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Abstract. Flexible distributed query processing capabilities are an important
prerequisite for building scalable Internet applications, such as electronic Business-
to-Business (B2B) market places. Architecting an electronic market place in a
conventional data warehouse-like approach by integrating all the data from all par-
ticipating enterprises in one centralized repository incurs severe problems: stale data,
data security threats, administration overhead, inflexibility during query processing,
etc. In this paper we present a new framework for dynamic distributed query process-
ing based on so-called HyperQueries which are essentially query evaluation sub-plans
“sitting behind” hyperlinks. Our approach facilitates the pre-materialization of static
data at the market place whereas the dynamic data remains at the data sources.
In contrast to traditional data integration systems, our approach executes essential
(dynamic) parts of the data-integrating views at the data sources. The other, more
static parts of the data are integrated a priori at the central portal, e.g., the market
place. The portal serves as an intermediary between clients and data providers which
execute their sub-queries referenced via hyperlinks. The hyperlinks are embedded
as attribute values within data objects of the intermediary’s database. Retrieving
such a virtual object will execute the referenced HyperQuery in order to materialize
the missing data. We illustrate the flexibility of this distributed query processing
architecture in the context of B2B electronic market places with an example derived
from the car manufacturing industry.

Based on these HyperQueries, we propose a reference architecture for building
scalable and dynamic electronic market places. All administrative tasks in such
a distributed B2B market place are modeled as Web services and are initiated
decentrally by the participants. Thus, sensitive data remains under the full control
of the data providers. We describe optimization and implementation issues to obtain
an efficient and highly flexible data integration platform for electronic market places.
All proposed techniques have been fully implemented in our QueryFlow prototype
system which served as platform for our performance evaluation.
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1. Introduction

Electronic market places and virtual enterprises have become very im-
portant applications for query processing [6, 29]. Building a scalable
electronic Business-to-Business (B2B) market place with hundreds or
thousands of participating suppliers requires highly flexible, distributed
query processing capabilities. Bakos [5] characterizes electronic mar-
ket places as “inter-organizational information systems that allow the
participating buyers and sellers to exchange information about prices
and product offerings”. Thus, the market place in fact constitutes a
data integration portal, as customers pose queries and suppliers pro-
vide information. Architecting such an electronic market place as a
data warehouse by integrating all the data from all participants in one
centralized data repository incurs severe problems:

— Security and privacy violations: The participants of the market
place have to relinquish the control over their data and entrust
sensitive information, e.g., pricing conditions, to the market place.

— Coherence problems: The coherence of highly dynamic data, such
as availability and shipping information, may be violated due to
outdated materialized data in the market place’s data warehouse.

— Schema integration problems: Using the warehouse approach all
relevant data from all participants have to be converted a pri-
ori into the same format. Often, it would be easier to leave the
data inside the participants’ information systems, e.g., legacy sys-
tems, and apply particular local wrapper/transformer operations.
This way, data is only converted on demand and the most recent
coherent state of data is returned.

—  Fized query operators: In a fully integrated electronic market place
all information is materialized at the central data warehouse. This
is often not desirable in such complex applications like electronic
procurement /bidding. For example, in pricing offers one would like
to have different and flexible approaches, e.g.:

e fixed pricing via materialized data

e operators which calculate the prices based on many local and
global parameters (identity of the consumer, availability, local
plant utilization, sub-contractor prices, etc.)

e even human interaction during the processing of such com-
plex e-procurement queries is desirable. In some participating
enterprises the pricing could be done by humans via an
interactive “query operator”.
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4 A. Kemper and C. Wiesner

We propose so-called HyperQueries to architect highly flexible dis-
tributed query processing systems. HyperQueries are essentially query
evaluation sub-plans “sitting behind” hyperlinks . This way, a portal
like an electronic market place can be built as an intermediary between
the client (issuing a query) and the providers executing their sub-
queries referenced via hyperlinks. The hyperlinks to the HyperQueries
are embedded as attribute values within data objects (i.e., tuples) of
the intermediary’s database. Retrieving such a (partially) virtual object
automatically initiates the execution of the referenced HyperQuery in
order to materialize the entire object. Thus, sensitive data can remain
under the full control of the data providers. Instead of replicating the
data at the intermediary, only the hyperlink is embedded.

1.1. CONTRIBUTIONS

The HyperQuery framework allows to blur the distinction between the
allocation schema and the data—as it is found in clear separation in
traditional distributed databases. Thereby, the distribution of query ex-
ecution plans is highly dynamic and based on attribute values obtained
during query processing.

Based on HyperQueries we present a reference architecture for
building scalable, distributed B2B market places. We loosely couple
participants and obtain a “market place federation” where new par-
ticipants can easily join the market place. The integration of existing
systems, support of open standards, security, fault tolerance, and ad-
ministration of the market place are further important aspects of our
approach. The participants are able to manage their data themselves
without the interference of the administrator of the market place. In
our prototype system, these administrative tasks are supported by web
services. Our reference architecture is fully implemented and is based
on open standards.

In this paper we present a query evaluation technique for distributed
data integration systems with the example application of B2B mar-
ket places. Schema integration is beyond the scope of this paper. We
assume, that this has already happened, i.e., schemas from multiple
data sources using different data models, schemas, vocabularies, and
ontologies have been integrated leading to one central mediated schema
and mapping rules which define how to map information of the data
sources into the mediated schema. The primary goal of this paper is
to present both a novel architecture and query processing techniques
for the execution of queries against a mediated schema. Using our
approach mediated data can be divided into a static part which is
replicated centrally, e.g., at the portal or market place, and a dynamic
part remaining at the data sources.
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1.2. RELATED WORK

Distributed database systems have been studied since the late seventies
in projects like System R* [67], SDD-1 [9], and Distributed Ingres [58].
All these approaches extend single side DBMSs to manage relations
that are spread over the sites in a computer network in a seamless
manner. Middleware systems such as TSIMMIS [47], DISCO [62], and
Garlic [22, 30] have been used to overcome the heterogeneity faced
when data is dispersed across different data sources. Wiederhold [65]
describes and classifies methods to access data in a three-layer, medi-
ated architecture. Crescenzi etal. [17] show the automatic generation
of wrappers for HTML pages. These techniques can be adapted within
our approach but are (taken alone) too rigid to perform dynamic query
execution. Yang and Papazoglou [70] present a two-phase optimizer to
reduce the search space and pay attention to dynamic costs for ac-
cessing Web sources of limited query capability. Papakonstantinou [46]
addresses the fusion of information from heterogeneous information
sources by removing redundancies and resolving inconsistencies. Sheth
and Larson [56] discuss reference architectures for federated DBMSs
from system and schema viewpoints. All these middleware solutions
require the administrators to manually install all the necessary func-
tionality for query processing. Newer architectures such as MOCHA [49]
and ObjectGlobe [11] integrate dispersed data sources and provide the
autonomous loading of functionality from an external code repository.
Finally, [36] gives a survey of distributed query processing techniques.

There has been a lot of work on schema and data integration and
many systems have been proposed within this context. Lenzerini [37]
and Levy [38] provide surveys on data integration systems and asso-
ciated query evaluation techniques. Basically two mapping approaches
between the sources and the mediated schema are identified. In the
Global-as- View-approach (GAV) for each relation R in the mediated
schema, a view in terms of the source relations is defined which specifies
how to obtain R’s tuples from the sources. TSIMMIS [47] is one example
system, that uses the GAV approach. In the Local-as- View-approach
(LAV) for each data source S, a view in terms of the mediated schema
relations is written. This view describes the information that can be
retrieved from S in terms of the mediated schema relations. Information
Manifold [39, 40] and SIMS [3] are examples for LAV systems.

Our approach adapts the GAV approach, i.e., the market place de-
fines a mediated schema and HyperQueries specify how data values of
the mediated schema can be obtained from the sources. But in contrast
to traditional data integration systems, data providers create their
HyperQueries autonomously. HyperQueries reside at the data sources
and are executed under the full local control of the data sources. In our
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framework (the static) parts of the mediated schema can be material-
ized centrally, e.g., at the market place, while other (dynamic) parts
remain at the suppliers and are determined on demand. This way, both
static data (such as descriptions, comments, and images) and highly
dynamic data (e.g., prices and availability) are always up-to-date and
can be queried in the standard (central data warehouse-like) way.

InfoSleuth [31, 44], SIMS [3], Observer [41], and Ariadne [35] have
put their focus on utilizing ontologies. The approach of Goldman and
Widom [20] combines the query facilities of traditional databases with
existing search engines on the Internet whereby the execution of queries
is sped up by parallelizing the Web search. Cohera [25] is based on the
economic model of Mariposa [60] and integrates heterogeneous data
sources using replication tools. Tukwila [28] provides adaptive execu-
tion and scalability for a large number of data sources across intranets
and the Internet. Solutions to warehouse XML data have been pro-
posed, e.g., the Xyleme system [68]. The Nimble XML data integration
system [18] queries both materialized data in a central warehouse and
heterogeneous data sources on demand. When integrating data from
multiple data sources, inconsistencies can occur. Rahm and Do [48]
describe common problems in data cleaning. Novel approaches such as
PIAZZA [23] and Edutella [42] use P2P technology for the discovery
and integration of heterogeneous data sources.

Our HyperQueries bear some similarity with Stonebraker etal.’s
work on “QUEL as a Datatype” [59], which, however, was restricted to
stored sub-queries in centralized database systems. HyperQueries are
also related to pointer-based join methods [55] of relational and object-
relational database systems, as the hyperlinks can be viewed as pointers
to data at remote sites. Keller et al. [33] describe the so-called object
assembly which optimizes the order in which objects are read from
disk or retrieved from remote servers in a distributed system in order
to reduce I/O cost. Object assembly is specifically designed to assemble
complex objects that are hierarchically composed of sub-objects.

Yang and Papazoglou [69] describe a reference architecture for
interoperable e-commerce applications. Casati et al. [13] discuss require-
ments and challenges for e-business applications that support supply
chain management and propose an architecture to meet these require-
ments. Virtual enterprises and B2B e-commerce environments present
an important application domain for our new technique: the automo-
bile industry’s electronic market place endeavor “Covisint” [16] and
SAP’s “mySAP.com” [51] electronic market places are among the well
known examples. Initiatives like Bea’s WebLogic [8], Sun ONE [61],
Microsoft .NET [43], or IBM WebSphere [64] show that Web service
technology for application collaboration and integration gains increas-
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ing attention in research and industry. Florescu and Kossmann [19]
present a platform for web services based on an abstract programming
language and supporting web conversations and Web service composi-
tion. Keidl et al. [32] introduce an architecture for dynamic selection
and distribution of Web services.

ActiveXML [1, 2] is a recent related approach to harness Web
services for data integration and is put to work in a Peer-to-Peer
architecture: an XML document containing references to Web services
is processed and the references are replaced by the results of calls to
the corresponding Web services. This way, dynamic parts of the XML
document are materialized on demand. Their technique is based on
Web services and their focus has not been on query optimization as our
HyperQueries, e.g., it is not possible to bundle multiple invocations of
Web services and ActiveXML provides no pipelining.

1.3. RUNNING EXAMPLE

As an example application we present a scenario derived from the
car manufacturing industry. We assume a central market place and
multiple suppliers and sub-contractors. The suppliers have registered
their products at the central market place and sub-contractors on their
part have registered their products at the suppliers. As this multi-
layer portal structure may be arbitrarily deep, we obtain a hierarchical
supply chain. A typical process of e-procurement to cover unsched-
uled demands is to query the market place for these products and to
select the incoming offers based on price, terms of delivery, available
quantity, rating, etc. The price of the needed products can vary by
customer /supplier-specific sales discounts, the quantity of materials to
be provided, plant utilization, etc. Therefore, the price cannot be a ma-
terialized attribute as in traditional query processing systems. Instead
price is an individually calculated, dynamically changing attribute and
a hyperlink to the supplier is contained where the actual price will be
computed on demand.

In traditional distributed query processing systems such a query can
only be executed if all local databases are replicated at the market place
or a global schema and mapping rules onto the distributed data sources
exists. In the first case, i.e., all data is materialized at the market place,
coherence problems with stale data may be encountered. In the latter
case, all the data remains at the data sources. Then, a query can only be
processed at very high costs as the global query has to be re-written in
terms of the view definitions and all the data (static and dynamic) has
to be shipped to the market place. Considering a market place with
hundreds of participating suppliers, one global query integrating the
sub-queries for all participants would be too complex and error-prone,
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8 A. Kemper and C. Wiesner

Catalog
Pm(.iuc.( Supplier Price
Description
select c.ProductDescription, c.Supplier, c.Price )
Battery, 12V 32A | Supplier 1
from NeededProducts p, Catalog@MarketPlace ¢ Window Regulator | Supplier 4
where p.ProductDescription = c.ProductDescription
order by c.ProductDescription, c.Price
Supplier 1: _— Supplier 4:
select h.*, p.Price ... select h.*, sum(...) .|
from Products p, ... from Parts p, ...
where h.ProdID=... where h.SerialNo=...
(a) Example Query of the Car Manufacturer (b) Hyperlinks Referencing
HyperQueries

Figure 1. Running Example

i.e., if one supplier’s host is unavailable, the whole query execution
would fail.

Following our approach the suppliers register their products at the
market place and specify the sub-plans to compute the price infor-
mation at their sites. The calculation of the price can be arbitrarily
complex and involve their sub-contractors, too. Figure 1(a) shows an
SQL-like client’s query, that returns the description of products, prices,
and the suppliers of all needed products. The static attributes Product-
Description and Supplier are taken from the materialized data at the
market place, the value of the virtual attribute Price is determined
by evaluating the hyperlinks referencing HyperQueries at the suppli-
ers’ hosts (see Figure 1(b); the complete HyperQueries are shown in
Figure 3).

1.4. ORGANIZATION OF THE PAPER

The rest of this paper is organized as follows. In Section 2 we define
HyperQueries and Section 3 illustrates the execution of HyperQueries.
In Section 4 the reference architecture of a scalable dynamic market
place federation consisting of a market place, hierarchically organized
suppliers, and customers is described. In Section 5 we show optimiza-
tion techniques of the HyperQuery execution and discuss some details
of our implementation—the QueryFlow' system. We demonstrate the
scalability of our approach in Section 6 and give a summary and an
outlook on future work in Section 7.

! The name of our system was derived from query processing and workflow
systems because processing queries with HyperQueries bears some similarity with
processing distributed workflows by routing documents to the appropriate tasks.
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2. Syntax and Semantics of HyperQueries

In our framework for data integration we differentiate between static
and dynamic data. The former is & priori materialized in the portal, e.g.,
the market place, whereas the latter information remains at the data
providers. The dynamic parts are integrated by so called HyperQueries
and hyperlinks referencing HyperQueries are embedded as virtual at-
tributes into the mediated schema. The HyperQueries reside at remote
hosts nearby the data sources. During evaluation of a query involving
virtual attributes the sub-queries are executed to integrate data on
demand and materialize the current values. A similar approach has been
taken in “QUEL as a Data Type” [59], but we do not store the sub-
plans, which are executed at data providers, within virtual attributes.
In this section we specify HyperQueries and show how hyperlinks and
HyperQueries can be incorporated into the database design of a portal.

2.1. METADATA FOR HYPERQUERY PROCESSING

Virtual attributes encapsulate hyperlinks and the results of the cor-
responding sub-plans as attribute values in a database table or as
elements in an XML document. During evaluation the hyperlinks are
replaced by the result values of the HyperQueries. The schema of
these result values is specified by the market place in the mediated
schema and is publicly available. Furthermore, the market place defines
so-called application-specific parameters. These application-specific pa-
rameters are additional input parameters for the HyperQueries, are
given by the client, and can be used within the HyperQueries to cal-
culate the actual value of the virtual attributes. One object of the
mediated schema can contain multiple virtual attributes that reference
different sub-plans on possibliy different hosts.

2.2. SPECIFICATION OF HYPERLINKS

To obtain general locators that are independent of the physical location
of the referenced sub-plans, we define the following Uniform Resource
Identifier (URI) schema for the specification of hyperlinks that reference
HyperQueries:

<hgschema> ::
<ParamList>::

"hq://"<HostDNS>"/"<PathToPlanId>"7"<ParamList>
<ParamName>"="<ParamValue>
{"&"<ParamName>"="<ParamValue>}

Here, the components have the following meaning: hq denotes our
HyperQuery protocol, <HostDNS> is the DNS name of the host, on
which the sub-plan is stored and executed, and <PathToPlanId> is
the name of the stored sub-plan at the data provider. <HostDNS>
and <PathToPlanId> are referred to as URI prefix. The subsequent
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< Catalog>
<Article ID="1">
<ProductDescription>Battery, 12V 32A </ProductDescription>
<Supplier>Supplier 1</Supplier>
<Price isVirtual="true” >

hq://supplierl.com/Electrical/Price?ProdID=CB1232
</Price>
< /Article>
<Article ID="2">
<ProductDescription>Battery, 12V 55A < /ProductDescription>
<Supplier>Supplier 1</Supplier>
<Price isVirtual="true” >
hq://supplierl.com/Electrical/Price?ProdID=CB1255
< /Price>
< /Article>
<Article ID="3">
<ProductDescription>Tires 175/65TR14< /ProductDescription>
<Supplier>Supplier 2< /Supplier>
<Price isVirtual="true” >
hq://supplier2.com/Price?ProdKey=175/65TR14
</Price>
< /Article>
<Article ID="4">
<ProductDescription>Spark Plug VX< /ProductDescription>
<Supplier>Supplier 3</Supplier>
<Price isVirtual="true” >
hq://supplier3.com/PriceForUSA?ID=1234
</Price>
< /Article>
<Article ID="5">
<ProductDescription>Window Regulator</ProductDescription>
<Supplier>Supplier 4</Supplier>
<Price isVirtual="true” >
hq://supplierd.com/SpecialPrice?SerialNo=WRA4T
</Price>
< /Article>

< /Catalog>

Figure 2. Catalog of an Electronic Market Place Including Virtual Attributes
(Shaded Gray)

object-specific parameters are introduced by “?” and constitute a “&”-
separated key-value list. These object-specific parameters represent
foreign keys on a virtual document at the data source where they are
used to calculate the actual value of the virtual attribute. The object-
specific parameters link together the static (& priori integrated) data
portions at the market place and the dynamic portions obtained on
demand from the data providers. All entries of the virtual attribute
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with the same URI prefix must have the same object-specific pa-
rameter structure; each URI prefix leads to the instantiation of one
sub-plan at the remote host. Each site can host multiple different sub-
plans. Figure 2 shows a simple extension of a product catalog which
is now presented in XML format. The virtual attribute Price of the
first Article element indicates, that the price is calculated at the host
supplierl.com using the sub-plan Electrical/Price for an object with
key ProdID=CB1232.

2.3. SPECIFICATION OF HYPERQUERIES

HyperQueries are the counterparts of virtual attributes and deter-
mine the dynamic parts of the mediated schema on demand. They
are executed at the data source, may be arbitrarily complex, integrate
applications and legacy systems, and may even involve user interac-
tion. The most conventient way for stating HyperQueries is to use our
SQL dialect where a HyperQuery accesses a virtual table called Hyper-
QueryInputStream. This virtual table serves as the receiver of the input
data objects that “flow through” the hyperlinks, i.e., the requests for
the actual values referenced by hyperlinks. Within a HyperQuery only
the object-specific parameters of the corresponding hyperlink and the
application-specific parameters can be accessed. Additional attributes,
e.g., customer-given attributes, of an input data object cannot be used
within the HyperQuery; they are passed through. In our prototype
system, alternatively, a HyperQuery can consist of arbitrarily complex
Java operations which implement the iterator interface of [21].

Figure 3 shows the SQL formulations of two HyperQueries for
the calculation of Price. The HyperQuery at Supplier 1 assumes a
data source Products with attributes ProdlID and Price and per-
forms the join with the virtual table HyperQueryInputStream on the
object-specific parameter of valid input hyperlinks. The HyperQuery
at Supplier 4 is based on two local tables Parts and BillOfMaterial.
Here, Price is calculated by summing up the prices of the components.
Thereby, the HyperQuery invocations could be nested, if p.Price and
p.ComponentPrice were again virtual attributes.

If an object is sent to a HyperQuery, the actual value is calculated
from the object-specific parameters that are given by the URI and
the application-specific parameters. The type of the actual value of
the virtual attribute must coincide with the schema definition given
at the market place; objects of incompatible type are discarded by the
market place. If the type is single-valued and multiple values for the
virtual attribute are computed, multiple values have to be returned.?

2 For our example application of the car manufacturer’s market place we assume
that Price is a single-valued attribute.
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12 A. Kemper and C. Wiesner

select h.*, p.Price as Price
from Products p, HyperQueryInputStream h
where h.ProdID = p.ProdID

(a) Electrical/Price at Supplier 1
select h.*, sum(p.ComponentPrice) as Price
from Parts p, BillOfMaterial b, HyperQueryInputStream h

where h.SerialNo = b.SerialNo and b.ComposedOf = p.PartID
group by h.*

(b) SpecialPrice at Supplier 4
Figure 3. Two Example HyperQueries in Our SQL Dialect

If a HyperQuery is not able to compute the value of a virtual
attribute the object is not returned. This reflects the semantics of
a natural join and constitutes a simple mechanism of data cleaning
(see [48] for more elaborate solutions). HyperQueries may initiate the
instantiation of other HyperQueries when accessing virtual attributes.
The results may flow back to the initiator of the HyperQuery where
they are post-processed, or results are routed directly back to the client.
We discuss both possibilities for the flow of results in more complex
scenarios in the next section.

3. Executing HyperQueries

In contrast to other data integration approaches our HyperQueries
reside at the data providers. In this section we present the execution
of HyperQueries for the on demand data integration.

3.1. TEMPLATES FOR SUB-PLANS

A HyperQuery that is stated as an SQL query is transformed into an
operator tree using one of the three subsequently described templates
depending on the complexity of the SQL query. The resulting operator
tree is optimized using standard relational optimization methods and
can be stored as a sub-plan at the data source. Figure 4 shows the three
templates with the following characteristics:

Inner Sub-Plans Figure 4(a) shows sub-plans that have one input
stream and one output stream. They are the simplest form of Hyper-
Queries, where the Receive operator corresponds to the virtual table
HyperQueryInputStream of the SQL query. The proper operator tree
of the remaining query is built the standard way of compiling an SQL
expression. The Send operator on top of the operator tree transmits
the results of the HyperQuery execution back to the caller, e.g., the
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: (Dispatet]
Receive)

T T I
(a) Inner Sub-Plans (b) Nesting Sub-Plans (c) Sequencing Sub-Plans
Figure 4. The Three Possible Templates for Sub-Plans

market place. These sub-plans are the innermost parts of the query
execution where the actual values of virtual attributes are determined,
e.g., a supplier reads the price information from a local database.

Nesting Sub-Plans As shown in Figure 4(b), these sub-plans contain
a Dispatch operator that splits one input stream (which is provided
by the Receive operator) into multiple output streams serving as input
streams for the nested sub-plans. The Dispatch operator is the basic
operator for processing HyperQueries (for implementation details see
Section 5). The final Union operator (re-)merges the result streams
of the nested sub-plans and produces one output stream. Thus, the
flow of objects is totally encapsulated inside a sub-plan of this pattern.
This pattern is a specialization of inner sub-plans and is used to build
hierarchies of sub-plans. The client query including the HyperQuery
execution is always transformed into a nesting sub-plan.

Sequencing Sub-Plans Sequencing sub-plans, as shown in Figure 4(c),
contain the initial Dispatch operator that splits one input stream into
multiple output streams; no final Union operator is given. The results
of the dependent sub-plans are sent back to the Union operator of the
surrounding sub-plan. Thus, objects that are once sent to a dependent
sub-plan are never sent back to the initiating sub-plan and the data
objects are beyond its control.

The main difference between nesting and sequencing sub-plans is the
flow of results and the possibility of further processing of the virtual
attributes after they have been materialized. Using nesting sub-plans
the results flow from the HyperQuery execution back to the caller of
the HyperQuery; whereas sequencing sub-plans send the results back
to the surrounding sub-plan. This distinction is needed when executing
multi-level HyperQueries which we present later in this section.
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14 A. Kemper and C. Wiesner
3.2. PROCESSING HYPERLINKS

The Dispatch operator splits one input stream into multiple output
streams. This splitting is based on the virtual attribute and the ob-
jects are sent to the HyperQueries as determined by the embedded
hyperlinks as follows:

1. The URI prefix is determined from the hyperlink.

2. If the referenced sub-plan has not yet been instantiated at the
remote host, an instantiation request is sent. This request contains
additional data that can be used at the remote host to parame-
terize the sub-plan. These “global parameters”, e.g., the preferred
currency of the client, stem from the context of the client? .

3. Once the sub-plan has been instantiated at the data source all
objects with the same URI prefix of the hyperlink are sent there.
Thereby, whole data objects, i.e, the hyperlinks and the additional
elements of the input object, are transferred. This is usual in tra-
ditional database query processing and compliant with the iterator
model, but different from hypertext processing, where only the
request is sent and the resulting information is returned to the
client. In Section 5 we discuss the splitting of objects and sending
only the necessary parts.

3.3. PROCESSING SIMPLE QQUERIES

We illustrate the incremental plan generation and execution of the
query shown in Figure 1 using the database extension of Figure 2.
Figure 5 shows a sample XML document NeededProducts that forms
the “seed” of the HyperQuery invocation at the client.

For simplicity we substituted in Figure 6 the concrete data objects
by symbols, where [J and A denote the two battery objects, O denotes
the tires object, and < denotes the spark plug object. Figure 6(a)
shows the start of the query execution: The user-stated plan is in-
stantiated with a scan of the NeededProducts document at the client.
The attributes Price and Supplier of the Catalog document are joined
(indicated by X_ ) to the input objects. The vertical hatch indicates
the joined objects.

The Dispatch operator splits the stream of objects into multiple
output streams based on the virtual attribute Price. In Figure 6(b)

% In our market place “global parameters” are obtained from the registry
information of the clients.
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<NeededProducts>
<Article>
<ProductDescription>Battery, 12V 32A < /ProductDescription>
<OrderQuantity>500</OrderQuantity >
< /Article>
<Article>
<ProductDescription>Battery, 12V 55A < /ProductDescription>
<OrderQuantity>750</OrderQuantity >
< /Article>
<Article>
<ProductDescription>Tires 175/65TR14< /ProductDescription>
<OrderQuantity>1000</OrderQuantity>
</Article>
<Article>
<ProductDescription>Spark Plug VX< /ProductDescription>
<OrderQuantity >8000< /OrderQuantity>
</Article>
< /NeededProducts>

Figure 5. Some Needed Products of the Car Manufacturer

the first object for Supplier 1 passes the Dispatch operator which
requests? the sub-plan Electrical/Price at Supplier 1. The Dispatch
operator routes all objects referencing the same sub-plan to the same
instance of the sub-plan (Figure 6(c)/(d)). Figure 6(d) also shows the
processing of the () object at the market place. The Dispatch operator
sends an instantiation request to Supplier 2 where a complex “black-
box” application (App) calculates the price. Concurrently, the Price
has been added to the [l object at Supplier 1. The resulting B object®
can be forwarded to the final Union where an input stream is requested.

After the registration of the new input stream at the Union the
HyperQuery at Supplier 1 sends the B object back to the market
place. The Price is inserted into the next data object & (Figure 6(e)).
The market place routes the @ object to Supplier 2 and requests the
instantiation of the sub-plan PriceForUSA for the last input object @
at Supplier 3 where a user enters the Price using a GUIL In Figure 6(f)
the @ object reaches Supplier 3, Supplier 2 has inserted the pricing
information into its @ object and sends the resulting @ object to its
target. Supplier 1 routes its A object to the Union.

Supplier 2 sent the @ object to the Union and Supplier 3 inserted the
Price for the ¢ object (Figure 6(g)). The routing of the 4 object leads
to a request of an additional input stream at the Union. Figure 6(h)
depicts the result, where the actual values of all input objects have
been inserted and the resulting objects have reached the Union. Based
on these data objects the query is processed further, i.e., the sorting by

* Note that all sub-plans are instantiated only once for a query.
5 Objects with fully materialized virtual attributes are visualized in solid black.
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Figure 6. Routing of Objects & Instantiation of Sub-Plans

ProductDescription and Price is done. After the complete execution of
the query, all instantiated (intermediate) sub-plans and the user-stated
query plan are closed and cleaned up in reverse order of instantiation.

3.4. PROCESSING MULTI-LEVEL HYPERQUERIES

So far we have demonstrated the instantiation of sub-plans for one-level
HyperQuery processing. The HyperQuery concept is, as mentioned be-
fore, not restricted to one level. While processing a HyperQuery at
a data source, other hyperlinks may be encountered which theirselves
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Figure 7. Kinds of HyperQuery Execution

invoke dependent HyperQueries. This enables us to structure the data
integration process and provide transparent access to a chain of data
providers. Figure 7 illustrates more complex example applications uti-
lizing the nesting and sequencing templates for sub-plans of Figure 4.
We only show the query plans after all sub-plans have been instantiated
and omit the example data objects. The main difference between the
two techniques is the flow of results from the innermost HyperQueries
back to the user. In hierarchical mode the results flow back to the
sites where the HyperQuery requests were initiated. In broadcast mode
the result objects are not collected at the invoking intermediate, but,
rather, they are routed directly to the user.

3.4.1. Hierarchical HyperQuery Ezecution

If a remote host encounters a virtual attribute that is needed for the
further execution of the HyperQuery, the remote host acts as interme-
diary and initiates a nested sub-query at another remote host using the
pattern of Figure 4(b): The data objects flow from the surrounding sub-
plan to the nested sub-plans, where the value of the virtual attribute is
computed. Then the completed objects are sent back to the surrounding
sub-plan, where they are processed further.

The nesting of sub-plans may be arbitrarily deep using again nest-
ing or sequencing templates. In Figure 7(a) Supplier 4 executes the
HyperQuery of Figure 3(b) and accesses the virtual attribute Compo-
nentPrice. The HyperQuery of Supplier 4 has to be hierarchical, i.e.,
the nesting template for sub-plans has to be used, as the actual value of
ComponentPrice is post-processed at Supplier 4. The virtual attributes
at the levels of the nesting may differ, e.g., the outer virtual attribute
could be Price, while the inner is ComponentPrice.
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3.4.2. Broadcast HyperQuery Ezecution
If a hyperlink is encountered within a HyperQuery and the results need
not be processed any further, the evaluation can be delegated to other
HyperQueries. Using sequencing sub-plans data objects are forwarded
to further sub-plans. It is the task of these sub-plans to determine the
value of the virtual attribute and to send the resulting objects back to
the initiator of the query. The prerequisite is that the virtual attributes
are the same for both levels. The Union of the surrounding sub-plan
merges the results of the inner sub-plans. In Figure 7(b) Supplier 4
has two subsidiary companies and delegates the incoming HyperQuery
requests to Sub-Contractor 1 and 2 without post-processing the results.
The main advantage of broadcast processing is the quick forwarding
of data objects without handling them again at the delegating site.
The tradeoffs are (1) that the virtual attributes must coincide in all
sequencing sub-plans and (2) that data from many unknown sources
are provided to the collecting Union operator. In hierarchical mode
the Union operator is informed from the Dispatch operator which data
sources provide data. Nevertheless, as each site decides autonomously,
which kind of sub-plan to executed, both hierarchical and broadcast
execution of HyperQueries is possible within the execution of one query.

4. A Reference Architecture for Dynamic Market Places

In this section we propose a reference architecture for building scalable,
distributed, electronic market places. Figure 8 gives an architectural
overview of the whole market place federation, where three kinds of
participants are distinguished: the market place, the customers, and
the suppliers. The solid HQ annotated arrows reference HyperQueries
at the data sources. The SOAP annotated arrow indicates that data
integration is done via a Web service at the supplier outside the feder-
ation. These Web services are accessed via SOAP communication. We
explain this extension of virtual attributes subsequently. Finally, the
dashed lines represent the registration of new suppliers.

4.1. AN OVERVIEW OF THE REFERENCE ARCHITECTURE

The main task of the market place is to act as an intermediary between
participants. Therefore, the market place offers a mediated schema for
integrating the suppliers’ data sources to enable transparent access
by the customers. The market place hosts the more static data, in
particular, the product catalog and registry information, and executes
queries accessing virtual attributes by distributing the requests to the
participating suppliers.

The market place offers two basic interfaces: Customers pose their
queries against the mediated schema using the query interface. The
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Figure 8. Architectural Overview of the Market Place Federation

service interface is used for all administrative tasks which are realized
as Web services. The administrative tasks include registration of the
static information at the market place. Thus, suppliers are able to man-
age both their registered products in the product catalog at the market
place and provide meta information about the used HyperQueries for
consistency checks. New customers and suppliers can autonomously
join the market place as participants by submitting their registry in-
formation as XML documents to the market place. This makes the
market place very scalable, as the administration of the data is done
autonomously by the data providers.

Customers have to register at the market place using the service
interface. Certificate-based authentication secures the registration pro-
cess in which a customer profile, e.g., the location of the customer, the
preferred currency, is transmitted. This profile is used for the global
parameters during HyperQuery processing. The customers pose queries
against the query interface of the market place. This can be done either
by a browser accessing the web portal of the market place or by a client
program. The client program is executed at the customer’s site. It in-
cludes a full query processor and allows the seamless integration of data
located at the customer into query processing. The benefit of the web
portal is, that customers outside the federation do not need to install
any additional software, whereas the fully integrated method requires
the installation of the query processing system at the customer’s site.
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Figure 9. A New Supplier Joins the Market Place

The suppliers can join and leave the market place at any time with-
out affecting any other participants using the service interface. This
means, that new data sources contribute data to the mediated schema
at the market place and provide HyperQueries at their sites. Figure 9
illustrates the registration of a new supplier with products and the
transparency of HyperQuery execution: At first, a customer poses a
query involving data of Supplier 1 and Supplier 2. When a new supplier
registers at the market place and uploads the static parts of the me-
diated data, virtual attributes are embedded for dynamic information.
If a customer poses again the same query, the dynamic part of the
data of Supplier 3 is also incorporated into the result. Figure 10 gives
an example XML document for the registration of one product at the
market place. Supplier 3 sends this XML document to the service inter-
face of the market place. The suppliers have to provide HyperQueries
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<ProductRegistration>
<Article>
<ProductDescription>Spark Plug VX< /ProductDescription>
<Supplier>Supplier 3</Supplier>
<Price isVirtual="true” >

hq://supplier3.com/PriceForUSA?ID=1234
</Price>
< /Article>
< /ProductRegistration>

Figure 10. XML Document for the Product Registration of Supplier 3 Including
Virtual Attributes (Shaded Gray)

Query Interface ‘ Service Interface
Mass Data Messagin:
Communication SerVIgce ¢ ‘ SOAP/HTTP ‘
HyperQuery Protocol

Query Processor incl. HyperQuery Execution ‘

Figure 11. Details of one Participant of the Market Place Federation

Security System

at their (local) sites. As suppliers can be organized hierarchically, they
can act as “mini-market places” and sub-contractors register at these
suppliers. This enables us to structure the data integration process and
multi-level HyperQuery processing is possible.

4.2. DETAILED DESCRIPTION OF PARTICIPANTS

We propose an open reference architecture for data integration systems
and allow any host to participate in the federation. We distinguish two
kinds of participants: participants that have installed the full system
and participants using a SOAP connector to implement HyperQueries
as Web services. Figure 11 shows details of a participant of the market
place federation having installed the full system.

The major benefit of a supplier running the full system is the seam-
less integration of its sub-contractors into query processing. The main
parts of the system can be characterized as follows: A database system
stores all local data, e.g., at the market place the product catalog and
the registry information. The query processor of the database system
supports the execution of HyperQueries. Secure communication with
remote hosts is ensured by a certificate-based security system which
signs queries and requests when sending them to hosts and verifies
them at the destination. The details of the security system are pre-
sented below. The communication layer of the system is divided into
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two major parts: The HyperQuery protocol consists of a proprietary,
efficiently working messaging service for the exchange of administrative
control messages during HyperQuery processing as well as of mass data
communication channels. The second part of the communication layer
is SOAP/HTTP which provides openness for other systems to access
the market place federation and vice versa. Thus, data integration is
not restricted to the execution of HyperQueries, but Web services are
also supported.

The application layer consists of the query interface and the service
interface for the execution of Java-based Web services. WSDL [14]
describes the Web services which implement the administration of the
registered participants, static information, and meta data. The benefits
are: On the one hand Web services can be composed and can seamlessly
be integrated into more complex workflows at the participants. On the
other hand new Web services can easily be integrated dynamically.
Using this decentralized architecture the market place is very scalable,
as the administration of the data is done locally at the data providers.

4.3. IMPLEMENTING HYPERQUERIES AS WEB SERVICES

To enable any site to join the market place federation without installing
the full system, HyperQueries can be realized as Web services. To
access these Web services—which act as HyperQueries—hyperlinks to
WSDL documents (instead of hyperlinks to HyperQueries) are embed-
ded as virtual attributes into the mediated schema at the market place.
WSDL [14] is the standard for describing the interface of Web services,
i.e., the input and output parameters of Web services and the usage
of protocols. Figure 12 shows a simplified WSDL document for the
Web service PriceService. As one WSDL document may contain the
specifications of multiple operations the hyperlinks to this document
are extended with the name of the operation to be accessed within
the WSDL document. The object-specific parameters are given in the
hyperlink and define the values for the input parameters of the Web
service. This way, Web services can be accessed as HyperQueries dur-
ing query processing. The following hyperlink references the presented
WSDL document:

http://www.supplier.com/PriceService.wsdl?
operation_name=PriceClassi&
Product=ExteriorMirror&Type=spheric&Color=blue

When encountering a hyperlink to a WSDL document the Dispatch
operator executes the following procedure:

1. If not already loaded, the WSDL document is retrieved and cached.
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<message name="getPriceRequest” >
<part name="Product” type="xs:string” />
<part name="Type” type="xs:string” />
<part name="Color” type="xs:string” />
< /message>
<message name="getPriceResponse” >
<part name="Price” type="xs:float” />
< /message>
<portType name="PriceService” >
<operation name="PriceClass1” >
<input message="getPriceRequest” />
<output message="getPriceResponse” />
< /operation>
< /portType>

Figure 12. Simplified WSDL Document of the Web Service PriceService (For
simplicity the namespaces, WSDL header, bindings, etc. are omitted)

2. A proxy object for the Web service is generated from the WSDL
document, i.e, a piece of Java code accessing the referenced Web
service via SOAP is created, compiled and dynamically loaded into
the runtime system. This proxy object is also cached for later reuse.

3. The object-specific parameters are bound dynamically to the proxy
object.

4. A SOAP message is generated by the proxy object and is sent to
the Web service.

The Web service executes the request and sends the results back to
the market place. The market place passes the results to the Union
operator of the corresponding query plan where, in return, further
query processing proceeds. The Dispatch operator encapsulates the
execution of the HyperQueries and the calls to Web services, so that
the two techniques do not interfere and are possible within the same
query execution.

4.4. SECURITY ISSUES

Security is one of the crucial issues in an open and distributed query
processing system. Users rely on the information provided by data
integration systems, i.e., the stored and displayed information has to
be secured against unauthorized access and malicious modifications.
Especially in B2B market places which constitute the basis of economic
activity, the security system has to cope with

— privacy, i.e., denying unauthorized sites access to sensitive data,

— integrity, i.e., denying unauthorized sites the modification of
sensitive data,
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— authentication, i.e., verifying the identity of a user,

— authorization, i.e., verifying, that a user has the permission to
execute a requested sub-plan or an operation, and

— non-repudiation, i.e., no partner can deny the involvement in a
transaction.

There have been many standardization efforts in the recent past on
security in distributed environments, e.g., XML Signature [7] and XML
Encryption [27] describe how to sign and encrypt XML documents. WS-
Security [4] utilizes both standards to secure Web services by extending
the header of SOAP messages with security relevant information. These
approaches cover security issues of one single message exchange and are
used within our proposed architecture, but the flow of data through
multiple intermediaries requires extended security functionality.

Privacy and Integrity Communication streams between participants
of the market place federation are protected by using the well-
established secure communication standards SSL and/or TLS for
encrypting and authenticating (digitally signing) messages. Both pro-
tocols can carry out the authentification of communication partners via
X.509 certificates [26].

As business partners do not always communicate directly, but via
intermediaries, e.g., market places, suppliers, or sub-contractors, using
these secure protocols is not sufficient. The remote host that computes
the actual value of the virtual attribute has to ensure that only the
proper receiver has access to the data and intermediaries have to be
withheld from reading it. Privacy and integrity of data can be ensured
in multi-level HyperQuery execution by encryption and signatures.

Authentication In our market place framework authentication is used
for three purposes: First, the customers, i.e., the clients of the data
integration system, rely on true identity and the legally binding offers
by the suppliers. Second, the suppliers have to know the identity of their
customers due to special pricing conditions and contracting. Third,
the carrier of the market place has to know who poses queries for its
accounting. Each processed query incurs costs which have to be charged
to the corresponding participants.

Authentication methods are based on passwords or X.509 cer-
tificates. We restrict the further discussion to certificates, i.e., each
participant possesses an X.509 certificate. The certificate contains the
public key that has been signed by an approved certification authority
(CA). Digital signatures generated by the appropriate private key serve
as a legal instrument for binding offers in e-commerce applications.
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Figure 13. Chain of Signatures during HyperQuery Execution

In traditional distributed databases users sign query plans with their
private keys and the authentication is performed at the participating
providers. The signature of a query is verified and then the origina-
tor and the integrity of the query is verified reliably. This (simple)
technique is not applicable to HyperQuery execution as the whole
plan cannot be determined & priori and participants communicate
through intermediaries. We devised the following extended authenti-
cation method for (multi-level) HyperQuery execution whereby we use
the notation derived from [52] for the cryptographic functions assuming
three communication partners:

1. user U who poses the initial query,

2. market place M which provides the mediated schema, receives the
query of the user, executes a Dispatch operator on the virtual
attributes, and sends instantiation requests to the data sources,

3. supplier S, i.e., a data source, which executes a HyperQuery.

Our approach hands over the initial plan and signs it multiple times.
This constitutes a chain of trust. Figure 13 illustrates the algorithm
with the instantiation of a sub-plan at supplier S:

1. The execution of a query involving HyperQueries starts at the user
where the initial plan P containing a query identifier is signed with
the user’s private key.® The generated signature is appended to P,
leading to (P, Sy (P)).

2. Each time a Dispatch operator sends an instantiation request
I to a remote host both P and I are signed with the private
key of the host that executes the Dispatch operator, generat-
ing (P, Sy(P),Sym(P)) and (I, Sp(I)). In multi-level HyperQuery
execution multiple signatures are appended to the initial plan.

® Note that a message digest is generated from the initial plan using a hash
function such as MD5. Then, this message digest is signed.
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As the instantiation request also contains the query identifier of P both
parts are marked to belong together and a separation by a malicious
third party is detected by the receiver. A registration request at a
Union is treated the same way. The receiver authenticates both the
intermediary and the user by applying the following three steps:

1. The sending host is verified using SSL. Both received parts of the
request, i.e., the initial plan and the instantiation request, have to
be signed at last by the market place. Thus, the two verification
tests are successful: Vi (P, Sy (P), Sam(P)) and Vi (I, Sy (1)).

2. Then, the first signature of the initial plan is checked with the
public key of the user by Vi (P, Sy (P)).

3. The query identifier must coincide in the initial plan and the
instantiation request.

On success of all three steps the supplier can reliably identify both the
user and the market place. When the supplier sends back the results to
the market place, a registration request R is sent to the Union operator
at the market place, the supplier signs the request and the initial query
and sends them both to the market place. At the market place the same
authentication process is repeated with reversed roles.

Authorization The participants enforce their local authorization
policy autonomously utilizing a role-based access control (RBAC)
model [50] to specify authorization rules. RBAC distinguishes between
users, roles which are assigned to users, and permissions which are
assigned to roles. Each host establishes its own local rules, that declare
which HyperQuery may be instantiated by which user. For instance, a
supplier could have an exclusive contract upon a special kind of good
with a certain customer. This can be implemented by a HyperQuery
that is just used for this particular product group. The supplier stores
the RBAC information that only the “exclusive” customer may execute
this HyperQuery. On the instantiation of the HyperQuery the identity
of the customer is checked and, if authorized, the HyperQuery is in-
stantiated; otherwise the instantiation request is refused and an error
is returned to the invoker of the HyperQuery.

Non-Repudiation It is essential for e-commerce applications that
partners cannot deny the involvement in transactions. Following the
traditional data warehouse approach this would be difficult, as the
market place cannot legally sign the offers of the suppliers. Using
HyperQueries, the market place acts as an intermediary and the of-
fers are processed and legally signed by the suppliers themselves. As
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it is currently not clear in some countries, whether an automatically
processed and signed document is legally binding, we can use an oper-
ator for human input, that signs the produced objects on demand and
explicitly expresses the declaration of intention.

5. Optimization and Implementation Details

In this section some optimization and implementation issues concerning
the efficient and robust execution of HyperQueries are discussed.

5.1. BYPASSING OF ATTRIBUTES

The intermediary defines the mediated schema including meta informa-
tion, e.g., which attributes are virtual. User queries include attributes
which are necessary for query processing, such as virtual attributes, and
bulk attributes, such as images or product descriptions. In the naive
approach whole objects consisting of both necessary and bulk attributes
are sent to the HyperQuery. As the bulk attributes are not needed for
the calculation of the virtual attribute at a remote host, they can be
eliminated when passing the Dispatch operator. These attributes are
sent to the final Union and are re-merged to the resulting objects after
the actual value of the virtual attribute has been calculated. When the
bulk attributes are eliminated a unique sequence number is added both
to the bulk parts and the remaining data objects, i.e., the virtual at-
tributes. Using these sequence numbers the bulk objects can be merged
to the corresponding data objects at the Union operator.

This optimization method is similar to bulk bypassing [10, 15] in
central databases. Figure 14(a) illustrates the bypassing of bulk objects
around HyperQueries. Especially in multi-level HyperQuery execution
this decreases the amount of transferred data and reduces the execu-
tion time in slow and bursty networks. This can also be applied when
sensitive information has to be withheld from the remote hosts without
expensive encryption of the data.

5.2. PREDICATE MIGRATION

Predicates on virtual attributes cannot be evaluated before the actual
values have been materialized. To reduce the amount of transferred
data, the intermediary pushes these predicates from the initial query
“into” the HyperQueries at the remote hosts so that only relevant
data objects are returned. For example, adding the selection predi-
cate c¢.Price < 1500 to the query of Figure 1 we show how predicate
migration works: Without optimization the selection is applied late and
the HyperQueries send all products back to the market place; pushing
the selection down to the HyperQueries, less objects are transferred.
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Figure 1. Ilustrating Optimization Techniques (I)

The implementation of this optimization is straightforward: The se-
lection predicate is sent to the remote site during the instantiation of
the sub-plan. Before sending objects back to the market place a data
provider performs the selection. Figure 14(b) illustrates the migration
of predicates.

5.3. CACHING AT THE INTERMEDIARY AND AT THE REMOTE HOSTS

Due to duplicates (which may be produced by preceding joins) the same
virtual attributes may be evaluated multiple times. This can be avoided
by caching.” Evaluating virtual attributes is similar to the invocation of
expensive methods, but in contrast to [24] this is done asynchronously,
i.e., objects are sent to sub-plans, before the results of previous objects
are returned. Thus, it is not sufficient to store only the returned values.
We also have to keep book of objects that were sent to sub-plans and
have not yet produced a result. Figure 15(a) depicts the (hash table-
based) caching of virtual attributes. On any input object the Dispatch
operator probes the hash table (1). A cache hit is directly sent to
the Union, bypassing the HyperQueries (2). Otherwise, the object is
inserted into the hash table as a request. If this was the first request
for this URI, the object is sent to the corresponding HyperQuery. If
a result from a HyperQuery is received by the Union, it is inserted
into the hash table (3) and the pending objects with the same URI
are returned (4). If the results are highly dynamic and for coherence
reasons cannot be re-used in another query, the hash table has to be
discarded when the query execution has finished. If the remote hosts
give TTLs, this approach can be extended to inter-query caching, where
results are cached until expiry.

" The prerequisite for this is that multiple invocations of a HyperQuery with the
same parameters return the same value.
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Figure 15. Tlustrating Optimization Techniques (II)

While this kind of caching takes place at the intermediary, the re-
mote hosts cache requests and their results to reduce the processing
overhead at their sites. Therefore, suppliers store for each requested
URI the resulting object in a hash table and return the stored object
on any further request of the same URI. This way, the execution of
HyperQueries is shortcut which is especially in multi-level HyperQuery
execution an effective optimization technique. Figure 15(b) shows this
inter-query caching technique for Supplier 2 where the execution of the
proper HyperQuery (HQ) is bypassed.

5.4. MULTIPLE VIRTUAL ATTRIBUTES

If a query accesses multiple virtual attributes the naive execution strat-
egy would sequentially request at first the value of the first virtual
attribute, then the value of the second virtual attribute, etc. If all vir-
tual attributes of an object are evaluated at the same site, the requests
can be bundled. The intermediary generates a plan that contains one
Dispatch operator for all virtual attributes whose evaluation can be
combined. During the execution the Dispatch operator sends the list of
all requested virtual attributes with the instantiation request for one
remote sub-plan. When an object passes the Dispatch operator, it is
routed to the sub-plan, where the actual values of all virtual attributes
are determined at once.

If virtual attributes, e.g., the price and the rating by an independent
organization, are evaluated at the different sites, the calculation can
be parallelized, anyway: The Dispatch operator instantiates multiple
HyperQueries and sends one input object with a unique sequence num-
ber to all its corresponding sub-plans in parallel. The Union re-merges
the resulting data objects of different HyperQueries using the sequence
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Figure 16. Architecture of the QueryFlow System

number. When the Union has re-merged all requests belonging together
into one object, this result is passed to the next operator.

5.5. OUR PROTOTYPE IMPLEMENTATION: THE QUERYFLOW

SYSTEM

Having described the reference architecture of an open and scalable dy-
namic electronic market place in Section 4, we present our implemented
QueryFlow system. We made an effort to rely on standards such as
SQL, XML, XML Schema, X.509 certificates [26], XML Signature [7]
and SOAP [57]. Figure 16 depicts the basic components:

The query processing capabilities of QueryFlow are based on
ObjectGlobe, a distributed and open query processor for data
sources on the Internet. Braumandl et al. [11] give a full description
of the ObjectGlobe system.

The HyperQuery Engine combines all operators for HyperQuery
processing, i.e., the Dispatch operator for resolving virtual at-
tributes, and operators for the optimization of HyperQuery
execution.

The QueryFlow CoreSystem manages the instantiated Hyper-
Queries and the distribution of one HyperQuery to multiple
physical hosts including data structures such as caches and
administrative data of the executed HyperQueries.

The HyperQuery Instantiator manages the instantiation of Hyper-
Queries at remote sites. The HyperQueries are stored in a hierar-
chically structured repository that can reside on top of the file
system, a database, or a Web server.

The certificate-based HyperQuery Authenticator signs requests
and queries when sending them to hosts and verifies the au-
thentication of incoming requests. This component is based on
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the security infrastructure of ObjectGlobe and implements the
presented security measures.

— The XML Integration component realizes the functionality to ac-
cess XML data sources. We provide an interface for querying both
relational and XML data sources using XQuery. These queries are
transformed into SQL queries using methods proposed in [53, 54].

— Finally, we implemented some market place specific Web services
for the administration of the market place, e.g., for registration
of suppliers, products, and HyperQueries. These services can be
accessed via SOAP or a proprietary messaging service.

5.5.1. The Distributed Query Processor ObjectGlobe

The idea of the underlying ObjectGlobe is to create an open market
place for three kinds of suppliers: data providers supply data, function
providers offer query operators to process data, and cycle providers are
contracted to execute query operators. Of course, a single site can com-
prise all three services, i.e., act as data-, function-, and cycle-provider.
ObjectGlobe enables applications to execute complex queries which
involve the execution of operators from multiple function providers at
different sites (cycle providers) and the retrieval of data from multiple
data sources.

The whole system is written in Java for two reasons: First, Java is
portable, so that the system can be installed with very little effort. In
particular, hosts need to install the system and can very easily join a
market place by inserting hyperlinks at the intermediary and providing
the corresponding HyperQueries. Second, Java provides secure exten-
sibility. Like the system itself, user-defined query operators are written
in Java, they are loaded on demand (from function providers, e.g., the
market place host or third-party vendors), and they are executed at
the cycle providers in their own Java “sandbox” [45]. A user-defined,
application-specific query operator must implement the open, nezt,
close, and reopen methods following the iterator model [21].

5.5.2. Operators for HyperQuery Processing

All operators for HyperQuery processing, e.g., the asynchronous Send
and Receive operators, the Dispatch, and the Union operator, are
pipelined operators and therefore well suited for query processing on
the Internet and processing streaming data. The Dispatch operator is a
non-standard operator and splits one input stream into multiple output
streams. As we want the concurrent and independent routing of objects
to the instantiated HyperQueries, the Dispatch operator creates one
thread for each output stream. All threads share one common input

paper.tex; 3/05/2004; 9:28; p.31



32 A. Kemper and C. Wiesner

stream, from which each one selects its relevant objects. The Dispatch
operator coordinates the threads and keeps book of them.

5.5.3. Data Sources for HyperQuery Ezecution

The extensibility of the query processor is important, as each par-
ticipant of the market place federation has several alternatives for
implementing HyperQueries. Thus, query plans can be adapted to the
companies’ local systems. The query plans may contain different kinds
of operators which can be characterized by the origin of the processed
data:

Database Queries  The simplest kind of HyperQueries are SQL queries
as shown in Section 2. They are transformed into a tree containing
physical operations, e.g., joins, selections, projections, and sorting. Dy-
namic loading of operators enables the administrator of the local host
to integrate new and more efficient database operations into the query
execution. One example of such a new database operation is a wrapper
that accesses a relational database system using JDBC. This wrapper
makes the integration of existing commercial DBMSs straightforward.

Applications If complex business applications, e.g., Enterprise Re-
source Planning systems like SAP R/3, spreadsheet analysis, etc., or
legacy systems need to be accessed, wrappers for these applications
have to be integrated into the query plan. This is done in the same way
as database systems are integrated: the wrappers just have to obey
the iterator interface. The applications are automatically invoked on
any incoming data object and the actual value of the virtual attribute
is calculated from the current input object. The connection of the
QueryFlow system to legacy systems by wrappers means that data
is only integrated on demand and the most coherent state of the data
is returned.

Human Interaction HyperQueries may even incorporate human in-
teraction where a user enters the value of a virtual attribute through
a Java applet or a GUIL. As these operators are executed at the data
sources, sensitive data remains under full control of the data providers.
These operators have two main parts: a server part, implementing the
iterator interface, is specified in the query execution plan, and runs as
a part of the query execution. The corresponding input interface acts
as a client to this operator.

6. Performance Analysis

In this section we present benchmark results obtained from our
QueryFlow system. In particular, we concentrate on investigating the
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select PS_PARTKEY, PS_SUPPKEY, PS.COMMENT, [ virtual_attrs |’
from PARTSUPP
wherePS_PARTKEY < ’[ sel |’
(a) The User’s Query

select h.*, p.P_RETAILPRICE as PS_SUPPLYCOST
from HyperQuerylnputStream h, PARTQSUPP; p
whereh.PARTKEY = p.P_.PARTKEY

(b) The HyperQuery at Supplier ¢

Figure 17. Queries used for Performance Investigation

scalability of our approach in a distributed environment and show the
effectiveness of the combination of multiple Dispatch operators.

6.1. EXPERIMENTAL ENVIRONMENT

Our test scenario constitutes a market place with 26 suppliers where
we adapted the well-known TPC-D [63] benchmark suite of scale factor
1.0. To suit our limited benchmark environment, we distributed the
10000 suppliers of TPC-D round robin by S_.SUPPKEY to 26 hosts.
The PARTSUPP table represented the product catalog at the market
place and the PART table was partitioned horizontally to obtain several
PART@SUPP; tables that contained the parts produced by Supplier 3.
Thus, each supplier offered approximately 30000 parts, whereby each
part was produced by 4 suppliers which lead to 800000 entries at
the market place and 200000 distinct parts. PS_SUPPLYCOST and
PS_AVAILQTY became virtual attributes. The databases were stored
in proprietary partitions on the file system. Each participant ran its
database server on a separate host, whereby the market place was
placed on a Sun Enterprise 450 with four 400 MHz UltraSparc II
processors and 4 GByte memory. The machines were Sun Ultra 10
with 1 UltraSparc Ili processor at 333 MHz and 128 MByte memory.
All hosts were in the same 100 MBit LAN, running Solaris 2.7 and using
Sun’s JDK 1.3. The security component was deactivated, as it was not
our intent to measure the overhead for decryption, encryption, and
authentication. Instead, our interest was on pure query processing per-
formance. Within the HyperQueries we simulated the access to legacy
systems or applications and slowed down their execution. Figure 17
shows the user’s query and the HyperQuery executed at Supplier s.

6.2. SCALABILITY OF HYPERQUERY PROCESSING

Measuring the scalability of our HyperQuery processing technique is
divided into three parts. At first we determined the behavior of the
system under a growing number of suppliers, then we varied the number
of users. In both experiments we queried only one virtual attribute
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Figure 18. Investigating the Scalability

PS_ SUPPLYCOST. Finally, we show the performance gain of parallel
evaluation of multiple virtual attributes.

6.2.1. Scaling the Number of Suppliers
In the first set of benchmarks we determined the behavior of the system
under a growing number of suppliers.

Requesting from each Supplier 150/1500/4500 Objects We varied the
number of requested suppliers from 1 to 26 and requested from each
supplier 150/1500/4500 objects. Thus, we got an increasing number
of result objects. Figure 18(a) shows the running times which are al-
most constant within one test set. Thus, the overall performance is
determined by the execution time of the HyperQueries at the remote
hosts.

Adapting the Number of Requested Objects 1In the previous experiment
the number of returned objects was increased with the number of re-
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quested suppliers. Now we adapted the number of requests to obtain
4500 objects in total and measured the parallelization of the requests
from 1 to 26 suppliers. Figure 18(b) shows that the total running time
decreases with more suppliers because of the parallelization effects at
the market place.

6.2.2. Scaling the Number of Users

In this test we demonstrate the scalability of the market place when
varying the number of users that simultaneously posed queries at the
market place. Each of the users requested 100/1000/2000 products from
two suppliers each. This leads to 13 user queries that can be run without
accessing one of our 26 suppliers multiple times. We varied the number
of querying users from 1 up to 50. Figure 18(c) gives the running times
which are almost constant within the segments from 1 to 13, 14 to 26,
27 to 39, 40 to 50 users and jump up in step function manner. These
steps are caused by multiple accesses of the same suppliers.

6.2.3. FEwvaluating Multiple Virtual Attributes

At last, we demonstrate the benefits of bundling requests for mul-
tiple virtual attributes incorporating all 26 suppliers. The user’s
query accessed the two virtual attributes PS_SUPPLYCOST and
PS_AVAILQTY . We varied the selectivity of the query, requesting from
100 up to 260000 data objects. Figure 18(d) shows the running times
for the alternative execution plans. It can be seen that all execution
times increase linear with the number of requested objects. This is not
surprising as each supplier has a proportional ratio of the requested
objects. The naive plan (Sequencing HyperQueries) had two sequenc-
ing Dispatch operators requesting at first PS_.SUPPLYCOST and then
PS_AVAILQTY . The first optimized variant (Parallel HyperQueries)
parallelizes the evaluation of both virtual attributes and nearly halves
the running times as multiple round trips of objects are avoided.
The second optimization variant (Bundled HyperQueries) combines the
evaluation of both virtual attributes in one request and draws addi-
tional profit: the overhead of re-merging the duplicates of one input
object at the Union leaves out.

7. Summary and Future Work
Electronic market places and virtual enterprises have become very
important applications for distributed query processing. Building a
scalable virtual Business-to-Business market place with hundreds or
thousands of participating suppliers requires highly flexible and scalable
distributed query processing capabilities. Architecting an electronic
market place as a data warehouse-like approach by integrating all the
data from all participating enterprises in one centralized repository
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incurs severe problems. We first presented a new framework for dynamic
distributed query processing based on so-called HyperQueries which
are essentially query evaluation plans “sitting behind” hyperlinks. Our
approach facilitates the pre-materialization of static data at the market
place whereas the dynamic data remains at the data sources. In contrast
to traditional data integration systems, our approach executes essential
(dynamic) parts of the data-integrating views at the data sources. The
other, more static parts of the data are integrated & priori at the central
portal, e.g., the market place. The portal serves as an intermediary
between clients and data providers which execute their sub-queries
referenced via hyperlinks. We illustrate the flexibility of this distributed
query processing architecture in the context of B2B electronic market
places with an example derived from the car manufacturing industry.

Based on these HyperQueries, we proposed a reference architecture
for building scalable and dynamic electronic market places. All admin-
istrative tasks in such a distributed B2B market place are modeled as
Web services and are initiated decentrally by the participants. Thus,
sensitive data remains under the full control of the data providers.
We described optimization and implementation issues to obtain an
efficient and highly flexible data integration platform for electronic
market places. All proposed techniques have been fully implemented
in our QueryFlow prototype system which served as platform for our
performance evaluation.

In future work we will extend these query processing concepts to
Peer-to-Peer (P2P) environments. In a recent paper [12] we describe
a distributed index structure to efficiently find data in P2P networks,
expand query plans on the fly, and place operators nearby the data
sources. In this context, HyperQueries support the implementation of
the index structures and the dynamic plan generation. This environ-
ment offers a wide field of novel aspects such as the clustering of data,
the placement of operators, and load balancing.
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