). In the two leftmost bars, the effect
is visible in the second join’s phase 2 (upper red) and phase 3 (upper blue) execution
times. In the two rightmost bars, it is visible in the second join’s phase 1 (upper gray)
and phase 4 (upper green) execution times.
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(a) Merging the intermediate result runs between two subsequent MPSM
joins
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(b) Concatenating the intermediate result runs between two subsequent
MPSM joins

Figure 4.28: Two subsequent MPSM joins exploiting the rough sort order of the inter-
mediate result runs

Merge and Concatenation of Intermediate Result Runs

When executing two subsequent MPSM joins, we can postprocess the roughly sorted
output of the first join so that the second join profits. In Section 4.5.2, we presented
two variants of postprocessing the intermediate result: merge and concatenation of the
workers’ output runs. In Figure 4.28, we present the resulting performance when we apply
these techniques to the intermediate result runs and then feed the result into the second
join, once as private input and once as public input. We find that, as we theoretically
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analyzed in Section 4.2.3 and showed for a single MPSM join computation in Section 4.6.2,
the smaller relation should always be picked as the private input. In the following, we
therefore assume the optimizer to correctly assign private and public input roles to the
smaller, respectively larger relations after the first join.

Comparison to Baseline

In Figure 4.29, we compare the total execution time of two MPSM joins using the ap-
proaches described in Section 4.5.2 to that of two subsequent MPSM executions without
any additional processing of the intermediate result, which represents the baseline. Over-
all, the simple execution of two MPSM joins shows the best performance.

Merge. Merging the intermediate result runs to use them as private input to the second
join allows for omitting the sort phase in case of uniform key value distribution as given
in this experiment. However, merging shows approximately the same performance as the
optimized sorting technique of MPSM combining radix sort and insertion sort. When the
merged runs are used as public input, this has the same positive effect as location skew.
Two subsequent MPSM joins benefit from location skew as well (see Figure 4.27) and thus
result in the same performance.

Concat. Concatenating the result runs is less beneficial when using the outcome as
private input to the second join. This is because those runs cover the complete key range
and thus must be range-partitioned as usual, resulting in a performance comparable to
that of two subsequent MPSM joins. When using the intermediate result runs as public
input, the performance is even below that of the baseline, because concatenating the runs
from multiple remote NUMA partitions is slower than sorting the own runs within the
local partition.

Teams. The MPSM teams are not competitive at all as three-way-merge joining incurs
a very high overhead. We conclude that subsequent merge joins are more efficient than
three-way-merge joins and propose to investigate a team processing variant in which the
join phase is adapted to this finding.

Pipelined MPSM

For the evaluation of pipelined MPSM we instantiate 16 threads to process the first join
and another 16 threads to which the intermediate results are piped. The total number of
threads thus equals the number of physical cores on our server.

Figure 4.30 shows the comparison of two subsequent MPSM joins to pipelined MPSM.
Here, “rest” denotes the time from the completion of the first join until the second join
execution finishes. Due to the additional bandwidth incurred by the parallel processing of
the first join and operations (sorting of the third relation and merge-joining) of the second
join, the performance of the first join degrades slightly. Overall, there is no significant
performance difference between the two three-way-join variants tested in this experiment.
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Figure 4.29: Performance comparison of two subsequent MPSM joins without post-
processing the intermediate result (2 MPSM), with merging each worker’s
intermediate result runs (Merge), and with concatenating the intermediate
result runs (Concat)
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Figure 4.30: Performance comparison of two subsequent MPSM joins without post-
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4.7 Related Work

Parallel join processing originates from early work on database machines, e.g., Gamma
by DeWitt et al. (1992), where hash-based partitioning was used to distribute the join
argument to multiple machines in a compute cluster. In this context, some heuristics for
skew handling were developed by DeWitt et al. (1990). Frey et al. (2009) and Teubner
and Müller (2011) presented parallel joins for modern distributed databases. In multi-
core parallel processing, the distribution of the data is much more efficient as we can
exploit the shared memory, albeit regarding the consequences of the NUMA architecture
as pointed out by Ott (2009). Our MPSM join is, to the best of our knowledge, the
first work that consequently takes NUMA into consideration, which is decisive for large
scale in-core databases. Most previous approaches to in-core parallel join processing were
based on the radix join pioneered by the MonetDB group, in particular by Manegold et al.
(2002) and Boncz et al. (1999). This join method achieves cache locality by continuously
partitioning into ever smaller chunks that ultimately fit into the cache. Chen et al. (2007)
improved cache locality during the probing phase of the hash join using software controlled
prefetching. Our sort-based MPSM algorithm has high cache locality and hardware pre-
fetcher affinity by its very own merge join behavior that sequentially scans a pair of runs.

Kim et al. (2009) adapted hash join to modern multi-core CPUs in an Intel/Ora-
cle cooperation. They also investigated sort-merge join and hypothesized that due to
architectural trends of wider SIMD, more cores, and smaller memory bandwidth per
core, sort-merge join is likely to outperform hash join on upcoming chip multiproces-
sors. Blanas et al. (2011) and Blanas and Patel (2011) presented even better performance
results for their parallel hash join variants. We compare the sort-based MPSM to their
best-performing variant, which we called Wisconsin hash join here, and thereby pick the
competition between sort-merge join and hash join up once again as done by Graefe
(1994). As a second contender we chose Vectorwise Inkster et al. (2011) that builds on
the pioneering radix join work of MonetDB published by Boncz et al. (2009) in addition
to vector-based processing of X100.

He et al. (2008) developed parallel nested-loop, sort-merge, and hash joins on GPUs.
The algorithms take advantage of massive thread parallelism, fast inter-processor com-
munication through local memory, and histograms-based radix partitioning. We adapted
the histogram approach for synchronization-free partitioning of MPSM’s private input.
For sorting in MPSM, we developed our own combined radix/insertion sort. In the fu-
ture however, wider SIMD registers will allow to explore bitonic SIMD sorting as shown
by Chhugani et al. (2008).

MPSM does not produce completely sorted output. However, each worker’s partition
is subdivided into sorted runs. This interesting physical property might be exploited in
further operations as shown in Claußen et al. (2000). Note that the algorithms we com-
pared MPSM against do not exhibit any interesting physical property in their output data
and we did not exploit any possibly pre-existing sorting in our comparative performance
experiments.

Our disk-based D-MPSM was partly inspired by g-join by Graefe (2012), which also
operates on sorted runs instead of hash partitions as introduced in Graefe (1994). How-
ever, g-join lacks the parallelism, which is in the focus of this work.
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4.8 Summary and Conclusions

Currently, the two dominating hardware trends are increasing RAM sizes of up to several
TB and ever more (soon hundreds of) cores per server. Both facilitate the development
of main-memory databases that are essential to propel operational / real-time business
intelligence (BI) applications, which are gaining more and more importance for the day-
to-day business of companies.

In this context, we devised a massively parallel algorithm for the most important query
processing operator, the equi-join. It effectively exploits the parallelization potential of
today’s hardware in order to minimize query response times. MPSM merge-joins sorted
runs in parallel, which themselves were sorted by parallel threads. The performance
analysis revealed that MPSM can effectively join very large main memory data consisting
of billions of tuples as it scales almost linearly with the number of cores. MPSM achieves
a join performance of up to 175 million tuples per second (Figure 4.21). Thereby, it
outperforms Vectorwise by a factor of four and the Wisconsin hash join by a factor of
up to 17. Further, MPSM performs better than the algorithm presented by Kim et al.
(2009), which achieved 100-128 million tuples per second on smaller datasets (by more
than an order of magnitude) using smaller tuples (i.e., half-sized tuples of 32-bit key and
32-bit payload).

The scalable performance of MPSM is due to carefully exploiting the NUMA charac-
teristics of modern high-capacity servers. We avoided fine-grained synchronization and
random accesses to remote NUMA memory partitions. The linear scalability in the num-
ber of cores (Figure 4.22) promises the MPSM join to scale even beyond our tested 32
core, 1TB server, which is currently the top of the line main memory server but will soon
be surpassed by the next generations of servers.

Even though MPSM exploits radix partitioning to minimize the merge join costs, it
is robust with respect to skew by determining the partition bounds dynamically using
efficiently computed approximations of the input data distributions and applying the
splitter computation adapted from Ross and Cieslewicz (2009). We demonstrated this for
the worst possible scenario for MPSM, which is negatively correlated skew (Figure 4.25).

Further, we developed the algorithmic details of MPSM for join variants other than
inner join, i.e., outer, semi, and anti semi joins. They require only slight modifications to
the inner join algorithm and the overhead caused by the additional data structures and
computations is negligible (Figure 4.15). We also worked on exploiting the rough sort
order that MPSM inherently generates due to its range-partitioned merge join process-
ing. We compared the effect of merging and concatenating intermediate result runs to
that of MPSM teams, which process a three-way-join in one operation (Figure 4.29). Fur-
thermore, we investigated a pipelined version of MPSM (Figure 4.30). The experimental
evaluation revealed that the efficient sort and merge join phases of MPSM leave almost
no room for improvement.

Lastly, MPSM is adaptable to I/O-bound scenarios, in which intermediate results are
written to disk. The disk-enabled D-MPSM is particularly promising for large batch query
processing tasks that take place in parallel with transactions and real-time BI analytics.
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Chapter 5

Summary and Conclusions

Scalable analytical query processing gained renewed interest as the growing demand for
real-time business intelligence led to the reintegration of OLTP and OLAP processing
within one database system. The challenge here is to efficiently execute analytical work-
loads in order to provide useful information for strategic planning within short response
times while impacting the performance of time-critical transactional workloads, which are
crucial for the day by day business, as little as possible.

In this work, we developed approaches for the efficient, robust, and scalable execution
of OLAP workloads. We first considered the workloads as a whole and exploited the inter-
actions of concurrently executing queries within a workload. We found that they might
influence each other either positively or negatively. The synergy between two queries
depends on a multitude of factors, e.g., the system’s hardware and configuration, imple-
mentation details of the database operators, and programs running on the same system
as the database. The effects of these sources of synergies overlap and may cancel each
other out. Thus, the prediction of query influences is a complex task and prediction mod-
els are often based on probably arguable assumptions. We therefore pursued a different
approach considering the database as a black box and assuming we have no prior knowl-
edge about the workload. In our approach, we relied on the fact that both positive and
negative synergies between queries are reflected by the execution time of these queries.
By monitoring the execution times of different query sets at runtime, we drew conclusions
regarding the synergies of queries. For this purpose, we defined a system of equations
containing all available information about query set execution times and solved it by uni-
formly distributing uncertainty over the variables. An optimization component between
client and database system transparently monitors execution times and feeds them into
synergy computation. Depending on the database load, it adaptively switches between
training and optimization. We analyzed different scheduling approaches for the training
and the optimization phases. During the training, the main goal of scheduling is acquir-
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ing maximal knowledge of synergies between the workload’s queries. We showed that we
can obtain useful information about synergies within short time. Scheduling algorithms
that quickly fill the synergy matrix with rather inaccurate values but opt to execute as
many different query combinations as possible performed best in our experiments. Fur-
ther, fluctuations in the measured execution times only slightly reduce the accuracy of
the computed synergy values. In the optimization phase, the knowledge about synergies
is then exploited by the scheduling component to minimize workload execution time. The
scheduling component selects the combinations with the highest synergies to be executed
next. We showed that scheduling based on synergies greatly improves workload execution
times compared to a scheduling strategy according to query arrival. We further showed
the effectiveness of the feedback loop during optimization. By continuously feeding mon-
itored values back into synergy computation even after the training phase, incomplete
or inaccurate synergy information is enhanced, and this results in an improved workload
performance. We finally analyzed the applicability of the approach for the detection of
synergies provided by database systems on the example of a commercial database sys-
tem and its scan sharing feature. In our experiments, we were able to substantiate a
clear correlation between synergy values and workload execution times. We propose to
transparently integrate our approach for synergy-based workload management with the
company’s operational database system. Our optimization component can employ ar-
bitrary scheduling strategies, thereby offering a wide range of operation modes, from a
FIFO mode with no impact at all to a synergy-based mode exploiting knowledge about
positive and negative query influences on each other.

We then focused on the robust and predictable execution of single OLAP queries. In
particular, we examined the join operator, which is central to OLAP query processing.
When creating the execution plan for a query, the database optimizer relies on statistical
and meta data to choose from a set of implemented physical join operators. Traditional
join algorithms are either hash-based, sort-based, or index-based and are most appropriate
when input sizes differ significantly, data is presorted, or persistent indexes are available,
respectively. In case statistics are outdated or the optimization level is low, the optimizer
decisions might be poor and this can lead to bad or unpredictable query performance.
G-join is a new join algorithm which obviates the need for possibly wrong decisions by re-
placing the traditional algorithms. It combines the advantages of sort-based, hash-based,
and index-based join algorithms and performs robust in situations, in which the tradi-
tional algorithms’ performance decreases dramatically. G-join creates sorted runs for both
inputs and then moves synchronously through the runs, while maintaining an in-memory
index structure for fast probing. We showed that g-join is competitive to hash join on
unsorted data and to sort-merge join on roughly sorted data. If persistent indexes exist,
g-join uses them like index nested loops join but additionally profits from the rough sort
order of the probe input produced by run generation. For large unsorted inputs, g-join is
more robust than hash join as it does not suffer from mistaken optimizer estimates con-
cerning input sizes. G-join further executes the join faster than sort-merge join as it avoids
the costly complete merge of sorted runs. Our hybrid g-join implementation is effective
in producing first join results early and in saving I/O, and it smooths the performance
decrease if the smaller input’s size slightly exceeds memory. We further analyzed the im-
pact of different design alternatives for run generation, probe index, and priority queues
on performance and robustness. For run generation, replacement selection is most appro-
priate as it approximately halves the number of created runs compared to load-sort-store
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run generation algorithms. Tree-based probe indexes are more robust than hash-based
indexes in the case of skewed data. For disk-bound scenarios, the performance of differ-
ent priority queue implementations does not differ significantly, however, loser trees and
weak-heaps minimize the number of comparison operations and are thus preferable over
heaps. Besides joins, grouping operations are of great importance in OLAP processing.
Query optimization faces the same risks of suboptimal decisions when choosing between
traditional grouping algorithms based on sorting, hashing, or nested loops computation.
We sketched the g-aggregation algorithm, which adapts the approach of g-join for du-
plicate elimination and grouping, and aims at replacing traditional grouping algorithms
for the sake of robustness. We propose to replace traditional join and aggregation algo-
rithms with g-join and g-aggregation. That way, the database optimizer is relieved of the
error-prone choice of physical operators, which is an important step toward robust query
processing.

Finally, we turned our attention to modern hardware offering huge main memory
capacities and a large number of cores. Simply porting existing algorithms to modern
architectures, in particular those exhibiting non-uniform memory access (NUMA) for
different main memory partitions, does not scale well. This is due to ignoring bandwidth
limitations between NUMA partitions and thereby incurring expensive accesses to remote
memory. We developed a suite of massively parallel sort-merge (MPSM) algorithms for
the equi-join, which avoids the pitfalls of state-of-the-art algorithms on modern hardware.
MPSM sorts and merge-joins chunks of data in parallel. It is designed such that no
fine-grained synchronization is required between the parallel threads, thereby allowing to
exploit parallelism best. The performance analysis revealed that MPSM can efficiently
join very large main memory data of billions of tuples in less than three minutes. In a
comparative evaluation, MPSM outperforms state-of-the-art parallel hash join proposals
by factors. In particular, it outperforms the “cutting-edge” Vectorwise parallel query
engine by a factor of four. Furthermore, it scales almost linearly with the number of
physical cores, and even takes advantage of hyperthreading. The scalable performance of
the MPSM join is due to carefully exploiting the NUMA characteristics of modern high-
capacity servers. In particular, we avoided extensive (and random) accesses to remote
NUMA memory partitions by including a prologue phase to re-distribute the data in a
way that allowed local working. Further, MPSM is based on merge join, so that it accesses
remote memory only sequentially. Thereby, the remote access latency is hidden by the
hardware prefetcher. While being aware of NUMA effects, MPSM is still NUMA-oblivious,
i.e., not targeted at a specific NUMA architecture. In order to allow for effective use of
MPSM in query processing beyond inner join computation, we engineered the MPSM for
outer, semi, and anti semi joins. These variants require only little modifications to the
inner join algorithm and incur almost no computational overhead. We then investigated
how the roughly sorted output of MPSM can be exploited in further join processing.
We found that the efficient sorting and effective use of all available cores makes the
successive execution of multiple MPSM joins competitive to more elaborate techniques,
which post-process or pipeline intermediate results. Following prior approaches for hash
joins, we devised MPSM teams for integrated join and aggregation processing on different
keys. We propose to parallelize OLAP join processing using MPSM and thereby providing
NUMA-affine and at the same time NUMA-oblivious query processing. The short response
times and the scalable performance of MPSM make it applicable in operational business
intelligence scenarios demanding for up-to-date strategic information.
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Figure 5.1: Combining the approaches for efficient, robust, and scalable OLAP query
processing

We now want to give an outlook how the presented approaches can be combined to
achieve the goal of efficient, robust, and scalable processing of OLAP workloads. The pro-
posed interplay of synergy-based scheduling, robust query processing, and highly parallel
in-memory query execution is sketched in Figure 5.1. Synergy-based workload manage-
ment works transparent for the user and the database system and may either be realized
as an independent component between the two sides or integrated into the scheduler of
the database system. OLAP queries are queued and selected for execution based on their
synergies with each other. The execution times are fed back to the synergy computing
component in order to complete and improve the values within the synergy matrix. That
way, an optimized workload execution is realized with minimal overhead. Before being
executed, each single OLAP query is examined by the query optimizer to determine an
efficient execution plan. Instead of relying on possibly outdated statistics to choose be-
tween a multitude of physical join operators, the optimizer employs g-join for joining two
tables as g-join guarantees robust performance irrespective of input characteristics. Anal-
ogously, for aggregation and duplicate elimination, the optimizer relies on g-aggregation.
The robust query execution leads to more predictable and stable execution times, which
provides more useful input to synergy computation. These two techniques rather focus on
robustness and the global optimization of OLAP workloads than on fast execution times
of single queries. For operational business intelligence (BI) requiring “data at your finger-
tips” as Plattner (2009) pointed out, additional available resources like buffer pool frames
or processing cores are effectively used by MPSM, providing join performance which scales
linearly with the offered level of parallelism.
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